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Introduction

Wine characteristics and quality are generally described by 
aroma, taste, color and flavor and are the result of complex 
interactions between chemical composition, wine grape 
variety [1], geographical origin [2], i.e., climate and soil 
characteristics [3], and vinification conditions such as tem-
perature used during grape maceration, maceration time, 
frequency, and intensity of maceration. [4]. Wine contains 
a wide variety of organic and inorganic compounds, with 
variation in chemical composition occurring due to the nat-
ural variability of grape composition and variability in the 
vinification process [5].

Wine grape variety is an important factor influencing 
wine flavor, with particular wine grape varieties consid-
ered to be an important factor in producing premium wines. 
Adulteration of these wines using cheaper (and inferior) 
grape varieties in order to produce a cheaper wine means 
that the ability to accurately authenticate and differentiate 
wines is very important in order to protect consumers [6]. 
Note that under food legislation the inclusion of other wine 
grape varieties in small, legally defined percentages is per-
mitted (the permitted amount varying between countries). 
In authenticating a wine, the use of sensory evaluation 
alone cannot guarantee correct results; hence, it is impor-
tant to develop more objective methods for characterization 
of wines based on reproducible physicochemical parame-
ters and standardized control procedures.

A wine can be characterized by its phytochemical fin-
gerprint which can be determined using various quali-
tative and quantitative analytical methods, especially 
hyphenated techniques which are usually a combination 
of chromatographic and spectroscopic methods. High-per-
formance liquid chromatography (HPLC) is often a com-
mon method of choice. However, with the development 
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of high-performance adsorbent layers and sophisticated 
instrumentation for sample application, chromatogram 
development, derivatization and evaluation, high-perfor-
mance thin-layer chromatography (HPTLC) has become 
a powerful analytical method for analyzing complex inor-
ganic and organic matrixes such as those found in wine 
samples [7]. The main advantages of HPTLC over both 
gas chromatography (GC) and HPLC are high sample 
throughput and rapid low-cost analysis. Many samples 
can be analyzed in parallel on the same plate with better 
precision and accuracy as a result of simultaneous analy-
sis of both samples and standards under the same condi-
tions with the added benefit of shorter analysis times [8]. 
Also, careful selection and use of derivatizing agents can 
enhance selectivity in visualization of target chromato-
graphic zones. Choosing an appropriate scanning wave-
length or storing color information resulting from splitting 
a plate image through red, green and blue channel filters 
can further enhance selectivity of the method [9]. There is 
an increasing interest in the application of multivariate sta-
tistical methods to differentiate wines according to grape 
variety, geographical origin and vinification method [10]. 
In this work, unsupervised pattern recognition technique, 
principal component analysis (PCA), was used to analyze 
variance in chromatographic fingerprints as a function of 
wine grape variety followed by ANN as a supervised tech-
nique to develop a predictive chemometric model. The 
main advantage in using ANNs is the ability to implicitly 
detect complex nonlinear relationships among variables, 
which makes it suitable for prediction and pattern recogni-
tion applications. ANNs were used to develop a model that 
can predict grape variety from the wine HPTLC fingerprint. 
To our knowledge, this is the first report which combines a 
HPTLC fingerprint with supervised and unsupervised sta-
tistical methods.

Materials and methods

Standard solutions and wine samples

Antioxidant standards, caffeic acid (98  %), gallic acid 
(97  %), resveratrol (99  %) were purchased from Sigma 
Chemicals (Balcatta WA, Australia), while rutin (97  %) 
was purchased from Alfa Aesar (Ward Hill, Massachu-
setts). A gradient elution method was set up using dichlo-
romethane (Merck, Victoria, Australia), methanol (Merck), 
formic acid (Ajax Chemicals, Sydney, Australia) and 
sodium dodecyl sulfate (Sigma), butanol (Chem Supply, 
Gillman, South Australia), Milli-Q water (Millipore, Bay-
swater, Australia) and heptane (BDH, Tingalpa, Australia). 
Standard solutions of resveratrol (1  mg/mL) and 0.1  mg/
mL standard solutions of caffeic acid, gallic acid and rutin 

were made in absolute ethanol. A methanolic solution (1 % 
w/v) of 2-aminoethyl diphenylborinate (Alfa Aesar) was 
used for plate derivatization. A total of 40 wine samples (38 
red wines and 2 white wines) were collected from differ-
ent regions of Australia (32 wine samples) and overseas (8 
wine samples) (Table  1). All samples and standards were 
refrigerated at 4 °C to prevent degradation [11].

HPTLC analysis of caffeic acid, gallic acid, resveratrol 
and rutin

HPTLC was performed on HPTLC Silica gel 60 F254 glass 
plates 20 cm × 10 cm (Merck, Germany). Plates were pre-
washed before use with a blank run of ethanol, then dried 
and activated by heating in an oven at 110  °C for 10  min. 
Samples were applied to the plates as 10 mm narrow bands 
using a 100-µL syringe with a semi-automatic sample appli-
cator [Linomat 5 (CAMAG, Muttenz, Switzerland)], 8  mm 
from the lower edge plate, with 10 mm distance from each 
side and a track distance of 7 mm. This resulted in 15 sam-
ple applications per plate consisting of 10 μL of 11 wine 
samples, together with 2 μL of caffeic acid, 10 μL of gallic 
acid, 5 μL of resveratrol and 10 μL of rutin standard solu-
tions. Samples of wine were used without any pre-treatment. 
Standard solutions were applied in duplicates on either side 
of the wine samples in order to prevent parallax error through 
uneven solvent fronts. HPTLC plates were developed in 
an automated multiple development chamber (AMD2, 
CAMAG) using a two-step (9:5) gradient elution method. 
Dichloromethane/methanol/formic acid (73:20:7) was the 
first mobile phase, and a water-in-oil micro-emulsion con-
sisting of sodium dodecyl sulfate/n-butanol/water/heptane 
(8 g:25 mL:8 mL:160 mL) was the second mobile phase.

The specific optimized gradient elution separation used 
in this work was previously reported [12]. The window dia-
gram technique was used to optimize the three components 
of eluent in the first step for complete separation of caffeic 
acid and resveratrol (Fig. 1).

Further separation of flavonoids and phenolic acids in 
wine samples was then achieved by using a micro-emulsion 
as an eluent in the second step. Micelle eluents containing 
surfactant as one of the components provide unique sepa-
ration selectivity, by adding a secondary partitioning equi-
librium from the silica gel stationary phase into the micro-
emulsion droplets.

Images of plates for both standards and samples were 
captured using a TLC-Visualizer (CAMAG) with a 12-bit 
camera (CAMAG) under UV light at 366  nm before and 
after spraying each plate with 1 % w/v 2-aminoethyl diphe-
nylborinate derivatizing agent solution. The derivatizing 
reagent reacts with polyphenolic bands on the plate turning 
them deep blue. Capture parameters (focal length, focus 
and aperture) were fixed to ensure the quality of images 
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and reproducibility of results between plates. Images were 
stored in Joint Photographic Experts Group (JPEG) file for-
mat [13].

Data acquisition and statistical analysis

Images of the HPTLC chromatograms were exported from 
winCATS to ImageJ (1.48c version, Wayne Rasband), an 
image processing program developed at the National Insti-
tute of Health, USA (http://rsb.info.nih.gov/ij). ImageJ 
is a freely available Java-based program for digital pic-
ture manipulation that can be used for advanced picture 
transformations such as filtering, smoothing, background 

Table 1   Wines used in this work

a  NSW: New South Wales, Australia
b  VIC: Victoria, Australia
c  SA: South Australia, Australia
d  WA: Western Australia, Australia

Sample number Type Wine grape variety Origin

1 Red Cabernet Merlot NSWa

2 White Muscat Heathcote, VICb

3 Red Durif Heathcote, VICb

4 Red Shiraz Heathcote, VICb

5 Red Shiraz, Cabernet Adelaide, SAc

6 Red Merlot Alpine Valley, VICb

7 Red Shiraz South Africa

8 Red Shiraz Heathcote, VICb

9 Red Cabernet Heathcote, VICb

10 Red Zinfandel California, USA

11 White Chardonnay VICb

12 Red Cabernet Merlot South East, VICb

13 Red Shiraz Merlot Adelaide, SAc

14 Red Shiraz SAc

15 Red Shiraz Bendigo, VICb

16 Red Shiraz Cabernet SAc

17 Red Shiraz Cabernet South East, VICb

18 Red Shiraz Cabernet Bendigo, VICb

19 Red Shiraz NSWa

20 Red Cabernet Sauvignon WAd

21 Red Cabernet Sauvignon NSWa

22 Red Petit Verdot NSWa

23 Red Cabernet Sauvignon NSWa

24 Red Cienna VICb

25 Red Dolcetto Italy

26 Red Merlot, Cabernet 
Sauvignon

France

27 Red Prunesta, Malvasia 
Nera

Italy

28 Red Shiraz SAc

29 Red Shiraz Cabernet SAc

30 Red Merlot WAd

31 Red Merlot VICb

32 Red Pinot Noir France

33 Red Primitivo Italy

34 Red Primitivo Italy

35 Red Cabernet Sauvignon SAc

36 Red Shiraz

37 Red Shiraz SAc

38 Red Chambourcin, Shiraz NSWa

39 Red Cabernet Sauvignon SAc

40 Red Merlot SAc

Fig. 1   Two-dimensional window diagram represented as a contour 
plot (a) and surface plot (b)

http://rsb.info.nih.gov/ij
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subtraction, auto-balance or grayscale conversion and other 
signal transformations [14, 15]. It is able to plot the inten-
sity associated with each pixel, as well as export raw data 
which is particularly useful for further chemometric data 
handling. ImageJ was designed with open architecture 
that provides extensibility via Java plugins and recordable 
macros. The subtracks were cut out (594 pixel length and 
60 pixel width for each subtrack) from every track on the 
plate. The stack of all subtracks was separated into three 
independent channels for red, green and blue primary color 
components. The color value of a given point from the 
chromatographic plate depends on the channel at which it 
was observed. Images were processed using ImageJ soft-
ware with raw data exported for further chemometric data 
handling. The blue channel was chosen because almost 
all bands are blue and chemometric models obtained 
for blue channel showed best results. Once the data have 
been acquired, the usual data pretreatment procedures are 
denoising, normalization, followed by warping/registering 
of the chromatogram are analyzed [16, 17]. Normalization 
of the images was performed by scaling each sample to the 
sum of intensity. Denoising of the images was done using 
the 3 pixels median filter. Peak alignment was employed 
to correct the inter- and intra-plate peak shift due to varia-
tions in mobile phase composition, humidity, temperature, 
operator handling and instrumental instability. The HPTLC 
chromatograms were warped to the reference by deleting 
or adding baseline segments near the selected signals using 
Correlation Optimized Warping (COW), so that the peak RF 
values were equalized [18]. The data were additionally pre-
processed by using mean centering, which is the preferred 
option when the classification of samples is based on vari-
ables that are all measured using the same unit.

Multivariate analysis and data acquisition

Principal component analysis was performed with PLS 
ToolBox, v.6.2.1, for MATLAB 7.12.0 (R2011a). PCA 
was carried out as an exploratory data analysis by using a 
singular value decomposition algorithm (SVD) and a 0.95 
confidence level for Q and T2 Hotelling limits for outliers. 
Hierarchical cluster analysis (HCA) was obtained using the 
Ward method to calculate cluster distances and by applying 
Euclidean distance as a measure of distance between the 
samples. Artificial neural networks Microsoft Windows™ 
based simulator software Statistica™ 2009 (StatSoft®, 
USA) was used to develop a predictive model. Analyzed 
chromatographic fingerprints provided 594 inputs (peak 
intensities) for each wine sample. The number of inputs 
was reduced to 244 by averaging data of consecutive peaks. 
If a large number of inputs are used to build an ANN, the 
number of interconnection weights will increase and the 
training of the neural networks will be extremely slow. 

Obtained chromatograms were smoothed to reduce the 
noise and improve signal-to-noise ratio [19] and therefore 
improve accuracy and precision of a model. Different grape 
blends provided 19 corresponding categorical outputs (i.e., 
Cabernet, Cabernet Merlot, Cabernet Sauvignon, Cham-
bourcin Shiraz, Chardonnay, Cienna, Dolcetto, Durif, Mer-
lot, Cabernet Sauvignon, Muscat, Petit Verdot, Pinot Noir, 
Primitivo, Prunesta Malvasia Nera, Shiraz, Shiraz Caber-
net, Shiraz Merlot and Zinfandel). From these data, training 
(70 % of data set), testing (15 % of data set) and validation 
sets (15 % of data set) were randomly selected before each 
training epoch to develop an ANN model.

Results and discussion

The HPTLC profile of a wine sample according 
to image analysis

HPTLC analysis is generally affected by noise, which is 
related to the grainy nature of the HPTLC plates, non-uni-
formity of the plate spraying during derivatization, progres-
sive degradation of spot color, etc. Therefore, an increase 
in the signal-to-noise ratio could improve analytical results. 
Investigated wine samples contained characteristic phe-
nolic compounds at RF values of: 0.13 ± 0.02 (rutin), 0.26, 
0.48, 0.55 ± 0.0.03 (gallic acid), 0.78 ± 0.02 (caffeic acid) 
and 0.87 ±  0.02 (resveratrol) (Fig.  2). In this study, it is 
observed in the chromatographic HPTLC profiles of wine 
that bands are observed over a large range, with RF values 
from 0 to 0.9.

Merlot wine contains significantly high peaks at RF val-
ues of 0.15, 0.20, 0.26, 0.55 (gallic acid), and 0.78 (caffeic 
acid). Note that the high gallic acid and caffeic acid con-
tent observed in Merlot in this work (Fig. 2) has previously 
been reported in Merlot Chilean and South American wine 
[20]. Furthermore, almost all Shiraz wines excluding Shi-
raz Cabernet wine contain three characteristic peaks at 
RF = 0.15, 0.55, and 0.78 corresponding to rutin, gallic acid 
and caffeic acid and a compound with RF value 0.26, with a 
few samples also showing a resveratrol peak at RF = 0.87 
(resveratrol). Durif wine samples had almost a similar pat-
tern as Shiraz wine with four characteristic peaks at RF 
values of 0.26, 0.55 and 0.78. These phenolic compounds 
play an important role in wine quality as they significantly 
contribute to the bitterness, astringency and color of wine 
[21]. Pinot Noir and Petit Verdot are both observed to 
have an almost identical chromatographic profile to Shiraz 
Cabernet wines. Furthermore, one Cabernet wine sample 
had the same characteristic peaks as Shiraz Cabernet with 
RF =  0.15, 0.40 and 0.66 and showed a different HPTLC 
pattern from other Cabernet wines (Fig. 2). The peak pro-
files for Cabernet, Cabernet Merlot and Cabernet Sauvignon 
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Fig. 2   Profile plots with analytical important RF range values from 0 to 0.9 of HPTLC images for the blue channel
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wines show they all contain peaks at 0.15, 0.26, 0.66 and 
0.87. When compared to the other wines, Muscat and char-
donnay showed a different pattern with only a few other 
small peaks observed between RF = 0.2 to 0.9 and no res-
veratrol peak observed. Wine samples for Cienna, the Italian 
wines (Prunesta, Primitivo) and American wine (Zinfandel) 
showed similar patterns and were also observed to have sig-
nificant amounts of rutin and caffeic acid.

Multivariate analysis

While classical HPTLC fingerprinting is done by visual 
inspection, based on an analyst’s perception, a chemomet-
ric approach, based on different statistical models, is able 
to provide better objectivity. The chromatographic system 
is optimized to separate and identify all compounds from 
different varieties present in a wine sample. The HPTLC 
fingerprint treats the chromatogram as a unique signal, 
without a need to identify and interpret the peaks. More-
over, it contains a vast amount of information that is able 
to be used for qualitative and quantitative analysis of ana-
lytes present in wine. Both unsupervised and supervised 
techniques were applied on the data set in order to analyze 
variance in HPTLC patterns according to grape variety and 
to develop a model that could predict a grape variety from 
chromatographic fingerprint.

Principal component analysis

Principal component analysis (PCA), a commonly used 
multivariate technique, is a variable reduction procedure 
able to be used to account for most of the variation of total 
variability in a HPTLC fingerprint. PCA visualizes the 
structure of data, grouping wine samples according to vari-
ety, and identifying important variables (different phenolic 
compounds/bands) for discrimination between samples 
[22]. Principal component analysis as an initial multivari-
ate technique was applied on the data matrix (40 sam-
ples × 594 variables) obtained from HPTLC plate images.

Variables represent the intensities of pixels along the 
594 length lines. The Merlot Alpine Valley sample lied out-
side the Hotelling T2 ellipse, suggesting that sample was 
recognized as an outlier and was therefore removed from 
data set. The first two rotated factors [principal components 
(PCs)] have the highest eigenvalues and accounted for 
45.02 and 13.23 % of the total variability, respectively. The 
first four principal components describe 73.87  % of total 
variability. From the mutual projections of PC factor scores 
(Fig. 3a), all wine samples were clustered into one of three 
groups; (a) Cabernet, Cabernet Sauvignon and Cabernet 
Merlot formed one group (upper left hand side), while 
one Cabernet sample is misclassified and positioned on 
right side of PCs score close to Shiraz Cabernet samples, 

(b) Shiraz and Merlot as monovarietal wines formed two 
subgroups (lower left hand side), and (c) other multi-vari-
ety Shiraz wines formed a third group together with Italian 
and French wines (middle right hand side). One Cabernet 
sample positioned on right side of PCs score had a similar 
HPTLC profile as Shiraz Cabernet (Fig. 3). Further, Primi-
tivo (Italian wine), Cienna, and two white wines (Chardon-
nay and Muscat) formed one subgroup in the central region 
of the PC plot. Our previous study has shown that Cabernet 
wine produced in Heathcote, Victoria, has a slightly differ-
ent HPTLC fingerprint and chemical composition when 
compared to the other Cabernet wines tested (Table 1) [23].

The loading plots (Fig.  3b, c) demonstrate the signifi-
cant contribution of polyphenolic compounds to the total 
variability. The most influential polyphenolic compounds 
discriminating between Cabernet, multi-varietal Cabernet 
wines, and Merlot and Shiraz wine, from other wine sam-
ples are rutin, compounds with RF values at 0.26, 0.48, 
0.66, 0.73, and resveratrol. In contrast to other types of 
wines and one Cabernet sample, Cabernet, Cabernet Merlot 
and Cabernet Sauvignon wines contain significant amounts 
of phenolic compounds with RF values at 0.13 (rutin), 0.26, 
0.66 and 0.88 (resveratrol). These phenolic compounds 
may be identified as characteristic markers for a wine grape 
variety. Further, wine samples positioned on the left side 
of PCs score such as Merlot and Shiraz showed a similar 
pattern and contain polar compounds with RF values 0.15, 
0.26, 0.55, 0.78 and may be characteristic markers for these 
grape varieties. Also, wines which formed a third cluster 
(Prunesta, Primitivo, Muscat, Chardonnay) contain polar 
phenolic compounds, with RF at values of 0.09 and 0.13. 
These compounds may be important markers for wines 
containing these grape varieties. According to Fig.  3c, 
bands with RF values of 0.09, 0.27 and 0.73 have a posi-
tive correlation with PC2, while rutin (RF = 0.13) and res-
veratrol (RF =  0.88) and a compound with a RF value of 
0.66 showed the most influence in distinguishing between 
separated Cabernet and multi-varietal Cabernet wines from 
other wine samples. Wines belonging to the third clus-
ter do not contain compounds with RF value 0.88, while 
wines which formed a third cluster contain bands with RF 
values of 0.09, 0.13 and 0.27. Gallic acid and caffeic acid 
are polyphenolic antioxidants most commonly found in the 
investigated wines, while rutin and resveratrol were able to 
be quantified in only selected wine varieties which means 
they may be useful as characteristics markers of grape vari-
ety, which is in agreement with PCA.

An artificial neural network (ANN) is an artificial intel-
ligence tool that mimics the way that human brain works, 
processes information and learns from data. ANNs are 
mathematical models composed of a large number of 
highly inter-connected processing elements (artificial neu-
rons) operating in parallel (layers). Neurons are organized 
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into layers, an input layer, one or more hidden layers, and 
an output layer (targets). There are different ways in which 
information can be processed by a neuron and different 
ways of connecting each neuron to one another. Differ-
ent neural network structures can be constructed by using 
different processing elements and by the specific way in 
which they are connected. Thus, connection weights and 
the number of hidden neurons in an ANN are adjustable 
parameters that are optimized during the learning phase.

The ANN learns by adjusting the strength of connec-
tion weights and by optimizing the number of hidden lay-
ers and hidden neurons during the learning phase. Com-
monly, ANNs are trained through a specific learning rule 
so that a particular input leads to a specific target output. 
Supervised learning is a recursive learning process where 
inputs fed in the ANN are mapped in the output. The output 

is then compared with the target, and network weights are 
adjusted to match the target. The key strength of an ANN 
is its ability to model both, linear and nonlinear relation-
ships [24], and to estimate any mathematical functions 
using fewer parameters than other methods [25]. After run-
ning 30 tests, each evaluating 250 different ANN topolo-
gies, the multilayer perceptron (MLP) with limited memory 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization 
algorithm was selected, based on its predictive performance 
(Table  2) in the validation data set. Broyden–Fletcher–
Goldfarb–Shanno, or Quasi-Newton, is a powerful second-
order training algorithm with very fast convergence but 
high memory requirements. More details about the ANNs 
and learning algorithms can be found in the literature [26].

The best ANN model trained by the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) optimization algorithm was a 
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MLP with a 244-26-21 topology. It correctly classified 
96 % (25 out of 26) of the wine grape varieties in the train-
ing set, 100 % (8 out of 8) in the testing set and 67 % (4 out 
of 6) in the external validation set. The mistake in the train-
ing set was in predicting the Shiraz variety instead of Durif 
for one of the wine samples. This can be explained by the 
fact that there was only one Durif wine sample so the ANN 
did not have enough data to memorize the fingerprint pat-
tern for the Durif variety. Durif, also known as a Petit Shi-
raz, is named after its discoverer French nurseryman Dr. 
François Durif. Petit Syrah (Durif) is a black-skinned grape 
variety, which is the result of a cross between Syrah and 
a less well-known Rhône variety, Peloursin. It was created 
to improve the grape’s ability to resist mildew. However, it 
could not grow in the humid Rhône region and was brought 
to California [27]. Although Shiraz and Petit Shiraz are two 
completely different grape varieties, they both make big, 
rich red wines and both are considered as Rhône varietals 
[28].

For the validation data set, mistakes were made by pre-
dicting Pinot Noir wine grape variety instead of Cabernet, 
and Shiraz Cabernet instead of Prunesta Malvasia Nera 
(Black Malvasia). Malvasia Nera is the darker-skinned red 
wine grape variety that is grown throughout Italy and the 
Mediterranean and is primarily used as a blending grape in 
Italy, being valued for the dark color and aromatic quali-
ties it can add to a wine. Cabernet Sauvignon offers bolder 
and more pronounced expressions of similar character-
istics and has largely replaced Malvasia Nera in Tuscan 
blends [29].

Conclusion

The development of analytical methods for the assessment 
of authenticity and for detection of adulteration of food and 
beverages has become very important, especially for expen-
sive products such as premium wine. The HPTLC finger-
print evaluation method that has been developed, combined 
with digital image processing and consequent chemometric 
techniques offers a simple and effective way to differentiate 
wines according to grape varieties. Given that the model 
is based on limited number of wine samples, model repre-
sents a preliminary attempt to distinguish wine categories 

based on HPTLC fingerprints. Gallic and caffeic acid are 
phenolic antioxidants most commonly found in wine, while 
rutin and resveratrol were quantified in only selected wine 
varieties and therefore are recognized by PCA as potential 
phenolic markers of wine grape variety. This type of meth-
odology can be used to create a large digital database of 
fingerprints from different wine varieties and develop a pre-
dictive model to characterize wines and wine grape variety 
from a wine’s HPTLC fingerprint.
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