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Introduction

Lactic acid bacteria (LAB) play an essential role in the pro-
duction of fermented dairy products, with Lactococcus lac-
tis and Streptococcus thermophilus being the species most 
commonly used as primary fermentation starters [1]. Their 
major function is the rapid production of lactic acid from 
lactose, resulting in a lowering the pH.

The so-called non-starter lactic acid bacteria (NSLAB) 
participate in the development of the final organoleptic 
properties of fermented dairy products [2]. NSLAB may 
be present in the milk itself, be part of the flora of dairy 
facilities or be added to fermentations as adjunct cultures 
[3]. These bacteria are frequently facultative, heterofermen-
tative lactobacilli belonging to the species Lactobacillus 
casei/paracasei, Lactobacillus plantarum or Lactobacillus 
curvatus [4, 5]. Leuconostoc may be involved in the devel-
opment of aroma components [6]. There is increasing inter-
est in the characterization and use of NSLAB from artisanal 
products for use in tailored cultures to be employed in the 
manufacture of dairy products with ‘protected geographic 
indication’ (PGI) status. Their use would help maintain 
their typical organoleptic characteristics [6–9].

The long and safe history of the use of LAB in dairy 
products has resulted in the assignment of Qualified Pre-
sumption of Safety (QPS) status [awarded by the European 
Food Safety Authority (EFSA)] to the majority of LAB. 
However, some properties and enzymatic activities can 
generate undesirable flavors [10] or even toxic compounds 
such as biogenic amines (BA) [11], the presence of which 
should be avoided in dairy products.

Abstract  This work reports the capacity of 137 strains of 
starter and non-starter LAB belonging to nine species of the 
genera Lactobacillus, Lactococcus, Streptococcus and Leu-
conostoc (all isolated from artisanal cheeses) to produce 
histamine, tyramine, putrescine and β-phenylethylamine, 
the biogenic amines (BA) most commonly found in dairy 
products. Production assays were performed in liquid 
media supplemented with the appropriate precursor amino 
acid; culture supernatants were then tested for BA by (U)
HPLC. In addition, the presence of key genes involved in 
the biosynthetic pathways of the target BA, including the 
production of putrescine via the agmatine deiminase path-
way, was assessed by PCR. Twenty strains were shown to 
have genes involved in the synthesis of BA; these belonged 
to the species Lactobacillus brevis (4), Lactobacillus cur-
vatus (3), Lactococcus lactis (11) and Streptococcus ther-
mophilus (2). With the exception of the two S. thermo-
philus strains, all those possessing genes involved in BA 
production synthesized the corresponding compound. 
Remarkably, all the putrescine-producing strains used the 
agmatine deiminase pathway. Four L. brevis and two L. 
curvatus strains were found able to produce both tyramine 
and putrescine. There is increasing interest in the use of 
autochthonous LAB strains in starter and adjunct cultures 
for producing dairy products with ‘particular geographic 
indication’ status. Such strains should not produce BA; the 
present results show that BA production capacity should be 
checked by (U)HPLC and PCR.
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BA are low molecular weight nitrogenous compounds 
formed by the decarboxylation of certain amino acids that 
may be present in foods. The consumption of foods with 
high BA concentrations may cause intoxications mani-
fested as headache, nausea or vomiting, alterations in blood 
pressure, rashes, etc. [12]. Cheese is the fermented food 
most commonly associated with BA poisoning; indeed, 
the term cheese reaction was coined to refer to it [13]. 
Tyramine, putrescine and histamine are the most commonly 
encountered and abundant BA, in cheese [11, 14, 15]. Cer-
tainly, cheese provides an ideal matrix for the production 
and accumulation of BA since the amino acid substrates 
required are made easily available by casein proteolysis, 
and the low pH favors decarboxylase gene transcription 
and enzyme activity [11]. Further, cheese naturally contains 
milk-derived Gram positive LAB, generally of the genera 
Lactobacillus and Enterococcus, which possess decarbox-
ylating activity [11, 16]. BA-producing strains have also 
been described among the species most commonly used as 
dairy starters, such as L. lactis, S. thermophilus and Lacto-
bacillus delbrueckii [17–19]. BA producers may also enter 
dairy products via contamination [20, 21].

The selection of starter strains with no BA-producing 
capacity would be a good starting point for reducing BA 
accumulation in dairy products [22]. Different methods 
have been devised for assessing the capacity of LAB to 
produce BA, including the use of differential media and 
pH indicators [23]. Unfortunately, the strong acidification 
of the medium occasioned by harmless LAB can result in 
false negatives. Moreover, these methods target the pres-
ence of amino acid decarboxylases and do not test the pres-
ence of deimination routes involved in the production of 
some BA such as putrescine [11]. Analytical methods that 

directly detect BA compounds in culture supernatants after 
incubation with an amino acid precursor have also been 
commonly used [24, 25]. However, culture-independent 
methods based on PCR techniques, aimed to detect the 
genetic determinants involved in the synthesis of BA, are 
now regarded as the most suitable for screening collections 
of isolates [26]. Agreement between the results obtained by 
analytical and molecular methods strengthens the case for 
the use of the latter [27, 28].

In the present work,  Ultra-High-Performance Liquid 
Chromatography [(U)HPLC] and PCR methods were used to 
examine the capacity of 137 LAB strains (four genera, nine 
species), isolated from artisanal cheeses, and all with poten-
tial for use in dairy starter or adjunct cultures designed for the 
production of artisanal cheeses with PGI status, to produce 
histamine, tyramine, putrescine and β-phenylethylamine.

Materials and methods

Bacterial strains

One hundred and thirty-seven strains isolated from differ-
ent artisanal cheeses [29, 30], identified by comparison of 
partial 16S rRNA gene sequences, and belonging to four 
different genera—Lactococcus, Streptococcus, Leuconos-
toc and Lactobacillus—were assessed for their capacity to 
produce BA (Table 1). L. lactis, S. thermophilus and Leu-
conostoc mesenteroides strains were grown statically in 
M17 (Oxoid) supplemented with 0.5 % glucose and 0.5 % 
lactose (w/v) at either 30 (L. lactis, L. mesenteroides) or 
37  °C (S. thermophilus strains). All Lactobacillus strains, 
which belonged to six species (Table  1), were grown 

Table 1   BA-producing strains among the LAB tested

Number of strains with the capacity to produce tyramine (Tym), β-phenylethylamine (β-phe), histamine (Him) or putrescine (Put) in supple-
mented broth, as determined by (U)HPLC, and the presence of the corresponding genes, as shown by PCR

N number of strains tested, ODC ornithine decarboxylase pathway, AGDI agmatine deiminase pathway

Species N Tym β-phe Him Put (ODC) Put (AGDI)

PCR (U)HPLC (U)HPLC PCR (U)HPLC PCR (U)HPLC PCR (U)HPLC

Lactobacillus brevis 4 4 4 0 0 0 0 0 4 4

Lactobacillus casei 12 0 0 0 0 0 0 0 0 0

Lactobacillus curvatus 3 3 3 0 0 0 0 0 2 2

Lactobacillus delbrueckii 9 0 0 0 0 0 0 0 0 0

Lactobacillus fermentum 10 0 0 0 0 0 0 0 0 0

Lactobacillus plantarum 19 0 0 0 0 0 0 0 0 0

Lactococcus lactis subsp. lactis 16 0 0 0 0 0 0 0 8 8

Lactococcus lactis subsp. cremoris 7 0 0 0 0 0 0 0 3 3

Leuconostoc mesenteroides 14 0 0 0 0 0 0 0 0 0

Streptococcus thermophilus 43 0 0 0 2 0 0 0 0 0

Total 137 7 7 0 2 0 0 0 17 17
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statically in MRS (Oxoid) at 30 °C, except those belonging 
to L. delbrueckii which were grown at 37 °C.

In vivo BA production capacity

BA production was assessed in triplicate in culture super-
natants of the LAB strains grown for 24 h in 10 ml M17 or 
MRS broth supplemented with 1 mM tyrosine (M17/MRS-
T), 1 mM histidine (M17/MRS-H), 1 mM ornithine (M17/
MRS-O) or 1 mM agmatine (M17/MRS-A). Both ornith-
ine and agmatine are precursors of putrescine, although via 
different pathways. Tyramine, histamine and putrescine 
detection was performed as previously described [31] after 
the centrifugation of the cultures (2000×g for 15 min) and 
filtering of the supernatant through a 0.2-μm pore diam-
eter membrane (Pall, USA), followed by derivatization 
of 100 μl with diethyl ethoxymethylene malonate. Deri-
vatized samples were analyzed by (U)HPLC in a Waters 
H-Class ACQUITY UPLC apparatus with a UV detec-
tor (Waters, USA) controlled by Empower 2.0 software 
(Waters), under the conditions described by Redruello 
et al. [32].

Detection of BA‑producing genes

The presence of the tyrosine decarboxylase gene tdcA, the 
histidine decarboxylase gene hdcA, the ornithine decar-
boxylase gene odc and the aguA and aguD genes from the 
agmatine deiminase cluster (AGDI) was checked by PCR 
using the primer pairs P2-for and P1-rev [33], JV16HC 
and JV17HC [34], ODC3 and ODC16 [35], and Seq1 and 
Seq2 [17], respectively. The PCR conditions were those 
described in [17, 33–35], respectively, and were performed 
in a MyCycler™ thermal cycler (Bio-Rad, Spain) using 
DreamTaq polymerase (Fermentas, Lithuania). Total DNA 
from the strains was obtained as previously described 
[36] and used as a template in PCR. Total DNA from the 
tyramine- and putrescine-producing strain Enterococcus 
faecalis V583 [27], from the ODC+ strain Lactobacillus 
saerimneri 30A [37], and from the histamine producer Lac-
tobacillus buchneri B301 [38], were used to provide posi-
tive controls.

PCR products were separated in 0.8  % (w/v) agarose 
gels in 1XTAE buffer and visualized after staining with 
ethidium bromide using a GelDoc 2000 system (Bio-Rad, 
Hercules, USA). The Gene Ruler DNA ladder mix (Fer-
mentas, Lithuania) was used as molecular weight marker.

Results and discussion

The selection of starter strains with no BA-producing 
capacity is an important step toward reducing the presence 

of these toxins in dairy products [22]. In this work, 137 
LAB strains, previously isolated from artisanal cheeses 
made from raw milk, were evaluated for their BA-produc-
ing capability.

Twenty (14.69  %) of the 137 examined strains were 
found to possess genes involved in BA production, includ-
ing four strains of L. brevis, three of L. curvatus, 11 of L. 
lactis (eight belonging to L. lactis subsp. lactis and three 
to L. lactis subsp. cremoris) and two of S. thermophilus 
(Table 1; Fig. 1).

Eighteen (13.1 %) of the tested strains showed the capac-
ity to produce at least one BA in a supplemented medium. 
These corresponded to all the strains in which the presence 
of genes involved in BA production was detected by PCR, 
except for the two S. thermophilus strains (see below). Six 
strains (4.4 %), four L. brevis and two L. curvatus strains, 
produced both tyramine and putrescine.

Similar percentages of BA-producing strains have been 
reported by other authors [19, 39]. During their analysis of 
dairy isolates, Bunkova et al. [19] found 20 % of the strains 
tested to produce tyramine and to be positive for the tdcA 
gene. In some studies, higher percentages of BA producers 
have been reported [39, 40], but in most of these investiga-
tions, strains of Enterococcus were analyzed. The capacity 
to produce BA is widespread among enterococci and has 
been shown as a species-specific trait in some enterococ-
cal species [27, 41], thus increasing the occurrence of BA-
producing strains. It was, therefore, decided not to include 
enterococcal strains in the present work.

All of the strains that gave a positive PCR result for the 
presence of genes involved in BA production were able 
to synthesize the corresponding BA (Table  1), except for 
two strains of S. thermophilus. Both of these strains pos-
sessed the histidine decarboxylase gene hdcA, but no his-
tamine was found in the culture supernatant after 24 or 
even after 48 h of culture in M17-H. This might be due to a 
non-functionality of the HDC cluster or because the condi-
tions assayed were not optimal for histamine production in 
these strains since the production of BA can be affected by 
different cultures conditions [11]. Certainly, some authors 
report that all S. thermophilus strains with the capacity to 
produce histamine from histidine produce small amounts of 
histamine in broth but not in milk. [18, 42]. In any event, 
the present work highlights a good correlation between the 
results of molecular and functional analysis of BA-produc-
ing capacity. All the BA-producing strains returned posi-
tive PCR results, indicating that this culture-independent 
technique is suitable for assessing this property in potential 
LAB starter strains [28].

Even though two S. thermophilus strains were nega-
tive for the in vivo production of BA, their possession of 
genes involved in BA production must be seen as a risk. 
These genes could be horizontally transferred to other LAB 
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present in the culture or dairy product [43–45], conferring 
the ability to produce histamine upon them.

Of the 137 strains tested, seven produced tyramine 
from tyrosine in broth, and were positive for tdcA in PCR 
tests (Table  1). All these strains belonged to L. brevis or 
L. curvatus. Tyramine-producing strains of these species 
have been isolated from cheeses by other authors [44, 46, 
47]. In L. brevis, tyramine production has been described 
as a strain-level trait—perhaps horizontally acquired [44, 
48]. For L. curvatus, there are insufficient data to confirm 
whether it is a species- or strain-dependent trait. The major-
ity of L. curvatus strains isolated from meat, however, 
were reported to be tyramine producers [49–51]. All the 
present tyramine producers, independent of their species, 
were ‘strong tyramine producers’ (Table  2). L. curvatus 
strains have been described as strong tyramine producers 

by other authors [47], showing high conversion rates in 
broth media supplemented with tyrosine. L. brevis has also 
been described as a strong tyramine producer, although dif-
ferent media and conditions were assayed and variation in 
tyramine production capacity was observed [52].

None of the tested strains was able to produce 
β-phenylethylamine under the present assay conditions. No 
specific phenylalanine decarboxylases have been described, 
but several authors have reported that certain tyrosine 
decarboxylases can use phenylalanine as an alternative sub-
strate, converting it into β-phenylethylamine [53]. In the 
present work, only the E. faecalis positive control was able 
to produce β-phenylethylamine in medium supplemented 
with tyrosine (data not shown).

Putrescine is produced from arginine via a decarboxy-
lation and a deimination reaction [11, 54]. However, the 

Fig. 1   Results of PCR tests for 
the presence of genes involved 
in BA production (tdcA, hdcA, 
odc and aguD-AguA). A 
representative of each positive 
species is shown. For L. lactis 
subsp. lactis and cremoris, a 
representative of the negative 
strains is also shown (see text 
for details). For each BA cluster, 
the negative (−) and positive 
(+) controls (E. faecalis V583 
for TDC and AGDI, L. buchneri 
B301 for HDC and L. saerimn-
eri 30A for ODC) are indicated. 
MW molecular weight standard 
Gene Ruler (Fermentas), TDC 
tyramine-producing cluster, 
HDC histamine-producing 
cluster, ODC putrescine-pro-
ducing cluster (via the ornithine 
decarboxylase pathway), AGDI 
putrescine-producing cluster 
(via the agmatine deiminase 
pathway)

Table 2   Classification of tyramine- and putrescine-producing strains based on their production capacity

The strains were classified as ‘strong’ [more than 90 % of the substrate present (1 mM tyrosine or agmatine) converted after 24 h of incubation], 
‘medium’ (between 40 and 90 % converted) or ‘poor’ (<40 % converted) producers

N number of strains tested, Tym tyramine, Put putrescine, AGDI agmatine deiminase pathway, CR conversion rate

Species N Tym Put (AGDI)

CR > 90 90 > CR > 40 CR < 40 CR > 90 90 > CR > 40 CR < 40

Lactobacillus brevis 4 4 0 0 1 2 1

Lactobacillus curvatus 3 3 0 0 2 0 0

Lactococcus lactis subsp. lactis 8 0 0 0 5 3 0

Lactococcus lactis subsp. cremoris 3 0 0 0 0 3 0

Total 18 7 0 0 8 8 1
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order of these reactions can differ, and, depending on that 
order, two different pathways are recognized: (1) the orni-
thine decarboxylation pathway (ODC, in which arginine is 
first deiminated to form ornithine, which is then decarbox-
ylated to form putrescine) and (2) the agmatine deimina-
tion pathway (AGDI, in which arginine is first decarboxy-
lated to form agmatine, which is then deiminated to form 
putrescine) [11, 54]. To distinguish which pathway was 
being used, the tested strains were grown in media sup-
plemented with ornithine or agmatine. No strain produced 
putrescine from ornithine. Although the ODC pathway has 
been described in several LAB strains, including strains of 
L. brevis [25, 43], it is not a pathway commonly used by 
dairy bacteria [11, 54, 55]. Thus, the lack of strains with 
ODC pathway capacity among those tested in the present 
work was expected. Seventeen strains of the 137 examined 
were, however, able to produce putrescine from agmatine 
(Table  1). Putrescine is the most commonly found BA in 
dairy products [14]. It is not surprising, therefore, that the 
largest number of BA-producing strains detected should be 
putrescine producers. It is important to highlight that all the 
putrescine producers detected in the present survey have 
the AGDI and not the ODC pathway. Although the preva-
lence of the AGDI pathway in dairy strains has been pre-
viously suggested [11], a test to determine the presence of 
the AGDI pathway is not usually done. In fact, as far as we 
are aware, this is the first study to include screening for the 
AGDI pathway when testing for BA-producing capacity in 
dairy LAB.

The production of putrescine via the AGDI pathway has, 
however, been described in L. brevis of non-dairy origin 
by other authors [48, 56]. All the present strains of L. bre-
vis shown to be putrescine producers were also tyramine 
producers. It has been suggested that, in this species, the 
AGDI genetic determinants are linked to those of the TDC 
pathway, producing a locus of acid resistance mecha-
nisms probably acquired by horizontal gene transfer [43, 
48]. Two of the three L. curvatus strains tested produced 
putrescine from agmatine and also returned positive PCR 
results (Table  1); both strains were also able to produce 
tyramine. As in L. brevis, BA-producing capacities of these 
two strains have been related to acid resistance. The cor-
responding genes have been described as lying adjacent to 
one another in the chromosome of some dairy isolates of L. 
curvatus [43].

Among the L. lactis strains tested, i.e., of both subspe-
cies lactis and cremoris, 11 were shown to produce putres-
cine from agmatine. Such a capacity had already been 
reported for some L. lactis strains [17], and putrescine-pro-
ducing L. lactis can be found in large numbers in cheeses 
with high putrescine concentrations [55]. Not all the L. lac-
tis strains tested were able to produce putrescine, although 
the capacity to produce it from agmatine has been described 

as a species-level trait [17]. Traditionally, BA-producing 
pathways have been thought horizontally acquired [44, 
48]. The present L. lactis strains unable to synthesize 
putrescine may have lost this capacity during their use in 
the dairy environment. Putrescine would negatively affect 
acidification and/or final flavor, and such putrescine-pro-
ducing strains would have been avoided [17]. The loss of 
this capacity seems to have occurred in two ways: (1) via 
the loss of the AGDI pathway genes, as shown for strains 
of L. lactis subsp. cremoris, and (2) the inactivation of the 
cluster by an insertion element (IS) in L. lactis subsp. lactis 
strains [17]. To differentiate between putrescine and non-
putrescine producers, a specific PCR test is available [17] 
in which non-putrescine-producing L. lactis subsp. cremo-
ris strains do not render a PCR band, while L. lactis subsp. 
lactis non-putrescine-producing strains do, although the 
amplification product is 1  kb larger than expected due to 
the presence of an IS element. In the present work, none 
of the non-putrescine-producing strains of L. lactis subsp. 
cremoris was associated with any positive amplification, 
while those of L. lactis subsp. lactis rendered the expected 
enlarged amplicon (Fig. 1).

Variation in the efficiency of putrescine production was 
observed among the producing strains of L. lactis; this 
allowed their classification as ‘strong’ or ‘medium putres-
cine producers’ (Table 2). Variation in the capacity to pro-
duce putrescine from agmatine has been described before 
among L. lactis subsp. cremoris strains [31]. In the present 
work, however, the greatest variation was observed among 
the L. lactis subsp. lactis producers (Table 2).

One of the most effective measures for reducing the 
presence of BA in dairy products is the use of starter cul-
tures that have been properly tested and selected as non-BA 
producers [22]. The present results show that both culture-
dependent and culture-independent methods are appropri-
ate for ruling out BA-producing strains for use as starters 
and adjunct cultures. The culture-independent methods 
based on PCR testing detected not only BA producers but 
also non-producer strains that possessed genes involved in 
BA production; these pose a risk since they might be spread 
by horizontal gene transfer.

There is increasing interest in the use of autochthonous 
LAB strains in starter and adjunct cultures for producing 
dairy products with PGI status [8, 57]. Strains intended for 
use in their manufacture should be systematically moni-
tored for BA production capacity to avoid the accumulation 
of these toxins and thus produce safer dairy products.

Conclusions

This work shows that some of the strains belonging to the 
species most frequently used in the manufacture of dairy 



382	 Eur Food Res Technol (2015) 241:377–383

1 3

products can produce BA, highlighting the importance of 
adequately selecting indigenous strains for inclusion in 
starter and adjunct cultures. The prevalence of putrescine-
producing strains (which use the AGDI pathway) is note-
worthy. The literature contains little on this, even though 
putrescine is one of the commonest BA in dairy products 
and the AGDI pathway is the main route of its synthesis. 
Tests for the presence of the AGDI pathway should be 
included when examining the BA production capabil-
ity in dairy strains. As shown in this work, the capacity to 
produce BA can be tested by either chromatographic or 
molecular methods, although PCR testing affords many 
advantages.
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