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enrichment with micronutrients with a contrary effect on 
antioxidant properties can activate synthesis of phenolic 
compounds and ascorbic acid. The investigation is the first 
study evaluating the effect of addition of two elements to 
the substrate at the same time on antioxidant properties of 
mushrooms.
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Introduction

Mushrooms are a valuable component of the human diet 
due to their nutritional and medicinal value. They are a 
source of compounds responsible for antimicrobial, anti-
oxidant, antitumor and antiinflammatory properties [1–8]. 
The consumption of food rich in antioxidants plays a pro-
tective role for human health, because of the reduction in 
oxidative damage resulting in enhanced generation of free 
radicals [9, 10]. Free radicals are unstable and highly reac-
tive, due to having unpaired electrons; they are responsible 
for oxidative stress, and in consequence, they cause DNA 
damage, carcinogenesis, oxidation of biomolecules and cel-
lular degradation related to aging, etc. [11–14].

Phenolic compounds are mushroom antioxidants which 
are strong radical scavengers and free radical inhibitors and 
phytonutrients [15, 16]. The common feature of this very 
diverse group of metabolites including flavonoids, phenolic 
acids, stilbenes, lignin, tannins is possessing in the struc-
ture one or more aromatic rings with hydroxyl groups [15, 
17].

Ascorbic acid is the enolic form of an α-ketolactone 
(2,3-didehydr L-threo-hexano-1,4-lactone) and is the 

Abstract  The aim of the study was to investigate the 
antioxidant properties, phenolic and flavonoid contents 
and composition and content of ascorbic acid in Pleuro-
tus ostreatus and Pleurotus eryngii enriched simultane-
ously with selenium (Se) and zinc (Zn). Non-enriched 
mushrooms contained Se and Zn at the level as in the most 
popular mushrooms. The total phenolic content (TPC) for 
non-enriched P. ostreatus and P. eryngii was 9.64 ±  0.33 
and 7.91 ±  1.02 mg/g of extract, the total flavonoid con-
tent was 2.11  ±  0.19 and 1.26  ±  0.17  mg/g of extract, 
and ascorbic acid content ranged from 10.28  ±  0.39 to 
16.64  ±  0.47  mg/100  g DW, respectively. Methanolic 
extracts contained 4-hydroxybenzoic, ferulic, p-coumaric, 
protocatechuic, t-cinnamic and vanillic acids and narin-
genin. In methanolic extract of P. eryngii, 2,5-dihydroxy-
benzoic acid was also quantified. The correlation between 
the TPC and antioxidant activity in mushroom was con-
firmed. Additionally, the correlations between Zn and 
Se concentration in fruiting bodies and EC50 value and 
phenolic compounds were confirmed. Our results with 
simultaneous supplementation with Zn and Se provide 
the opportunity to increase the content of the elements in 
fruiting bodies and to improve antioxidant properties and 
antioxidant contents in enriched mushrooms. Addition-
ally, the obtained results demonstrated that simultaneous 
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functional form of vitamin C [18], which has a protec-
tive role in human health and acts as an electron donor for 
human enzymes (reducing agent or antioxidant) [19].

Selenium (Se) and zinc (Zn) are trace elements impor-
tant for human health [20]. Se is a component of antioxi-
dant enzymes via amino acid (selenocysteine, selenom-
ethionine) and proteins [21–23]. Zn is a component of 
enzymes participating in the synthesis and degradation of 
different biomolecules including lipids, proteins, carbo-
hydrates and nucleic acids as well as in the metabolism of 
other micronutrients [19]. The antioxidant properties of Zn 
in detoxification of reactive oxygen species (ROS) such as 
OH·, O2

·− and H2O2 were confirmed in Zn-metallothionein 
and in the enzyme Cu–Zn superoxide dismutase [12, 24].

The deficiency of micronutrient is associated with health 
disturbances, and thus, different cultivation practices have 
been successfully implemented to increase the nutritional 
value of mushrooms [21, 25, 26]. It was also documented 
that enrichment with micronutrients had an impact on anti-
oxidant activities and phenolic content [26–28]. In publica-
tions mentioned, the impact of a single element on antioxi-
dants was determined. The present study is a continuation 
of our experiment on mushroom enrichment [28].

The main objective of the study was to determine phe-
nolic, flavonoid and ascorbic acid contents and antioxidant 
activity of methanolic extracts from P. ostreatus and P. 
eryngii enriched with Se and Zn. Additionally, the individ-
ual profile of phenolics in extracts of the mushrooms was 
determined. To our knowledge, it is the first study on the 
impact of simultaneous enrichment of substrates with dif-
ferent micronutrients on antioxidants in edible mushrooms.

Materials and methods

Mushroom material

Experiments were designed following Gąsecka et  al. [28] 
with some modifications. Wheat straw cut into chaff 4–5 cm 
long was placed in polypropylene bags with 60  % mois-
ture content. After pasteurization at 60 °C for 24 h, it was 
used as substrate for the P. ostreatus experiments. Sodium 
selenite [Na2SeO3 (IV)], sodium selenate [Na2SeO4 (VI)] 
and zinc nitrate hexahydrate [Zn(NO3)2 × 6H2O] were dis-
solved in an amount of sterile water sufficient to obtain 
their appropriate concentration in the substrate. After addi-
tion of the salt solution, the substrate reached the moisture 
content of 70  %. The final concentration of the salts was 
1.5 mM (each in five replicates). The substrate was mixed 
with 3 % of spawn (wheat grain) using a POLYMIX PX-SR 
90 D stirrer (Kinematica AG, Littau-Luzern, Switzerland). 
Then, 1  kg of the substrate was placed in bags of perfo-
rated foil and incubated at 25 °C and 85–90 % air relative 

humidity (RH). Once the bags were totally colonized, they 
were placed in the cultivation chamber (15–16  °C and 
85–90 % RH) and illuminated with fluorescent light of 500 
lux intensity 10 h a day. The growth facility was aerated to 
maintain CO2 concentration below 1000 ppm.

The substrate for P. eryngii was prepared as a mixture of 
beech sawdust and flax shives (3:1 vol.) supplemented with 
wheat bran in the amount of 20 %, corn flour 5 % and gyp-
sum 1 % in relation to the substrate dry matter. Substrate 
moisture was adjusted to 45  % using distilled water, and 
then, it was bagged in polypropylene bags and sterilized at 
121 °C for 1 h and finally cooled down to 25 °C. Se and Zn 
salt solutions were prepared as described above and were 
added to the substrate to obtain the appropriate concentra-
tion (1.5 mM each in five replicates) in the substrate with 
60  % moisture. Then, the substrate with Se and Zn addi-
tion was mixed with spawn (wheat grain) of the mushroom 
(5 % of substrate weight). A total of 350 g of the substrate 
was placed in polypropylene bottles of 1 dm3 volume and 
closed with a cover with a filter. The incubation was con-
ducted at the temperature of 25 °C and 80–85 % RH until 
the substrate became completely colonized with mycelium. 
Next, the bottles without covers were placed in the cultiva-
tion chamber (85–90  % RH and 14 ±  1  °C) and lit with 
fluorescent light of 500 lx intensity 12 h a day. The growth 
facility was aerated in such a way as to maintain CO2 con-
centration below 1000 ppm.

Fruiting bodies of P. ostreatus and P. eryngii were col-
lected after maturation, dried in an electric oven (SLW 53 
STD, Pol-Eko, Wodzisław Śląski, Poland) at 50  ±  2  °C 
for 48 h and ground for 0.5 min in a Cutting Boll Mill 200 
(Retsch GmbH, Haan, Germany). For the extraction proce-
dure, five representative powdered samples were used.

Chemicals

2,2-Diphenyl-1-picrylhydrazyl (DPPH), Na2SeO3, 
Na2SeO4, Zn(NO3)2  ×  6H2O, NaNO2, AlCl3, Na2CO3, 
NaOH, HNO3, H2O2, Folin–Ciocalteu phenol reagent, for-
mic, gallic, protocatechuic, benzoic, 2,5-dihydroxybenzoic, 
4-hydroxybenzoic, caffeic, chlorogenic, vanillic, salicylic, 
syringic, p-coumaric, ferulic, sinapic and t-cinnamic acids, 
rutin, catechin, kaempferol, quercetin, vitexin, luteolin, 
naringenin, apigenin and methanol were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Se standard solution 
was purchased from Merck (Darmstadt, Germany).

Se determination

Mineralization of dry fruiting bodies of the mushrooms 
(1.0000 ± 0.0001 g) was performed using 8 mL of 65 % 
HNO3 and 1 mL of 30 % H2O2 with a CEM Mars 5 Xpress 
microwave mineralization system (CEM Corp., Matthews, 
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NC, USA) according to the following microwave three-
stage program: first stage—power 400 W, time 2 min, tem-
perature 100 °C; second stage—power 600 W, time 5 min, 
temperature 160 °C; the third stage—power 1000 W, time 
10  min, temperature 200  °C. Solutions after mineraliza-
tion were filtered through 45-mm filters (Qualitative Fil-
ter Papers, Whatman, Grade 595: 4–7 µm, UK). Then, the 
whole contents were made up to a final volume of 50.0 mL 
with deionized water (Milli-Q Advantage A10 Water Puri-
fication Systems, Merck Millipore, Darmstadt, Germany). 
Total Se concentration in samples was determined by elec-
trothermal atomic absorption spectrometry (ETAAS) using 
an Agilent Technologies AA Duo—AA280FS/AA280Z 
spectrometer (Agilent Technologies, Mulgrave, Victoria, 
Australia). Pyrolytic graphite tubes and a Se hollow cath-
ode lamp (wavelength 196.0 nm, slit 1.0 nm, lamp current 
10  mA) were used. The optimized temperature program 
was used: drying step at 85–120  °C for 55  s; ashing step 
at 1000 C for 8 s; atomization at 2600 °C. As a chemical 
modifier, palladium solution was used (10 µL of 500 mg/L 
for 20 µL of sample). For the preparation of the calibration 
curve, the commercial Se standard in 1 g/L concentration 
was used as the appropriate diluted standard. The linear-
ity of the calibration curve was 0.9996; the detection limit 
for liquid samples was 0.0007 mg/L. The range of the cali-
bration curve was from the detection limit to 0.080 mg/L. 
Precision measured as relative standard deviation was at 
the level of 3–5 %. The uncertainty of the whole analytical 
procedure (sample preparation and analysis) did not exceed 
20 %. Due to the lack of reference material, the traceabil-
ity was determined in a standard addition procedure. The 
obtained recovery values were in the range 96.7–104.1 %. 
The determination level for the solid samples was 0.1 mg/
kg [29, 30].

For Zn determination, flame (air-acetylene) atomic 
absorption spectrometry was used. The following determi-
nation conditions were used: a stoichiometric flame (2.0 L/
min acetylene and 13.5  L/min air), using hollow cathode 
lamps (HCL) and background correction with a deuterium 
lamp. The spectral conditions were: wavelength 213.9 nm 
and slit 1.0 nm. A Zn hollow cathode lamp (HCL) was used 
with the current 5 mA. The determination limit was 1.0 mg/
kg. The uncertainty (understood as a parameter character-
izing the dispersion of the values attributed to a measured 
parameter; the main component of uncertainty was preci-
sion) of the entire analytical process (sample preparation 
and spectrometric measurements) did not exceed 15  %. 
Due to the lack of reference material, the traceability was 
determined in a standard addition procedure. The obtained 
recovery values were in the range 94.3–103.8 %.

Extraction

Ten grams of the powdered mushroom samples or sub-
strates was mixed with 100  mL of 80  % methanol. Sam-
ples were sonicated, shaken in an Ika KS 260 shaker 
(IKA-Werke GmbH & Co. Kg, Staufen, Germany) for 8 h, 
centrifuged at 3000 rpm with a Universal 320 R centrifuge 
(Hettich, Tuttlingen, Germany) and then filtered through 
Whatman No. 4 paper (UK). The extraction was repeated 
twice, and both supernatants were mixed and evaporated 
at 40 °C to dryness using Büchi Rotavapor R-205 (Flawil, 
Switzerland). The obtained residues were weighed and 
stored at −12  °C until the analyses. For further analysis, 
the extract was redissolved in 1 mL of 80 % of methanol 
[28].

Total phenolic and ascorbic acid contents

The total phenolic content (TPC) was determined with the 
Folin–Ciocalteu reagent [31]. To improve the specificity 
for TPC determination with the Folin–Ciocalteu method, 
the modification based on simultaneous quantification 
of ascorbic acid content (AAC) was introduced accord-
ing to Sánchez-Rangel et  al. [32] and Isabelle et  al. [33]. 
Methanolic extract was mixed with diluted Folin–Ciocal-
teu phenol reagent (1:1 with water, v:v), and after 3 min, 
the absorbance at λ =  765 nm was measured with a Var-
ian Cary 300 Bio UV–Visible scanning spectrophotometer. 
Afterward, 20 % Na2CO2 was added and the samples were 
kept in the dark for 2 h at room temperature. The absorb-
ance at λ = 765 nm was measured. The corrected TPC was 
obtained by subtracting AA reducing activity from the TPC 
absorbance values. The results of TPC were expressed in 
mg of chlorogenic acid (CHA) equivalents per g of dried 
extract (mg CHA/g). The results of AAC were expressed as 
mg per 100 g of dried weight of mushroom. The results of 
AA reducing activity were expressed as AAC multiplied by 
1.43 [32].

Total flavonoid content

Total flavonoid content (TFC) was measured according to 
Choi et al. [34], and also Lin and Tang [35] with some mod-
ifications. A total of 250 µL of methanolic extract, 1.25 mL 
of distilled water and 75  µL of 5  % NaNO2 were mixed 
together. After 6  min, 150  µL of 10  % AlCl3 was added. 
After the next 6 min, 4 mL of 4 % NaOH and 2.5 mL of 
deionized water were added. The absorbance was measured 
at 510 nm, and TFC was expressed as mg rutin equivalents 
per g of dried extract.
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Chromatographic analysis

Chromatographic analysis was performed with a Waters 
ACQUITY UPLC H-Class System (Waters Corp., Milford, 
MA, USA), consisting of a quaternary pump solvent man-
agement system, an online degasser and an autosampler. An 
a Acquity UPLC HSS T3 C18 column (150 mm × 2.1 mm, 
particle size 1.8 μm) (Waters, Ireland) was applied for all 
analyses. The raw data were acquired and processed with 
Empower software. Before injection, the extracts were fil-
tered through a 0.22 mm syringe filter. The mobile phase 
was composed of A (water, containing 0.10 % formic acid) 
and B (acetonitrile, containing 0.10  % formic acid) with 
a gradient program as follows: flow 0.4  mL/min—5  % B 
(2 min), 5–16 % B (5 min), 16 % B (3 min), 16–20 % B 
(7  min), 20–28  % B (11  min) flow 0.45  mL/min—28  % 
(1 min), 28–60 % B (3 min) flow 5.0 mL/min—60–95 % B 
(1 min), 65 % B (1 min), 95–5 % B (0.1 min) flow 0.4 mL/
min 5  % B (1.9  min). The detection was carried out in a 
photodiode array detector (PDA) eλ (Waters Corporation, 
Milford, MA, USA), and measurements of phenolic com-
pound concentrations were performed using an external 
standard at wavelengths λ  =  320  nm (chlorogenic acid, 
caffeic acid, p-coumaric acid, ferulic acid, salicylic acid, 
sinapic acid, vitexin, rutin, quercetin, luteolin, apigenin, 
kaempferol), λ = 280 nm (gallic acid, protocatechuic acid, 
4-hydroxybenzoic acid, vanillin, syringic acid, vanillic 
acid, t-cinnamic acid, naringenin) and λ =  230 nm (cate-
chin, benzoic acid). Compounds were identified based on 
a comparison of retention times of the examined peak with 
that of the standard and by adding a specific amount of the 
standard to the tested sample and repeated analyses. The 
limit of detection was 1 mg/kg [36].

DPPH radical scavenging assay

The radical scavenging assay was prepared as previously 
described [28]. One milliliter of methanolic extracts at a 

concentration between 2 and 20  mg/mL was mixed with 
2.7 mL of 6 µmol/L methanolic solution of 2,2-diphenyl-
1-picrylhydrazyl (DPPH) radicals. The mixture was shaken 
and kept in the dark at room temperature for 60 min. The 
reduction of the DPPH radical was measured by monitor-
ing the decrease in absorbance at 517 nm. The DPPH radi-
cal scavenging activity was calculated according to the for-
mula [37]:

where A absorbance of control (DPPH solution without 
extract), AC absorbance of methanolic extract of mushroom.

The scavenging activity expressed as EC50 represented 
the concentration of a sample having 50  % of the DPPH 
radical scavenging effect and was estimated graphically.

Statistical analysis

All analyses were prepared in five replicates, and the 
results were expressed as mean value ± SD. The data were 
processed using Microsoft Excel 2010. Statistical analysis 
was done using STATISTICA 10 (StatSoft, USA) statistical 
software with one-way ANOVA followed by post hoc Tuk-
ey’s test (the results marked with identical letters in rows 
exhibit no differences at the significance level α =  0.05). 
The Pearson correlation coefficients for selected pairs of 
parameters were also estimated.

Results and discussion

Se and Zn enrichment and their content

The contents of Se and Zn in substrates and in fruit-
ing bodies of Pleurotus species are shown in Table  1. 
The Se and Zn concentration in substrates significantly 
increased after supplementation. The Se concentration in 
non-enriched P. ostreatus (control) was 2.73 ±  0.26  mg/

Inhibition (%) = (A− AC)/A× 100.

Table 1   Se and Zn 
concentration in substrates and 
in P. ostreatus and P. eryngii 
fruiting bodies (mg/kg DW)

Mean values (n =  5) ±  SDs; identical superscripts in row denote no significant (α  <  0.05) difference 
between mean values according to Tukey’s HSD test (ANOVA)

DW, dry weight; SPoc, substrate of non-enriched P. ostreatus (control); SPoSeZn, substrate of enriched 
P. ostreatus; Poc, non-enriched P. ostreatus (control); PoSeZn, P. ostreatus enriched with Se and Zn; SPe, 
substrate of non-enriched P. eryngii (control); SPeSeZn, substrate of enriched P. eryngii; Pec, non-enriched 
P. eryngii (control); PeSeZn, P. eryngii enriched with Se and Zn

SPoc SPoSeZn Poc PoSeZn

Se 5.12 ± 0.76b 54.87 ± 0.76a 2.73 ± 0.26b 109.74 ± 11.06a

Zn 14.72 ± 0.51b 45.67a ± 1.07 26.00 ± 0.82b 32.93 ± 0.99a

SPec SPeSeZn Pec PeSeZn

Se 7.32 ± 0.93b 59.98 ± 1.33a 2.07 ± 0.68b 54.39 ± 0.79a

Zn 22.45 ± 1.03b 56.23 ± 0.47a 22.98 ± 0.84b 85.95 ± 2.22a
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kg DW, and it was comparable as in our earlier experi-
ments [28, 30]. The concentration of Zn in the control of 
P. ostreatus was 26.00  ±  0.82  mg/kg DW. The enrich-
ment of the substrate with Se  +  Zn resulted in a sig-
nificant increase in the elements in fruiting bodies up to 
109.74 ± 11.06 mg/kg DW and 32.926 ± 0.987 mg/kg DW 
Se and Zn, respectively. The Se concentration in the con-
trol of P. eryngii was 2.07 ±  0.68 mg/kg DW, and a sig-
nificant rise up to 54.39 ± 0.79 mg/kg DW was observed 
for Se + Zn-enriched mushrooms. The concentration of Zn 
in control and Se + Zn-enriched P. eryngii was as follows: 
22.98 ±  0.84 and 85.95 ±  2.22  mg/kg DW, respectively. 
Our experiment confirmed that non-enriched P. ostreatus 
and P. eryngii contained Se and Zn at the level as in the 
most popular mushrooms, which range from <1 to 20 µg/g 
DW for Se and from ~5 to more than 100 µg/g DW for Zn 
[21, 25, 28, 38–44]. Because mushrooms have great abil-
ity to accumulate selected elements [44], supplementation 
of substrate with different micronutrients was success-
fully used to enhance their content in fruiting bodies [21, 
25, 26, 29]. In our experiment, after Se and Zn enrichment 
substrates possessed higher mineral availability for fruiting 
bodies and it influenced the micronutrient accumulation in 
mushrooms. The concentration of Se after enrichment was 
~40 and ~27 times higher for P. ostreatus and P. eryngii. 
The results were consistent with our earlier experiment [28, 
30], because the Se concentration in enriched fruiting bod-
ies was significantly higher than in the control. Bhatia et al. 
[25] revealed that Se-enriched P. florida was able to accu-
mulate even 800 times higher concentration of the micro-
nutrient in comparison with the control. The increase in 
the content of Zn in enriched mushroom was slight in P. 
ostreatus, while it was large (nearly 4 times) for P. eryngii. 

However, Vieira et  al. [27] reported that enrichment with 
Zn did not lead to changes of its concentration in the fruit-
ing bodies. Our results for P. eryngii are opposite; the 
increase in Zn content in our experiment could be due to an 
interaction between Zn and Se which favors increased Zn 
content in mushrooms.

Furthermore, the mushroom enrichment is dependent on 
species, pH, composition of substrate, concentration of the 
added element and other minerals [45].

Yield, total phenolic, flavonoid and ascorbic acid 
contents

The yield of extract ranged from 25.89  ±  1.88 to 
26.49  ±  1.23  g per 100  g DW and from 28.15  ±  0.27 
to 28.85 ±  2.85  g per 100  g DW for P. ostreatus and P. 
eryngii (respectively), and there were no significant differ-
ences (α = 0.05) between control and enriched mushrooms 
(Table 2). The results were higher than those obtained by 
Yang et al. [46], but similar to Oke and Aslim [47]. Other 
studies demonstrated that the yield mainly depends on 
polarity of the solvent [6, 47, 48]. The Folin–Ciocalteu 
method is a colorimetric method commonly used to deter-
mine the total phenolic content [7, 47]. The Folin–Ciocalteu 
assay is sensitive to other metabolites, which causes over-
estimation of the results due to interference of the metabo-
lites with the reagent, and therefore, the method is not spe-
cific for the determination of total phenolic content [5]. To 
improve the specificity for total phenolic content determi-
nation in our study, modifications suggested by Sánchez-
Rangel et  al. [32] involving the simultaneous quantifica-
tion of total ascorbic acid by the Folin–Ciocalteu assay 
were applied. The total phenolic content in non-enriched 

Table 2   Extraction yield, total 
phenolic, flavonoid and ascorbic 
acid contents and EC50 value 
in P. ostreatus and P. eryngii 
fruiting bodies

Mean values (n =  5) ±  SDs; identical superscripts in row denote no significant (α  <  0.05) difference 
between mean values according to Tukey’s HSD test (ANOVA)

DW, dry weight; TPC, total phenolic content; TFC, total flavonoid content; AAC, ascorbic acid content; 
Poc, non-enriched P. ostreatus (control); PoSeZn, P. ostreatus enriched with Se and Zn; Pec, non-enriched 
P. eryngii (control); PeSeZn, P. eryngii enriched with Se and Zn

Poc PoSeZn

Yield (g/100 g DW) 25.89 ± 1.88a 26.49 ± 1.23a

TPC (mg/g of extract) 9.64 ± 0.33b 13.38 ± 0.58a

TFC (mg/g of extract) 2.11 ± 0.19b 2.72 ± 0.09a

AAC (mg/100 g DW) 10.28 ± 0.39b 15.76 ± 0.57a

EC50 (mg/mL) (DPPH) 4.42 ± 0.08a 3.84 ± 0.09b

Pec PeSeZn

Yield (g/100 g DW) 28.85 ± 2.85a 28.15 ± 0.27a

TPC (mg/g of extract) 7.91 ± 1.02b 10.86 ± 1.48a

TFC (mg/g of extract) 1.26 ± 0.17b 1.89 ± 0.09a

AAC (mg/100 g DW) 16.64 ± 0.47b 34.74 ± 1.99a

EC50 (mg/mL) (DPPH) 7.34 ± 0.11a 3.35 ± 0.11b
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mushrooms for P. ostreatus and P. eryngii was 9.64 ± 0.33 
and 7.91 ± 1.02 mg/g of extract, respectively. The total fla-
vonoid content was 2.11 ± 0.19 and 1.26 ± 0.17 mg/g of 
extract, respectively. It was documented that major com-
ponents of mushroom extract are phenolics and Pleurotus 
species exhibited different contents of total phenolic rang-
ing from ~2 to >30 mg/g of extract [27, 37, 49]. In com-
parison with our earlier study [28], the results obtained for 
non-enriched mushrooms were slightly higher. The rea-
son should be sought in the composition of substrates. It 
has been reported that mushrooms contain different com-
pounds of phenolics. Some authors have stated that mush-
rooms contain mainly phenolics acids [7, 50], while others 
reported a high amount of flavonoids in extracts [5, 37, 51]. 
The total flavonoid content in different species of Pleurotus 
was found at the level from 1.2 to 2.9 µg/g of extract [49], 
even to 7.79  mg/g of extract [37]. However, Vieira et  al. 
[27] did not detect flavonoids in P. ostreatus. It was found 
that AAC was dependent on species and ranged from <5 up 
to as high as 50 mg/100 g DW [40, 52, 53]. In our experi-
ment, the ascorbic acid level in non-enriched Pleurotus spe-
cies ranged from 10.28 ± 0.39 to 16.64 ± 0.47 mg/100 g 
DW. The enrichment of substrates with Se and Zn resulted 
in significant increases in TPC, TFC and AAC. It was docu-
mented that Se treatments enhanced the phenolic content in 
plants and mushrooms [26, 54, 55]. However, no changes 
of phenolic content in zinc-enriched P. ostreatus were 
detected by Vieira [27]. In the case of Se, it was suggested 
that the element enhances accumulation of some sugars 
[54] or inhibits enzymatic polyphenol oxidation [26], while 
Zn is involved in the regulation of sugar metabolism [56, 
57]. Thus, the mechanism is probably related to changes in 
concentration of glucose, which is an important substrate 
in many metabolic pathways, and in that way enhanced the 
phenolic content. Additionally, Zn was able to induce oxi-
dative stress [58] and in consequence stimulate synthesis 
of antioxidants such as ascorbic acid and phenolics. The 

higher content of the metabolites in enriched mushrooms 
could be the result of detoxification mechanisms caused by 
elevated levels of the elements.

Chromatographic profile

In the study, we used 22 standards for identification of 
phenolics, among which the phenolic acids and flavonoids 
were detected in substrates and Pleurotus species. In sub-
strates, caffeic, chlorogenic, ferulic, syringic, p-coumaric, 
vanillic and t-cinnamic acids and naringenin were detected 
(Table 3). We quantified derivatives of benzoic (4-hydroxy-
benzoic, 2,5-dihydroxybenzoic, protocatechuic and vanillic 
acids) and t-cinnamic acids (p-coumaric, ferulic and t-cin-
namic acids) and flavanones (naringenin) in fruiting bodies 
(Table  4). Six phenolic acids were detected in the extract 
from P. ostreatus: 4-hydroxybenzoic, ferulic, p-coumaric, 
protocatechuic, t-cinnamic and vanillic acids. Additionally, 
naringenin was also quantified. The extract from P. eryngii 
additionally contained 2,5-dihydroxybenzoic acid. Among 
the compounds, ferulic acid was dominant in both ana-
lyzed Pleurotus species. The monitoring of chromatograms 
showed that mushroom contains different phenolic com-
pounds [5, 7, 47, 50]. In our previous experiment [28], we 
detected only 4-hydroxybenzoic, p-coumaric, ferulic acids 
and myricetin. The differences could be due to the impact 
of Zn on phenolic composition. Additionally, substrates 
could have influenced phenolics in fruiting bodies because 
of decomposition of lignin by mycelium. This polymer con-
tains in the structure some phenolic acids or their deriva-
tives. Woldegiorgis et al. [7] detected in P. ostreatus caffeic, 
gallic and p-hydroxybenzoic acids and myricetin. Kim et al. 
[59] additionally quantified homogentisic, protocatechuic, 
chlorogenic acids, naringin and myricetin. The study of P. 
ostreatus by Palacios et al. [5] confirmed p-coumaric, feru-
lic, gallic, gentisic, p-hydroxybenzoic, homogentisic and 
protocatechuic acids and myricetin in fruiting bodies. Kim 

Table 3   Phenolic acid and 
flavonoid composition of 
substrates (µg/g DW)

Mean values (n = 5) ± SDs; identical superscripts in rows for each mushroom species denote no signifi-
cant (p < 0.05) difference between mean values according to Tukey’s HSD test (ANOVA)

SPoc, substrate of non-enriched P. ostreatus (control); SPoSeZn, substrate of enriched P. ostreatus; SPec, 
non-enriched P. ostreatus (control); SPeSeZn, substrate of enriched P. eryngii

Compounds SPoc SPoSeZn SPec SPeSeZn

Chlorogenic acid 2.50 ± 0.09a 2.70 ± 0.11a 1.27 ± 0.18a 1.49 ± 0.40a

Syringic acid 2.30 ± 0.19b 3.70 ± 0.11a 2.22 ± 0.22b 3.87 ± 0.22a

Ferulic acid 3.00 ± 0.33b 4.46 ± 0.24a 4.87 ± 0.33b 6.29 ± 0.47a

p-Coumaric acid 7.17 ± 0.23b 9.12 ± 0.12a 6.49 ± 0.22b 8.00 ± 0.18a

Caffeic acid 1.21 ± 0.08b 2.52 ± 0.09a 1.23 ± 0.21b 3.81 ± 0.17a

t-Cinnamic acid 2.35 ± 0.15b 5.97 ± 0.59a 2.79 ± 0.18a 2.69 ± 0.11a

Vanillic acid 1.34 ± 0.06b 3.87 ± 0.52a 1.59 ± 0.22b 2.85 ± 0.18a

Naringenin 0.15 ± 0.03b 0.53 ± 0.17a 0.42 ± 0.04b 0.63 ± 0.09a
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et al. [59] examined P. eryngii and documented gallic and 
protocatechuic acids and naringin in the mushroom. Accord-
ing to Reis et al. [50] in P. ostreatus and P. eryngii, the pres-
ence of protocatechuic, p-hydroxybenzoic, p-coumaric and 
cinnamic acids was found. Oke and Aslim [47] quantified 
gallic, p-hydroxybenzoic, caffeic, syringic, p-coumaric, fer-
ulic and cinnamic acids and catechin in P. eryngii. In other 
species of mushroom, additionally α-resorcylic and syringic 
acids were detected [6, 7, 59]. Flavonoids or their aglycones 
(myricetin, quercetin, naringenin, kaempferol and hespere-
tin) were also detected in different species of edible mush-
room [5, 7, 59] (although neither fungi nor animals, but only 
plants have the ability to biosynthesize flavonoids [60]).

Activation of synthesis of free phenolic acids was also 
observed in our previous study [28] as well as in L. sati-
vus [61]. As mentioned above, it could be the result of the 
elements on metabolism of sugars and in consequence on 
metabolism of other biomolecules.

Table 2 presents DPPH scavenging ability expressed as 
EC50 values. Better scavenging ability for non-enriched 
mushroom was obtained for P. ostreatus (4.42 mg/mL). The 
drop in EC50 values observed for enriched mushroom con-
firmed improvement of the antioxidant properties. Addi-
tionally, both enriched species of Pleurotus had similar 
EC50 values. Scavenging effects on DPPH of extract from 
non-enriched mushroom increased with concentrations 
(Fig. 1). For P. ostreatus, it ranged from 19.7 to 76.7 %, and 
for P. eryngii, it was between 17.9 and 62.1 %. The Se and 
Zn addition resulted in increases in the scavenging effects 
by 35.8–87.8 and 40.3–91.4  %, respectively. In other 
experiments EC50 values for P. ostreatus were 8.4 mg/mL 
[7] and 6.54 mg/mL [50], while EC50 value for P. eryngii 
was 8.67 mg/mL [50]. Se-rich mushroom showed a larger 
DPPH scavenging effect than non-enriched mushroom [26, 
28]. In the study, we demonstrated that simultaneous sup-
plementation of micronutrients significantly affected the 
antioxidant properties.

The correlation between the total phenolic content and 
antioxidant activity in mushroom was confirmed [62]. In 
our previous study for enriched P. ostreatus, a correlation 
between inhibition of the radicals and the total phenolic 
and flavonoid content was found, whereas Vieira et al. [27] 
found no correlations for iron-, zinc- and lithium-enriched 
P. ostreatus. In the present study for P. ostreatus, we found 
a correlation between EC50 value and phenolic compounds 
(except naringin) and Zn and Se concentration in fruiting 
bodies and between micronutrient concentrations and phe-
nolic compounds (except ferulic acids) (Table  5). For P. 
eryngii, strong correlations were found between EC50 value 
and phenolic compounds (except vanillic acid) and Zn and 
Se concentrations in fruiting bodies and between micro-
nutrient concentrations and phenolic compounds (except 
vanillic acid) (Table  6). Ions of some metals including 
Zn can form a complex with polyphenols [63]. Moreover, 
phenolics complexed by metals have reduced antioxidant 

Table 4   Phenolic acid and 
flavonoid composition of P. 
ostreatus and P. eryngii (µg/g 
DW)

Mean values (n = 5) ± SDs; identical superscripts in rows for each mushroom species denote no signifi-
cant (p < 0.05) difference between mean values according to Tukey’s HSD test (ANOVA)

Poc, non-enriched P. ostreatus (control); PoSeZn, P. ostreatus enriched with Se and Zn; Pec, non-enriched 
P. eryngii (control); PeSeZn, P. eryngii enriched with Se and Zn

Compounds Poc PoSeZn Pec PeSeZn

2,5-Dihydroxybenzoic acid nd nd 1.37 ± 0.30b 5.49 ± 0.41a

4-Hydroxybenzoic acid 5.30 ± 0.20b 6.70 ± 0.19a 2.32 ± 0.32b 3.59 ± 0.20a

Ferulic acid 30.00 ± 1.00b 34.46 ± 2.94a 29.00 ± 1.00b 36.29 ± 1.47a

p-Coumaric acid 10.54 ± 0.70b 15.82 ± 1.02a 13.49 ± 2.22b 20.00 ± 0.88a

Protocatechuic acid 0.21 ± 0.09b 0.52 ± 0.07a 1.43 ± 0.24b 7.81 ± 1.67a

t-Cinnamic acid 0.35 ± 0.05b 0.97 ± 0.05a 0.79 ± 0.15b 1.69 ± 0.01a

Vanillic acid 0.34 ± 0.03b 0.87 ± 0.12a 0.59 ± 0.04b 0.85 ± 0.18a

Naringenin 0.18 ± 0.05b 0.73 ± 0.18a 0.18 ± 0.04b 0.43 ± 0.09a

Fig. 1   Scavenging ability of methanolic extracts from P. ostreatus 
and P. eryngii on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. 
Each value is expressed as mean ± SDs (n = 5). Po, non-enriched P. 
ostreatus; PoZnSe, enriched P. ostreatus; Pe, non-enriched P. eryngii; 
PeZnSe, non-enriched P. eryngii
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activity, because of the limited availability of free radicals 
for donation [27, 63]. On the other hand, high content of 
metals in enriched mushroom can result in bioavailability 
of the metals. Thus, higher content of Zn and other met-
als bioavailable in mushrooms may result in lower com-
plexation with polyphenols. In this context, the increase 
in antioxidant activity (represented by DPPH·) observed 

in our experiment could be the result of the fact that the 
formation of complexes was reduced or other compounds 
exhibiting higher antioxidant activity were formed. Also 
interaction between Se and Zn could affect the bioavailabil-
ity of metals and consequently the formation of complexes. 
Despite the reduction of antioxidant properties of some 
elements including Zn [27], our results with simultaneous 
supplementation with Zn and Se provide the opportunity to 
improve antioxidant properties and antioxidant contents in 
enriched mushrooms.

To conclude, the enrichment is a good practice to 
enhance the mineral content in mushrooms. Addition-
ally, the obtained results demonstrated that simultaneous 
enrichment with micronutrients with contrary effects on 
antioxidant properties can activate synthesis of phenolic 
compounds and ascorbic acid. The micronutrient supple-
mentation of substrates caused improvement of the anti-
oxidant properties and increased content of phenolic com-
pounds in enriched fruiting bodies of P. ostreatus and P. 
eryngii in comparison with the controls.

The present study is part of experiments with simulta-
neous enrichment of mushrooms, which focuses on esti-
mating the impact of minerals on antioxidant properties 
of edible mushrooms. The investigation is the first study 
evaluating the effect of addition of two elements to the sub-
strate at the same time on antioxidant properties of mush-
rooms. Further studies on Se and other micronutrients are 
in progress.
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