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Introduction

Paprika oleoresin is obtained by solvent extraction of dehy-
drated red pepper fruits, a process that generates oil with 
high carotenoids concentration; it has several applications 
as a natural colorant in the food industry mainly to correct 
or even reinforce color in foodstuffs, or to provide some 
flavoring [1]. The lipophilic extract is valuable because of 
its pigment profile, composed by a wide variety of carot-
enoids; all of these contain the same polyene chain with 
alternated double and single bonds [2]. The carotenoid 
content in the oleoresin depends on quality of raw material 
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employed and processing conditions, which could decrease 
the initial value, but total pigment content between 30 and 
90 g/kg are normally achieved [3]. Carotenoid profile of 
this product provides or reinforces food color, increases its 
original antioxidant value and provides provitamin A value. 
In spite of the recognition of the beneficial role of carot-
enoids in human health, they are not considered as essential 
nutrients and as such do not have a dietary reference intake 
(DRI) value assigned to them [4]. Nevertheless, according 
to Food and Agriculture Organization and the World Health 
Organization (FAO/WHO) a dietary intake of 300–1300 µg/
day of retinol activity equivalents is recommended (this 
interval considers age, sex, pregnancy, lactation, etc.) [5], 
and paprika oleoresin may provide important contributions 
to that amount since retinol equivalent values between 500 
and 2000 µg/g have been reported in this oleoresins [3]. 
Thus, paprika oleoresins may join to the carotenoid supple-
ments nowadays offered.

On the other hand, polyenic structure of carotenoids pig-
ments is responsible for their colorant properties, antioxi-
dant activities and biological functions. However, it is also 
makes them very sensitive to heat, light and pro-oxidant 
conditions; these facts provoke isomerization and oxidation 
reactions, which results in the loss of carotenoid properties.

To prevent carotenoid degradation in food additives, 
microencapsulation is often applied [6–9]. Microencap-
sulation involves a solid, liquid or gaseous component in 
a wall material, in order to form a particle that may offer 
protection against oxygen, heat, humidity and light [10]. 
Therefore, microencapsulation could be used to avoid or 
delay paprika oleoresin degradation and stabilize it during 
storage before use.

Spray drying is the most common and cheapest tech-
nique to produce microencapsulated food materials. Equip-
ment is readily available, and production costs are lower 
than most other methods. Additionally, spray drying is 
quite suitable in the encapsulation of oils and oleoresins 
[11].

In the food industry, the main carriers used for oil encap-
sulation are polysaccharides, starches, cellulose and its 
derivatives, gums and proteins [12]. Starches are abundant 
and cheap encapsulating agents that protect encapsulated 
ingredients from oxidation. Native starches have several 
limitations, which restrict their use as encapsulating agents. 
As a result, modified starches have been used to address 
these functionality problems [9].

In order to ensure commercial life, microcapsules must 
remain stable during long periods of time. This is crucial 
as paprika oleoresin is not immediately used for industrial 
purposes, but is stored.

The temperature at which an amorphous system 
changes from the glassy to the rubbery state defines the 
glass transition temperature (Tg). A phase transition from 

glassy to rubbery results in drastic changes in molecu-
lar mobility of food polymers, which has been linked 
to changes in product quality and may result in stability 
losses in low-moisture amorphous foods [13, 14]. Theo-
retically, the occurrence of diffusion-controlled reactions 
is not allowed by the high viscosity of the matrix in the 
glassy state [15, 16]. However, some diffusion-controlled 
reactions, such as oxidation and nonenzymatic browning, 
may occur, even at the glassy state as it was demonstrated 
by some authors [17–19]. Tg values change as aw (and 
moisture content) changes. The influence of moisture on 
Tg can be easily examined by performing thermal analysis 
on samples that have been equilibrated to different water 
activities, and hence different moisture contents [13, 14]. 
Multiple studies have shown a good correlation between 
aw and Tg. This correlation is fairly linear over a aw range 
of 0.1–0.7 [20–22].

Conversely, the relationship between equilibrium mois-
ture content of products and water activity aw at a certain 
temperature can be described by the moisture sorption 
isotherm [23, 24]. Thermodynamic parameters are readily 
derived from sorption isotherms at different temperatures. 
Parameters such as enthalpy, entropy and Gibbs free energy 
are useful to explain reactions and phenomena at molecular 
level in materials [25]. Changes in some thermodynamic 
properties with respect to moisture content can provide a 
good description of the sorption mechanisms and can be 
used to estimate points of transition between mechanisms 
[26].

Integral entropy describes the degree of disorder, or ran-
domness of motion, of the water molecules. It quantifies 
the mobility of the adsorbed water molecules and indicates 
the degree to which the water–substrate interaction exceeds 
that of the water molecules [27, 28]. There are many stud-
ies in the literature that use the point of minimum integral 
entropy as a useful tool to predict maximum stability point 
of dehydrated food [8, 26, 29, 30].

Several authors have coupled the concepts related to 
water activity (thermodynamic properties) with those of 
glass transition temperature (Tg) in order to evaluate food 
stability, thus providing an integrated approach to the role 
of water in food [22, 31–34]. Critical water content or 
water activity (RHc) is normally used to estimate the most 
stable storage conditions, which is obtained by relating Tg 
and water content data [15].

The water activity and glass transition concepts, which 
are complementary, have their respective limits: Water 
activity is a thermodynamical property linked to water 
availability defined at equilibrium. Foods, on the other 
hand, are mostly heterogeneous in composition and may 
not be in a state of equilibrium, while glass transition tem-
perature relates to the relative molecular mobility of water 
between the glassy and rubbery states [16].
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The objective of this work was to relate the point of 
minimum integral entropy with glass transition tempera-
ture (Tg) to establish the best storage conditions for paprika 
oleoresin microcapsules in order to protect its carotenoid 
profile.

Materials and methods

Material, chemicals and reagents

Paprika oleoresin was obtained from AMCO (Mexico 
City); modified starch Capsul® (lot: LDA-510) was sup-
plied by National Starch Food Innovation (Mexico City). 
Acetone and water were all of HPLC grade from Baker.

Preparation of emulsions

Emulsions were prepared by mixing paprika oleoresin into 
a suspension of wall material in deionized water at a rate of 
1:4 (g of paprika oleoresin/g of wall material), and 0.3 g/L 
total solids of Capsul®. The crude emulsion was then re-
circulated through a twin-stage valve homogenizer (APV-
1000) at 30,000 kPa.

Preparation of microcapsules by spray drying

Emulsion was spray dried in a Büchi 290 mini spray 
dryer (Flawil, Switzerland). The dryer was equipped with 
0.5-mm-diameter nozzle. The operating conditions for the 
dryer were as follows: inlet air temperature of 180 ± 5 °C 
and outlet air temperature of 100 ± 5 °C. Microcapsules 
were recovered from the collection chamber. These pow-
ders were stored in a desiccator with vacuum containing 
P2O5 to prevent moisture absorption prior to further studies.

Carotenoid determination

Carotenoid contain was determined through a spectropho-
tometric method proposed by Hornero and Mínguez [35]. 
For oleoresin capsules, approximately 0.025 g were dis-
solved in a volumetric flask containing 100 mL of acetone 
and then filtered and absorbance measurements were made 
in a diode array spectrophotometer (Agilent model 8453) at 
472 and 508 nm. In order to obtain both isochromic carot-
enoid and total carotenoid fractions, the absorbance values 
obtained were introduced in the following equations:

C
R
=

A508 x 2144.0− A472 x 403.3

270.9
(µg/mL)

C
Y
=

A472 x 1724.3− A508 x 2450.1

270.9
(µg/mL)

where CR represents the red isochromatic fraction content, 
CY represents the yellow isochromatic fraction content, and 
CT represents total carotenoid content.

All carotenoid determinations were carried out in tripli-
cate during storage.

Vapor sorption isotherms

Samples of the spray-dried encapsulated paprika oleoresin 
were placed in desiccators with vacuum (13 kPa) containing 
P2O5 for 15 days at room temperature (25 °C). The moisture 
sorption data were obtained using the gravimetric method 
described by Lang et al. [36]. One to two grams of samples 
were weighed in triplicate into standard weighing dishes 
with a circular section on the bottom. Samples were placed 
in separate desiccators containing saturated salt slurries in 
the range of water activity from 0.102 to 0.85 using the aw 
values reported by Labuza et al. [37]. The samples were held 
at 25, 35 and 45 °C until equilibrium was reached. Values of 
water activity were generated using equations reported in the 
same paper. Equilibrium was assumed when the difference 
between two consecutive weightings was less than 1 mg/g of 
solids. The time to reach the equilibrium varied from 45 to 
55 days. The Guggenheim–Anderson–de Boer (GAB) equa-
tion was used in modeling water sorption [38]:

where aw is water activity, M is moisture content of 
the sample on dry basis, M0 is the monolayer mois-
ture content, C is the Guggenheim constant, given by 
C = c

′

exp (hm − hn)/RT , where c′ is the equation con-
stant, hm is the heat of sorption of the first layer, hn is the 
heat of sorption of the multilayer, R is the gas constant, T is 
the absolute temperature, and k is the constant that accounts 
for properties of multilayer molecules with respect to bulk 
liquid and given by k = k

′

exp(h1 − hn)/RT , where k′ is 
the equation constant and h1 is the heat of condensation of 
pure water. The parameter values of GAB equation (M0, C 
and k) were estimated by fitting the mathematical model 
to the experimental data, using nonlinear regression Kalei-
dagraph 4.0 package (Synergy Software, 2457 Perkiomen 
Avenue Reading, PA 19606-2049, USA).

Goodness of fit was evaluated using the average of the 
relative percentage difference between the experimental 
and predicted values of the moisture content or mean rela-
tive deviation modulus (P) defined by the following equa-
tion [39]:

C
T
= C

R
+ C

Y(µg/mL)

M =
M0Ckaw

(1− kaw)(1− kaw + Ckaw)

P =
100

N

N
∑

i=1

∣

∣Mi −Mpi

∣

∣

Mi



220 Eur Food Res Technol (2015) 241:217–225

1 3

where Mi is the moisture content at observation i, Mpi is the 
predicted moisture content at that observations, and N is the 
number of observations. It is generally assumed that a good 
fit is obtained when P < 0.5.

Determination of thermodynamic parameters

The free energy for water adsorption (ΔG) was calculated 
using the equation of Gibbs:

where R (J/mol K) is the universal gas constant, T(K) is the 
sorption isotherm temperature, and aw is the water activity.

The respective differential and integral entropies are 
obtained from their differential and integral heats, respec-
tively. The usual entropy discussed qualitatively or quanti-
tatively (statistical mechanics) in terms of order–disorder 
of the adsorbed molecules is the integral entropy and not 
the differential entropy [40, 41].

Differential properties

Changes in differential enthalpy at the water–solid inter-
face at different stages of the adsorption process were 
determined using Othmer’s equation [42]:

where Pv is vapor pressure of water in the food, Po
v is vapor 

pressure of pure water at the same temperature, Hv(T) is 
isosteric heat for water adsorption, Ho

v (T) is heat of con-
densation of pure water, M is moisture, and C is adsorption 
constant.

A plot of ln Pv against ln Po
v generates a straight line if 

the ratio Hv(T)/H
o
v (T) is maintained constant in the range 

of temperatures studied.
The net isosteric heat of adsorption or differential 

enthalpy is defined by:

by calculating Hv(T)/H
o
v (T) with Othmer’s equation and 

substituting into last Eq., it is possible to estimate the net 
isosteric heat of adsorption at different temperatures using 
steam tables. With values obtained for enthalpy changes, 
the variation in the molar differential entropy (ΔSdif)T may 
be estimated using:

where S1 = (∂S/∂N1)TiP is the molar differential entropy 
of water adsorbed in the food, SL is molar entropy of pure 
water in equilibrium with the vapor, S is total entropy of 

�G = RT ln aw

lnPv =

(

Hv(T)

Ho
v (T)

)

M

lnPo
v + C1

(�Hdif)T =

(

Hv(T)

Ho
v (T)

− 1

)

M

H
o
v (T)

(�Sdif)T = S1 − SL =
−(�Hdif)T − RT ln aw

T

water adsorbed in the food, N1 is the number of moles of 
water adsorbed in the food, R is the universal gas constant, 
aw is the water activity, and T is the temperature (K).

Integral properties

Molar integral enthalpy is calculated using an expression 
similar to that for differential enthalpy, maintaining diffu-
sion pressure constant:

where Hvi(T) is the integral molar heat of water adsorbed in 
food and φ can be found by [43].

where φ is the diffusion pressure or surface potential of the 
food, μa is the chemical potential of the adsorbent in the 
condensed phase, μap is the chemical potential of the pure 
adsorbent, Wap is the molecular weight of the adsorbent, Wv 
is the molecular weight of water, and φ/α1 constant is simi-
lar to a process at φ constant. When values for (ΔHint) are 
obtained, changes in molar integral entropy can be calcu-
lated using differential enthalpy equation:

where SS = S/N is integral entropy of water adsorbed in the 
food.

Storage stability

Fourteen samples containing ca. 1 g of microcapsules were 
placed in desiccators containing saturated solutions of LiCl, 
MgCl2, Mg(NO3)2 and NaCl for 35 days at 35 °C. The 
water activities of the desiccants were 0.108, 0.318, 0.515 
and 0.743, respectively. Two samples of each wall material 
were withdrawn every 5 days for spectrophotometric meas-
urement. The samples were put into the desiccants imme-
diately after they were spray dried, and these were taken as 
the zero time samples.

Degradation reaction rate calculation

For each isochromatic fraction of paprika oleoresin encap-
sulated in Capsul® and for all water activities (0.108, 0.318, 

(�Hint)T =

(

Hvi(T)

Ho
v (T)

− 1

)

φ

H
o
v (T)

φ = µap − µa = RT
Wap

Wv

aw
∫

0

Md ln aw

φ = α1T

aw
∫

0

Mdlnaw

(�Sint)T = Ss − SL =
−(�Hint)T − RT ln aw

T
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0.515 and 0.743), the change in concentration was related 
to treatment time. The degradation reaction rate (kv) was 
calculated as the percentage of color retained with time 
in hours (t). The system assayed followed theoretical zero 
and first-order kinetics. The result showing the best multi-
ple correlation coefficient (R) was selected. For all micro-
capsules and water activities assayed, 16 regression lines 
were obtained for the degradation rate of red and yellow 
pigments.

Glass transition

The glass transition temperature (Tg) was determinate by a 
modulated differential scanning calorimeter (DSC Q-2000, 
TA Instruments, New Castle, DE, USA), equipped with 
a refrigerated cooling accessory. The Thermal Solutions 
Instrument Control and Universal Analysis Software were 
used (TA Instruments, New Castle, DE, USA). The samples 
(5 ± 0.1 mg) were transferred to aluminum pans, sealed 
hermetically, and weighed. The calorimeter was calibrated 
whit indium (melting point 156.98 °C). Three replicates 
were carried out for each analysis. Samples were cooled at 
20 °C/min to a temperature that was −80 °C; then, a iso-
thermal was performed by 10 min and finally samples were 
heated at 3 °C/min using an amplitude of 0.636 °C and a 
period of 40 s. Glass transition temperature was determined 
as the onset point of the step change on the heat flow curve.

Structure analysis

Structure of spray-dried microcapsules equilibrated at dif-
ferent water activities (0.108, 0.515, 0.743 and 0.967) were 
evaluated with a scanning electron microscope (SEM), 
Jeol model JSM-5600lv. The microcapsules were attached 
to SEM stubs of 2.54 cm diameter using two-sided adhe-
sive tape. The specimens were coated with gold–palladium 
(plasma deposition method) and examined on the SEM at 
15 kV.

Results and discussion

Thermodynamic parameters

Water activity of foods can be related to stability and the 
rates of deteriorative reactions. The parameters from the 
GAB model fitting were calculated (Table 1). The GAB 
model was found to fit very well with the experimental data 
over the whole measured aw range, as the values of the rela-
tive mean deviation (P) were <3 % at 25, 35 and 45 °C.

Monolayer moisture content of the material (M0) indi-
cates the amount of water that is strongly adsorbed to spe-
cific sites, and it has been considered as the critical water 

content at which a dehydrated foods are more stable [44]. 
The M0 values obtained for paprika oleoresin microcapsules 
are shown in Table 1; it can be noted that M0 decreased as 
temperature increased, which is due to the fact that adsorp-
tion is an exothermic process. Additionally, the value of C, 
which is associated with the chemical potential differences 
between the monolayer and superior layers, showed a clear 
trend with temperature changes. It is assumed that strong 
adsorbent–adsorbate interactions, which are exothermic, 
produce temperature lowering and increases in C.

Differential and integral entropies changes with respect 
to moisture content at 35 °C for paprika oleoresin encap-
sulated with Capsul® are showed in Fig. 1. The integral 
entropy indicates the order–disorder grade with the water 
molecules are absorbed in the surface of the dehydrated 
food. As the microcapsules adsorbed moisture the inte-
gral entropy diminished to a minimum point. At this point, 
strong bonds between adsorbate and adsorbent occur, 
which make water less available to participate in degra-
dation reactions, and therefore, maximum stability can 
be assumed. The intersection of the curves is found at the 
minimum integral entropy, and in this investigation, the 
point of maximum stability against carotenoid degradation 

Table 1  Estimated parameters of the GAB equation for paprika oleo-
resin encapsulated in Capsul®

Temperature (°C) M0 (g H2O/100 g 
dry solids)

C K R2 P (%)

25 6.502 28.978 0.738 0.998 2.373

35 6.400 21.732 0.738 0.999 1.095

45 6.391 20.975 0.718 0.999 1.486

Fig. 1  Differential and integral entropy changes as a function of 
moisture content for paprika oleoresin microcapsules stored at 35 °C
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was found at 6.441 g water/100 g soluble solids for paprika 
oleoresin microcapsules, corresponding to a water activity 
close to 0.244. Nevertheless, paprika oleoresin microcap-
sules showed a small zone where minimum integral entropy 
had no big changes. This zone begins at moisture contents 
of 5.888 g water/100 g soluble solids (aw = 0.191) and ends 
at 6.944 g water/100 g soluble solids (aw = 0.286) (Fig. 1). 
The monolayer value calculated for the GAB equation fell 
into the minimum entropy zone; similar results have been 
reported by Domínguez et al. [29].

Microcapsules stability based on water activity and glass 
transition

The temperature at which microcapsules have their glass 
transition depends strongly on the water content. Moisture 
is the most common plasticizer in food materials. Glass 
transition temperature (Tg) decreased with increasing water 
content caused by the plasticizing effect of water, as can be 
observed in Fig. 2. The same trend was observed by several 
authors for dehydrated foods [15, 33, 45, 46].

The water activity value that decreases the Tg to room 
temperature has been identified as RHc (the critical water 
content and water activity), and like Tg, RHc is unique 
to each material type [14, 47, 48]. For amorphous glassy 
materials, such as oleoresin microcapsules stored and 
exposed to ambient relative humidity, a rise in ambient 
humidity above the RHc will result in a glass transition, 
and the powder will become susceptible to deteriorative 
changes like stickiness, caking and collapse, resulting in 
quality loss. Hence, in order to obtain the critical condi-
tions for paprika oleoresin microcapsules storage, sorp-
tion isotherm and Tg data were plotted as a function of aw 

(Fig. 2) and the critical values of water activity and mois-
ture were obtained considering a room temperature of 
35 °C. This plot depicts a linear relationship between water 
activity and glass transition temperature. GAB monolayer 
and minimum entropy zone values were included in order 
to relate with RHc.

RHc was found at a water activity of 0.789, over this 
point microcapsules turn into a rubbery state. GAB mon-
olayer and minimum integral entropy values correspond 
to water activities of 0.238 and 0.244, respectively, conse-
quently, microcapsules were in glassy state, and at these aw 
no difference between Tg values were founded (77.85 °C).

Degradation of total carotenoids content during stor-
age of paprika oleoresin encapsulated in Capsul® is shown 
in Fig. 3. Paprika oleoresin microcapsules exposed to 
aw = 0.742 showed the lowest carotenoid degradation; this 
aw was very close to RHc, which indicates that microcap-
sules were near to the transition point between glassy and 
rubbery states. This may be the cause for microcapsules to 
develop visual structural changes and the water gain led to 
a change in their flow properties as a result of caking and 
agglomeration. For this reason, these conditions cannot be 
taken as the best stability against carotenoid degradation.

Table 2 shows degradation rate constants (kv’s) of both 
carotenoid fractions present in paprika oleoresin microcap-
sules. An increase in storage water activity from 0.108 to 
0.515 led to an increase in kv’s, but microcapsules were still 
within the glassy state. Based on the properties associated 
with the glassy amorphous state, where food materials exist 
in a metastable condition and remain stable for extended 
periods of time [13], it would be expected that no further 
degradation of the carotenoid content of the microcapsules 

Fig. 2  Glass transition temperature of paprika oleoresin microcap-
sules stored at 35 °C as a function of water activity

Fig. 3  Effect of water activity on total carotenoidal fraction degrada-
tion of paprika oleoresin microcapsules stored at 35 °C
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should arise at all. However, the rate of oxidation of the 
paprika oleoresin microcapsules, occurred rapidly within 
the glassy state. Carotenoid degradation is dependent upon 
a proper matrix formation as well as exclusion of oxygen 
from the matrix. Glassy characteristics may delay oxidation 
only if the oxygen is suitable to be entrapped by the molec-
ular structure of the glassy matrix.

Similar results were reported by Beristain et al. [18], 
who claim that the major determinant of the microcapsules 
shelf life is the porosity to oxygen diffusion of the dried 
matrix, regardless of the supercooled liquid state of the 
matrix.

On the other hand, all treatments showed that degra-
dation particularly affects the yellow pigments, while the 
pigments making up the red fractions are degraded more 
slowly during storage at 35 °C. This behavior is attributed 
to the existence of an isokinetic temperature (Tisok), which 
has been previously reported by Perez-Gálvez et al. [49]; it 
is approximately 82.8 °C; at temperatures below this Tisok, 
degradation is preferentially toward the yellow fraction, 
while at higher temperatures, it is toward the red fraction.

The lowest carotenoid degradation rates took place in 
microcapsules stored at a water activity of 0.108, whereas 
they remain in glassy state. Therefore, the best stability 
against carotenoid degradation of paprika oleoresin micro-
capsules occurs at a water activity near to the zone of mini-
mum integral entropy.

Morphology of paprika oleoresin microcapsules

SEM micrographs of the capsules stored demonstrated 
that microcapsules had a rounded outer surface with the 
formation of teeth or concavities and they varied in size. 
The appearance of teeth on the surface is attributed to rapid 
evaporation of drops of liquid during the drying process in 
the atomizer [50]. Similar morphologies were founded by 
Buffo [51], Finotelli and Rocha-Leao [52] and Rocha [50], 
in orange essential oil, ascorbic acid and lycopene micro-
capsules obtained by spray drying using Capsul® as wall 
material, respectively.

Changes on the physical characteristics of the paprika 
oleoresin microcapsules stored at 35 °C at different water 
activities could be observed. SEM micrographs reveal that 
microcapsules at all water activities proved during storage 
were able to keep their structural integrity, an attribute that 
is essential to ensure low gas permeability, better protec-
tion and carotenoid retention. When microcapsules were 
stored at water activities of 0.627 or lower, they remained 
as a free-flowing powder, but at aw = 0.742 they started 
showing agglomeration, and at water activities higher than 
0.742 microstructural changes were observed: Microcap-
sules became unable to keep their structural integrity and 
complete agglomeration of all material occurred, with the 
subsequent formation of hard and dark blocks. Similar 
findings were reported by Tonon et al. [15] for spray-dried 
Açai juice; these authors concluded that this behavior was 
a result from the compaction, and advanced stage in caking 
associated with a pronounced loss of system integrity that 
was caused by thickening of interparticle bridges due to 
flow, reduction of interparticle spaces and deformation of 
particle clumps under pressure. At water activities of 0.821 
and higher, most of the microcapsules disappeared, leading 
to a highly sticky mass (Fig. 4).

Conclusions

Microencapsulation by spray drying resulted to be a con-
venient strategy to prevent carotenoid degradation avoiding 
oxygen-mediated auto-oxidation reactions, besides this tech-
nique is not only efficient but also economic due to produc-
tion costs are lower than those associated with most other 
methods of encapsulation. The GAB equation was useful 
for modeling moisture sorption of paprika oleoresin micro-
capsules in all aw range studied. Minimum integral entropy 
was found at 6.441 g water/100 g soluble solids, correspond-
ing to a water activity close to 0.244. Microcapsules had 
the slowest kv at low water activities, carotenoid degrada-
tion rate increased as storage water activity increased, even 
when microcapsules remained in the glassy state. Carotenoid 

Table 2  Kinetic constants a for the degradation of red and yellow fraction of carotenoid pigments in paprika oleoresin/Capsul® microcapsules 
stores at 35 °C and four different water activities

a Integrated equation for first-order kinetics of degradation

C = C0 exp(kvt). (C is pigment concentration in g/kg; t is time in days)

aw Red fraction Yellow fraction

Slope (Kv × 10−3)a Ordinate (In C/C0) R2 Slopea (Kv × 10−3) Ordinate (In C/C0) R2

0.108 13.81 0.227 0.990 15.76 0.258 0.972

0.318 15.79 0.316 0.975 15.79 0.536 0.975

0.515 15.61 0.359 0.968 16.18 0.269 0.974

0.743 14.94 0.529 0.957 15.41 0.619 0.953
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degradation particularly affected the yellow pigments due to 
the existence of Tisok. RHc was found at a water activity of 
0.789; however, high kv’s were found bellow this aw. Results 
obtained in this work suggest that knowing of RHc value is 
not enough to establish maximum stability conditions, but 
relating RHc with ΔSint min provided a useful tool to predict 
the best stability against carotenoid oxidation.
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