
1 3

Eur Food Res Technol (2015) 240:609–618
DOI 10.1007/s00217-014-2361-2

ORIGINAL PAPER

Aromatic compounds released from natural precursors 
by selected Oenococcus oeni strains during malolactic 
fermentation

Fátima Pérez‑Martín · Pedro Miguel Izquierdo‑Cañas · 
Susana Seseña · Esteban García‑Romero · 
María Llanos Palop 

Received: 9 June 2014 / Revised: 8 October 2014 / Accepted: 20 October 2014 / Published online: 31 October 2014 
© Springer-Verlag Berlin Heidelberg 2014

Keywords Malolactic fermentation · Red wine · O. oeni · 
Glycosidases · Esterases · Volatile compounds

Introduction

Malolactic fermentation (MLF) is a biochemical process 
that typically occurs in wine after alcoholic fermentation 
converting l-malic acid into l-lactic acid and CO2, result-
ing in deacidification and enhanced microbiological stabil-
ity of the wine. In addition, changes in the aroma profile of 
wine, associated with the metabolic side activities of lactic 
acid bacteria (LAB) participating (i.e. Lactobacillus, Pedi-
ococcus and Oenococcus species), have also been reported 
[1–3]. The ability of these bacteria to produce a wide range 
of potentially important enzymes, including those capable 
of hydrolysing glycosides and ester substrates, would be 
responsible of these changes [4–9] since a significant frac-
tion of the aroma compounds present in grapes and wine 
occurs as non-volatile odourless glycosides [10]. Monoter-
penes, C13-norisoprenoids, benzene derivatives and ali-
phatic compounds are frequently found as d-glucopyra-
nosides being the volatile aglycone linked, by β-glycoside 
bond, to a single d-glucopyranose, or to a disaccharide, in 
which the glucose can further be conjugated to apiose, ara-
binose, rhamnose or xylose [10, 11]. For it, and to improve 
the wine aroma, some authors have assessed the possibil-
ity of carrying out sequential enzymatic hydrolysis of these 
aroma precursors by adding commercial fungal glycosi-
dases (glucosidase, arabinosidase, rhamnosidase, apiosi-
dase). However, these preparations contain side activities 
and often unpredictable effects [12, 13].

The glycosidase activity in LAB has been proven in sev-
eral studies using synthetic substrates, such as p-nitrophe-
nyl-glycosides, under controlled conditions [8, 9, 14–17]. 
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However, Gagné et al. [9] report that the glycosidase poten-
tial is not accurately estimated in assays conducted with 
this kind of substrates indicating that this activity should be 
assayed using natural substrates. The ability of Oenococcus 
(O.) oeni to release diverse aglycons from natural glyco-
sylated compounds extracted from grapes [18, 19] and oak 
wood [9, 20, 21] has been displayed.

Esters are, coupled to glycosides, an important group of 
aroma-active compounds being responsible for the fruity 
aroma of wine. The main esters at wines are C4 to C10 
ethyl esters of organic acids, ethyl esters of fatty acids and 
acetates of higher alcohols [22]. However, the ester-associ-
ated aroma profile in wines depends not only on the esters 
involved, but also on the compounds liberated by the ester-
ases, such as fatty acids and higher alcohols [23]. Estero-
lytic activity during wine production has the potential to 
either increase or decrease the amount of esters present, 
influencing therefore the perceived quality.

LAB have a variable ability to hydrolyse a range of 
artificial ester substrates [5–7, 24, 25], and production 
of esterases for many LAB from dairy industry has been 
reported [26, 27]. On the contrary, the esterase activity of 
wine-related LAB is still not well-documented, although 
evidences exist that some LAB from wine possess a strain-
dependent esterase activity, as observed from changes in 
concentration of individual esters during MLF [28–30]. 
Sumby et al. [31] compared the activity of purified O. oeni 
esterases with that from whole cells towards natural sub-
strates in a wine environment, demonstrating the ability 
of these esterases to both synthesise and hydrolyse esters 
depending on the strain and the wine variety used. There-
fore, it is important to evaluate the behaviour of the strains 
directly in the wine where they will be used.

The aim of the present study was to assess the changes 
produced at the volatile fraction of a wine added with a nat-
ural glycosidic extract and commercial esters by the action 
of inoculated O. oeni strains during MLF. Strains used had 
been selected in a previous work by their glycosidase and 
esterase activities against synthetic substrates [16, 25], and 
now, their behaviour using natural precursors is assayed.

Materials and methods

Bacterial strains and growth conditions

Five O. oeni strains were used in this study: four of them 
(Da32, Ab11, 93 and 23) had been selected in a previous 
work by their glycosidase and/or esterase activities [16, 
25] and the strain O. oeni CECT 7621 had been previously 
selected in our laboratory to be used as a starter culture 
for MLF [32]. Strain Da32 was used as a positive control 
for glycosidase activity and O. oeni CECT 7621 was the 

negative control. For esterase activity, positive and negative 
controls were strain 23 and 93, respectively. Strain Ab11 
had shown an intermediate value for both glycosidase and 
esterase activities.

Before use, pure cultures of these strains, kept as frozen 
stocks at −80 °C, were revitalised by culturing on MLO 
(Leuconostoc oenos Medium, Scharlab, Barcelona, Spain) 
agar and anaerobic incubation (Gas Pack System, Oxoid, 
Ltd, Basingstoke, Hampshire, UK) for 5 days at 30 °C.

Preparation of the extract

An extract from must of Muscat grape variety, one of the 
most aromatic and rich in glycoside compounds’ varie-
ties, was obtained following the procedure described by 
Hernández-Orte et al. [4] with slight modifications. 500 mL 
of must obtained in the experimental winery of the Institute 
of Vine and Wine of Castilla-La Mancha (IVICAM) from 
grapes of its own vineyards were filtered through filter 
paper and percolated through a LiChrolut EN (1,300 mg, 
Merck, Darmstadt, Germany) resin bed previously pre-con-
ditioned with 32 mL of dichloromethane, 32 mL of meth-
anol and 65 mL of water. Then, the column was washed 
with 250 mL of water, dried by letting air pass through and 
washed again with 40 mL of a pentane: dichloromethane 
(2:1 v/v) mixture. Finally, the retained compounds were 
eluted with 100 mL of an ethyl acetate: methanol (9:1 v/v) 
mixture. This extract was evaporated to dryness in a rotary 
evaporator at 150 mbar and 40 °C, and the dry glycosidic 
extract was reconstituted in 5 mL of a 10 % (v/v) ethanol 
solution and stored at −20 °C.

Fermentation assays

A Tempranillo wine after the completion of alcoholic fer-
mentation was used. It was filtered through a 0.2-μm 
pore size module (Millipore, Billerica, MA, USA) for 
sterilisation.

The chemical composition of this wine was as fol-
lows: 13.02 % (v/v) alcohol content, 4.84 g/L total acid-
ity, 0.29 g/L volatile acidity, pH 3.53, 2.00 g/L malic acid, 
0.55 g/L citric acid and 16.00 mg/L free SO2 content.

For fermentations, 2 L of the Tempranillo wine was added 
with the glycosidic extract obtained as described above, and 
with the commercial esters 2-phenylethyl acetate (400 μg/L) 
and butyl acetate (4 mg/L) (Sigma, Madrid, Spain). Flasks 
containing a volume of 110 mL of this modified Tempranillo 
wine were used for each fermentation assay.

Cultures in MLO from each O. oeni strain were used to 
inoculate (1 % v/v) the modified wine to reach an initial 
population of 106 cells/mL. For each strain, fermentations 
in triplicate at a constant temperature of 25 °C were carried 
out.
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The evolution of MLF was monitored by measuring the 
l-malic acid content using the kit l-malic acid (Megazyme, 
Ireland), and when this content was lower than 0.2 g/L, MLF 
was considered as finished. All the fermentation assays were 
maintained in incubation for 22 days, independently of when 
MLF had finished, to avoid differences due to a different 
time of contact wine bacteria. After the 22 days, SO2 was 
added to reach a concentration of 25 mg/L free SO2.

Microbiological analysis

Samples were taken under aseptic conditions immediately 
after inoculation and after 22 days of incubation. Counts 
were carried out by plating on MLO Agar plates, which 
were incubated under anaerobic conditions (Gas Pack Sys-
tem, Oxoid Ltd., Basingstoke, UK) at 30 °C for 5 days. 
Counts were performed in duplicate and expressed as col-
ony forming units (CFU) per mL of wine.

In order to confirm the presence of the inoculated O. 
oeni strain, a 10 % from the total number of colonies from 
countable MLOA plates was picked at random and puri-
fied by successive streaking on the same medium prior to 
typing by RAPD-PCR (Randomly Amplified Polymorphic 
DNA analysis) as described by Ruiz et al. [33].

A comparison between genetic profiles of the isolates 
and the profile of the inoculated strain was performed, and 
the implantation rate was calculated as the number of col-
onies with the specific RAPD-PCR profile divided by the 
total number of colonies picked, expressed as a percentage 
[34].

Chemical analysis of wines

Wines after 22 days of fermentation were chemically char-
acterised by determining total acidity, pH, volatile acidity, 
l-lactic acid and citric acid, following the Official Analyti-
cal Methods established by the International Organisation 
of Vine and Wine [35].

Volatile compound analysis

Minor volatile compounds were extracted by solid phase 
extraction (SPE) following the procedure described by 
Ibarz et al. [36]. 25 mL of wine was passed through col-
umns filled with 0.2 g of LiChrolut EN (40–120 µm, 
Merck) using 4-nonanol as internal standard. Then, the col-
umns were washed with 25 mL of water to remove sugars, 
acids and other polar substances. The minority fraction of 
volatile compounds (free flavour) was eluted with 15 mL 
of pentane: dichloromethane (2:1 v/v). The extracts were 
concentrated by distillation at 40 °C with a Vigreux col-
umn and subsequently under a stream of N2 to a volume of 
150 μL and stored at −20 °C until analysis.

The volatile compounds were analysed by GC/MS using 
a gas chromatograph TraceGC Ultra coupled to a mass 
spectrometer DSQ II with electron impact ionisation source 
and quadrupole analyser, equipped with an autosampler 
TriPlus all from ThermoQuest. The conditions of the detec-
tor were as follows: electron multiplier voltage, 1,592 V; 
impact energy, 70 eV; ion source temperature, 250 °C; and 
mass scanning range, 39–400 amu.

The separated compounds were identified by their mass 
spectra and chromatographic retention time using commer-
cial products as standard. Quantification was performed by 
analysing the characteristic m/z fragments for each com-
pound using the internal standard method. The results for 
the unavailable products were expressed as ratio of the area 
of each compound and internal standard.

Statistical analysis

The ANOVA and the Student–Newman–Keuls t test were 
used to determine whether there were significant differ-
ences between the results from chemical and volatile com-
pounds analysis. For statistical analysis, the SPSS 12.0 
software was used.

Results

Microbiological and chemical analysis

For all the strains, counts on MLOA plates were on the 
order of 107–108 CFU/mL at day 22 of incubation. The 
implantation values for the assayed strains at this time 
ranged from 73.3 % for strain Da32 to 100 % for strains 
O. oeni CECT 7621, 93 and Ab11, which confirmed the 
presence and the involvement in the MLF of the inoculated 
strain.

Table 1 summarises the mean values ± standard devia-
tion of the chemical parameters analysed in the wines after 
22 days of incubation. A similar degradation of l-malic 
acid was observed for all the strains being slower during 
the first days following the inoculation. Values at Table 1 
show that MLF was completed in all wines.

As expected, a decrease in the total acidity and the cit-
ric acid content and the subsequent increases in pH and 
lactic acid content were observed. Strain Da32 produced 
the highest quantity of lactic acid and almost a complete 
degradation of citric acid, and consequently, the volatile 
acidity was the highest. On the contrary, the strain CECT 
7621 showed the lowest lactic acid content and volatile 
acidity.

The remaining strains showed a similar behaviour with 
values for lactic acid content and volatile acidity between 
those of the strains Da32 and CECT 7621.
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Volatile compounds

Table 2 shows the mean values and the standard devia-
tion for the volatile compounds analysed in the wines 
after 22 days of incubation. Statistically significant differ-
ences between strains were observed for some of the vol-
atile compounds analysed, being some of them important 
aroma-active compounds.

For all the strains, increases in the concentration for the 
majority of terpenes and for t-2-hexenol and damascenone 
were observed. Benzyl alcohol concentration increased at 
two of the five strains. Decreases in the concentration were 
observed for the majority of remaining compounds.

Statistically significant differences between the five 
strains were observed for t-2-hexenol content, showing 
the strains Ab11 and Da32 the highest concentrations of 
this compound, with a 58 and 103 % more concentration, 
respectively, than the strain O. oeni CECT 7621, which 
showed the lowest one.

Strains Ab11 and Da32 also presented significantly 
higher concentrations of some terpenes if compared with 
O. oeni CECT 7621. So, nerol concentrations were 75 and 
77 % higher, respectively; c-linalool furanic oxide concen-
trations were 66 and 144 % higher; and t-linalool piranic 
oxide concentrations were 76 and 150 % higher. Likewise, 
they produced a 40 and 82 % more quantity of t-linalool 
furanic oxide, respectively, compared with the strain 93, 
which showed the lowest concentration of this compound.

For benzyl alcohol and eugenol, the same behaviour was 
observed, and concentrations for strain Ab11 were 36 and 
57 % higher, respectively, than those for O. oeni CECT 
7621, while concentrations for strain Da32 were 48 and 
99 % higher.

The highest concentrations for t-isoeugenol were from 
strains Da32 and 23, being three- and fivefold, respectively, 
that of O. oeni CECT 7621. In addition, strain 23 showed 
ninefold more concentration of zingerone than strain Da32.

With respect to the two esters, butyl acetate and 2-phe-
nylethyl acetate, added to the Tempranillo wine, a different 

behaviour of the strains was observed, although significant 
differences in the concentrations for these compounds were 
not observed between them. It is worth noting that strains 
23, Ab11 and Da32 degraded around a 55 % more butyl 
acetate than O. oeni CECT 7621, while this last degraded 
a 16 % more 2-phenylethyl acetate than the remaining 
strains. Wines obtained from the strain 93 showed higher 
concentrations of the different acetates followed by those 
from the strains Ab11 and Da32.

For the ethyl esters group, it is important to highlight 
that strain O. oeni CECT 7621 presented, contrarily to 
what expected, higher esterase activity than the remaining 
strains since the wines obtained from it presented a lower 
concentration for the majority of the ethyl esters analysed. 
Concentrations of ethyl hexanoate and 2-hydroxy-ethyl 
caproate were 23 and 32 % lower than those for strain 
Da32, respectively. Only the ethyl butyrate, 4-hydroxy-
ethyl butyrate and 3-hydroxy-ethyl butyrate concentrations 
were lower at wines from the strain 23.

Concentrations of some esters varied significantly 
between strains. Thus, the ethyl hexadecanoate concentra-
tion was a 55 % higher at strain Ab11 and that of c-3-hexe-
nyl acetate was a 144 % higher at strain 93, when compared 
with the strains O. oeni CECT 7621 and Da32, producing 
the lowest concentrations of these compounds, respectively. 
Ethyl octanoate concentration was a 100 % higher at wines 
from strains 23, Ab11 and Da32 and, on the contrary, that 
of ethyl butyrate was around a 270 % higher at wines from 
strains O. oeni CECT 7621 and 93. Finally, concentra-
tions for isoamyl acetate in wines from the strains Ab11, 
Da32, 93 and 23 were also higher than that from O. oeni 
CECT 7621 with increases ranging between 75 and 280 % 
depending on the strain.

Discussion

The ability of five selected O. oeni strains to hydrolyse gly-
cosides and esters in wine during MLF has been assessed 

Table 1  Chemical composition of wines from different O. oeni strains after 22 days of incubation

Different superscripts (a, b, c) indicate significant differences between strains for α = 0.05 according to the Student–Newman–Keuls test

Initial wine O. oeni CECT 7621
Negative control for 
glycosidase activity

Da32
Positive control for 
glycosidase activity

93
Negative control for 
esterase activity

23
Positive control for 
esterase activity

Ab11

Total acidity (g/L) 4.84 4.22 ± 0.05bc 4.27 ± 0.13c 3.95 ± 0.05a 4.01 ± 0.16ab 4.19 ± 0.01bc

pH 3.53 3.64 ± 0.01b 3.67 ± 0.02c 3.70 ± 0.01d 3.70 ± 0.02d 3.62 ± 0.01a

Volatile acidity (g/L) 0.29 0.42 ± 0.01a 0.75 ± 0.05d 0.58 ± 0.05bc 0.64 ± 0.06c 0.53 ± 0.01b

l-lactic acid (g/L) 0.03 1.00 ± 0.02a 1.33 ± 0.04c 1.19 ± 0.02b 1.25 ± 0.02b 1.25 ± 0.05b

Citric acid (g/L) 0.55 0.54 ± 0.03d 0.03 ± 0.01a 0.11 ± 0.04b 0.08 ± 0.03b 0.45 ± 0.01c

Malic acid (g/L) 2.00 0.20 ± 0.03b 0.10 ± 0.01a 0.15 ± 0.05a 0.12 ± 0.02a 0.19 ± 0.02b
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Table 2  Volatile compounds of wines from different O. oeni strains after 22 days of incubation

Initial 
wine

O. oeni CECT 7621
Negative control 
glycosidase

Da32
Positive control 
glycosidase

93
Negative control 
esterase

23
Positive control 
esterase

Ab11

Terpenes

 Linalool2 3.22 49.6 ± 3.73 52.3 ± 3.16 49.3 ± 11.6 46.9 ± 2.41 55.9 ± 4.49

 α-terpineol2 2.64 29.3 ± 2.63 35.1 ± 1.81 28.5 ± 8.10 28.4 ± 0.89 36.4 ± 3.25

 Citronellol2 14.7 8.84 ± 2.15 10.5 ± 1.52 10.8 ± 3.98 10.2 ± 0.60 10.9 ± 1.35

 Hydroxycitronellol4 16.1 8.35 ± 4.41 13.7 ± 3.86 9.91 ± 5.71 11.6 ± 1.76 12.0 ± 1.54

 Nerol2 2.67 6.47 ± 0.91a 11.5 ± 1.06b 9.33 ± 2.75ab 8.06 ± 0.42ab 11.3 ± 1.44b

 Geraniol2 15.6 20.3 ± 2.05 28.07 ± 1.78 25.7 ± 9.90 24.1 ± 1.38 28.0 ± 3.12

 3,7-Dimethyl-1,5-octadien-3,7-diol4 9.45 134 ± 46.2 173 ± 25.6 164 ± 63.3 167 ± 18.7 183 ± 27.9

 t-linalool furanic oxide4 0.24 2.49 ± 0.17a 4.33 ± 0.08c 2.39 ± 0.66ab 2.51 ± 0.19ab 3.34 ± 0.30b

 c-linalool furanic oxide4 0.16 1.30 ± 0.31a 3.17 ± 0.22c 1.34 ± 0.35a 1.39 ± 0.29a 2.16 ± 0.17b

 c-linalool piranic oxide4 0.55 1.30 ± 0.11 1.88 ± 0.12 1.44 ± 0.81 1.45 ± 0.09 1.84 ± 0.24

 t-linalool piranic oxide4 1.81 2.30 ± 0.08a 5.76 ± 0.18b 3.04 ± 1.23a 2.83 ± 0.18a 4.05 ± 0.34a

 3,7-Dimethyl-1,5,7-octatrien-3-ol4 0.79 2.52 ± 0.43 2.48 ± 0.38 2.42 ± 0.70 2.38 ± 0.29 2.51 ± 0.43

 3,7-Dimethyl-oct-1-en-3,7-diol4 4.09 6.87 ± 2.52 10.9 ± 1.43 7.30 ± 3.06 7.47 ± 1.01 10.6 ± 1.78

 3,7-Dimethyl-octa-1,7-dien-3,6-diol4 1.48 3.20 ± 0.57 4.49 ± 0.91 3.39 ± 1.50 4.01 ± 0.15 4.21 ± 0.86

C6 alcohols

 1-hexanol1 1.81 1.96 ± 0.27 1,723 ± 103 1.98 ± 0.21 1.72 ± 0.01 1.83 ± 0.01

 c-2-hexenol2 5.28 4.78 ± 0.19 4.69 ± 0.58 5.00 ± 0.69 4.77 ± 0.43 4.68 ± 0.20

 t-2-hexenol2 9.95 10.4 ± 0.55a 21.1 ± 1.34c 14.7 ± 3.65ab 12.4 ± 0.91ab 16.5 ± 1.77b

 t-3-hexenol2 64.8 67.6 ± 6.68 62.7 ± 4.27 68.7 ± 8.65 58.7 ± 2.97 63.7 ± 2.57

 c-3-hexenol2 252 269 ± 23.5 251 ± 12.46 272 ± 37.4 243 ± 16.8 260 ± 10.6

Bencenic alcohols

 Benzyl alcohol2 355 288 ± 12.4a 427 ± 16.9b 336 ± 94.4ab 310 ± 16.4a 392 ± 32.5ab

 2-Phenylethanol1 48.3 35.7 ± 2.52 38.88 ± 1.85 40.8 ± 10.8 38.5 ± 1.70 40.7 ± 3.35

Methoxyphenols

 Vanillin2 92.9 42.9 ± 30.8 66.5 ± 18.7 44.9 ± 27.9 54.1 ± 5.68 70.1 ± 11.6

 Homovainillyl alcohol2 46.0 18.6 ± 16.9 37.0 ± 8.68 24.2 ± 19.1 32.5 ± 5.92 35.5 ± 5.35

 Acetovanillone2 53.2 23.7 ± 16.1 39.7 ± 9.48 28.9 ± 18.8 37.1 ± 5.62 38.4 ± 5.32

 Propiovanillone2 6.67 2.71 ± 2.12 4.87 ± 1.17 3.96 ± 3.16 4.71 ± 0.85 4.81 ± 0.99

 Eugenol2 2.91 2.10 ± 0.39a 4,19 ± 0.24b 2.61 ± 0.86a 2.83 ± 0.19a 3.31 ± 0.46ab

 t-isoeugenol2 0.92 0.34 ± 0.08a 1.57 ± 0.36b 0.43 ± 0.23a 0.99 ± 0.25b 0.72 ± 0.20ab

 Methyl vanillate2 5.80 3.33 ± 1.12 4.50 ± 0.94 3.02 ± 1.50 4.08 ± 0.59 4.71 ± 0.37

 Ethyl vanillate2 154 64.7 ± 48.3 104 ± 24.2 80.9 ± 54.0 103 ± 15.1 103 ± 16.0

 Syringaldehyde2 446 175 ± 24.1 340 ± 132 193 ± 19.3 292 ± 54.7 369 ± 61.3

 Acetosyringone2 28.1 9.95 ± 12.9 19.7 ± 8.22 12.3 ± 11.2 20.6 ± 6.37 19.0 ± 2.93

 Methoxyeugenol2 1.87 1.00 ± 0.71 2.77 ± 0.73 1.13 ± 0.75 1.92 ± 0.81 2.13 ± 0.31

 Zingerone2 13.4 0.45 ± 0.06a 0.36 ± 0.16a 0.83 ± 0.10a 3.22 ± 0.94b 0.38 ± 0.16a

 Syringol2 1,013 82.9 ± 12.3 53.7 ± 18.0 19.2 ± 9.29 21.6 ± 0.68 193 ± 19.1

Norisoprenoids

 β-ionone2 0.36 0.25 ± 0.02 0.24 ± 0.05 0.23 ± 0.15 0.27 ± 0.10 0.22 ± 0.03

 3-Oxo-α-ionol4 115 41.8 ± 45.7 89.4 ± 23.3 56.6 ± 50.8 80.5 ± 14.0 84.7 ± 12.9

 Damascenone2 2.33 2.71 ± 0.64 3.34 ± 0.23 3.25 ± 0.83 3.50 ± 0.53 3.54 ± 0.35

 β-ionol4 5.60 2.79 ± 1.17 5.89 ± 2.57 3.05 ± 2.00 3.83 ± 0.51 4.27 ± 0.75

 3-Hydroxy-7,8-dihydro-β-ionol4 2.31 0.93 ± 0.93 2.34 ± 0.75 1.46 ± 1.16 1.96 ± 0.43 2.12 ± 0.14

Acetates

 Butyl acetate1 0.67 2.59 ± 3.28 1.11 ± 0.55 2.48 ± 1.15 1.16 ± 0.60 1.16 ± 0.88

 Hexyl acetate1 0.05 0.10 ± 0.05 0.08 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.05 ± 0.02
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in the present study. MLF evolution and counts on MLOA 
plates at the end of the process were the usual [32, 33, 37]. 
The slow degradation of malic acid during the first days 
following the inoculation has already been reported by 
other authors [30] and has been attributed to the charac-
teristics of wine, such as the pH and the alcohol and SO2 
contents, which make wine a very harsh environment for 
bacterial growth [38]. The implantation values obtained for 
each strain after 22 days of incubation although different 
confirmed their presence in this process.

Respect to the chemical composition of wines, the 
behaviour of strains was similar to that described by other 
authors when a starter culture is inoculated to carry out 
MLF [39, 40]. Significant differences between the strains 
were found for all the parameters analysed. Strains 93, 23 
and Da32 degraded almost totally the citric acid although 
the final values for volatile acidity were not excessive 
except for the strain Da32. As described by some authors 
[41], concentrations higher than 0.7 g/L can produce sour 
and pungent aroma and a vinegar-like character to wine. 
On the contrary, concentrations between 0.2 and 0.7 g/L 
are beneficial contributing to the complexity of wine aroma 
[42].

Changes in volatile compounds composition at wines 
occurred during MLF suggests an active contribution of O. 
oeni strains through the hydrolysis of glycosylated com-
pounds, although part of the detected changes could also 
be due to the chemical hydrolysis of glycosides and esters 
caused by the pH and acidity of the wine [4].

Glycosidase and esterase activities from LAB at wine 
have been studied using both wine and synthetic substrates 
[4–7, 16, 17, 25, 30, 43, 44], and both activities have been 
described to be strain dependent. In concordance with 
those studies, the results from volatile compounds’ analy-
sis at wine obtained in this study have displayed differ-
ences, some of them statistically significant, in the content 
for some compounds, which would be attributable to dif-
ferences in the glycosidase and esterase activities of the O. 
oeni strains inoculated. It is well known that LAB have the 
potential to alter the aroma profile of wine by the produc-
tion of volatile secondary metabolites or the modification 
of grape- and yeast-derived metabolites [4, 45–47].

However, differences between strains observed in 
this study were not as clear as those observed when 
the same strains were assayed using synthetic sub-
strates such as p-nitrophenyl-β-d-glucopyranoside and 

Values are the mean of triplicates. 1  mg/L; 2 μg/L; 3 area compound/area IS; 4 area compound/area IS*1000. Different superscripts (a, b, c) 
indicate significant differences between strains for α = 0.05 according to the Student–Newman–Keuls test

Table 2  continued

Initial 
wine

O. oeni CECT 7621
Negative control 
glycosidase

Da32
Positive control 
glycosidase

93
Negative control 
esterase

23
Positive control 
esterase

Ab11

 Isoamyl acetate1 1.32 1.05 ± 0.41 1.91 ± 0.09 2.78 ± 0.80 1.84 ± 0.27 3.93 ± 4.17

 Benzyl acetate2 0.56 0.57 ± 0.04 0.63 ± 0.05 0.59 ± 0.13 0.54 ± 0.06 0.59 ± 0.08

 t-3-hexenyl acetate4 0.77 1.10 ± 0.21 0.91 ± 0.14 0.92 ± 0.35 0.71 ± 0.05 1.01 ± 0.13

 c-3-hexenyl acetate2 0.48 1.93 ± 0.25a 1.63 ± 0.50a 3.99 ± 0.22b 3.40 ± 0.84b 1.82 ± 0.24a

 1,3-Propanediol acetate4 46.0 52.0 ± 29.4 40.4 ± 3.47 46.1 ± 28.7 33.7 ± 2.88 43.5 ± 4.27

 2-Phenylethyl acetate2 36.8 164 ± 16.9 191 ± 11.7 193 ± 55.4 190 ± 5.72 196 ± 23.6

Ethyl esters

 Ethyl butyrate1 1.05 1.64 ± 1.28 1.00 ± 0.31 1.72 ± 0.84 0.45 ± 0.23 1.04 ± 0.29

 4-Hydroxy-ethyl-butyrate3 4.38 3.25 ± 0.73 3.38 ± 0.24 3.68 ± 1.66 3.09 ± 0.19 3.56 ± 0.44

 Ethyl octanoate2 54.6 36.6 ± 3.95 76.9 ± 9.65 57.2 ± 32.1 71.8 ± 4.62 74.0 ± 14.1

 Ethyl hexanoate2 16.1 21.0 ± 4.28a 27.3 ± 2.71b 22.4 ± 3.55b 23.1 ± 1.23b 23.2 ± 3.16b

 Ethyl decanoate2 34.7 18.7 ± 3.20 42.6 ± 7.07 34.7 ± 31.8 41.0 ± 4.45 40.7 ± 9.43

 Ethyl dodecanoate2 18.9 9.59 ± 5.93 20.3 ± 3.64 16.4 ± 17.7 17.9 ± 2.48 18.0 ± 5.39

 9-Ethyl decenoate4 1.28 0.59 ± 0.10 1.41 ± 0.26 1.05 ± 0.86 1.37 ± 0.18 1.45 ± 0.33

 Ethyl hexadodecanoate2 33.6 94.4 ± 86.0 131 ± 57.2 110 ± 10.9 118 ± 22.0 147 ± 41.4

 Ethyl monosuccinate3 22.5 10.0 ± 9.99 18.07 ± 4.77 13.1 ± 10.2 14.63 ± 1.72 20.6 ± 2.80

 Diethyl malate3 172 97.2 ± 34.3 127 ± 19.1 105 ± 44.8 112 ± 5.79 124 ± 15.2

 2-Phenylethyl lactate4 6.79 12.7 ± 5.91ab 33.4 ± 6.00c 20.4 ± 11.7abc 22.4 ± 1.21bc 5.88 ± 1.24a

 3-Hydroxyethyl decanoate4 11.6 5.10 ± 2.81 8.15 ± 1.92 6.23 ± 3.68 7.49 ± 1.06 7.43 ± 1.08

 3-Hydroxyethyl butyrate2 236 234 ± 45.6 198 ± 5.91 225 ± 98.7 176 ± 3.64 215 ± 5.42

 2-Hydroxyethyl caproate4 28.8 28.4 ± 2.07a 41.8 ± 0.95b 33.2 ± 8.84ab 32.6 ± 2.25ab 28.9 ± 1.70a
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p-nitrophenyl-xylopyranoside [16]. The complex composi-
tion of wine could mask the release of aglycones by LAB. 
Similar results have been reported by other authors [4, 9].

As expected, the compounds showing the highest 
increases were the terpenes which are the most abundant 
glycosides in the Muscat variety from which the glyco-
sidic extract added to wine was obtained. The ability of 
O. oeni strains to release terpenes from glycosidic precur-
sors has been described by some authors [4, 48]. Typical 
aroma descriptions of some important terpenes are floral, 
rose-like (geraniol, nerol, rose oxides), coriander (linalool), 
camphoraceous (linalool oxides), green (nerol oxide) and 
herbaceous [49].

It is important to highlight that concentrations of nerol, 
c-linalool furanic oxide, t-linalool furanic oxide and t-linal-
ool piranic oxide were significantly higher in wine inocu-
lated with strains Da32 and Ab11, which had been selected 
in a previous work by their high glycosidase activity [16], 
and significantly lower in wine inoculated with the strain 
O. oeni CECT 7621, used as a negative control for this 
activity.

In addition, strains Ab11 and Da32 showed significantly 
higher concentrations of other compounds such as t-2-hex-
enol, benzyl alcohol, damascenone and eugenol. Hernán-
dez-Orte et al. [4] also reported increases of damascenone 
and c-3-hexenol in wines whose MLF had been performed 
by the strain O. oeni 5106, and Boido et al. [50] reported 
increases of benzyl alcohol in wines inoculated with three 
O. oeni commercial strains.

All these compounds contribute substantially to the 
aroma of wine. Thus, the norisoprenoids provide fruity, 
floral or spicy notes, and hence, their presence has very 
beneficial effects for the sensory quality of wines. Dama-
scenone, a norisoprenoid compound, is a potent odorant 
produced from the hydrolytic cleavage of some C13-nori-
soprenoidic polyols present in wines in free form or as gly-
cosides [51–53]. Ugliano and Moio [54] found a significant 
increase of the concentration of β-damascenone after MLF 
and suggested that the formation of this compound could 
be related with the hydrolytic activity of the bacteria par-
ticipating. On the other hand, Antalick et al. [55] found low 
variations in concentrations of some compounds measured, 
such as linalool, norisoprenoids and damascenone, indicat-
ing that their sensory impact would be unlikely, due to their 
perception threshold, which in addition, could be altered by 
the matrix.

Eugenol and zingerone, compounds belonging to the 
methoxyphenols group, give spicy and smoked character-
istics [56] to wines. The benzyl alcohol provides notes to 
blackberry, floral and sweet aroma [57, 58].

Concentrations for other compounds, such as citronellol, 
vanillin, acetovanillone, syringol and 3-oxo-α-ionol, were 
lower than expected which, as described by some authors 

[4, 50, 55], could be due to an effect of adsorption onto 
polysaccharides and peptidoglycans produced by O. oeni.

As observed by Pérez-Martín et al. [25] using synthetic 
substrates, results for esters showed differences not only 
between strains but also between substrates. Thus, the strain 
Da32 presented the highest hydrolysis of butyl acetate and 
one of the lowest of 2-phenylethyl acetate, and the strain 
O. oeni CECT 7621 presented the highest hydrolysis of 
2-phenylethyl acetate and the lowest of butyl acetate. The 
increase in the concentrations of other esters such as ethyl 
hexadecanoate, c-3-hexenyl acetate and ethyl octanoate, 
which contribute to pleasant fruity notes, was also observed 
to be strain dependent. On the contrary, some authors [39] 
indicated that concentration of some of these compounds 
did not depend on MLF and the strain used, probably due 
to that they inoculated a strain with low esterase activity.

Some authors [31, 44] reported modifications of ester 
concentrations depending on the strain conducting the 
MLF, and other authors [39, 59, 60] also reported the influ-
ence of the wine composition (pH, ethanol content, sub-
strates released by the yeast) and the cultivar on such modi-
fications. The influence of these factors could explain that 
the correlation between results obtained in the present 
study for strains 23 (positive control for esterase activity) 
and 93 (negative control for esterase activity) and those 
obtained by Pérez-Martín et al. [25] in the previous study 
for characterisation of these strains was not as clear as for 
glycosidase activity, since for the majority of ester com-
pounds analysed the behaviour of both strains was not the 
expected. As an example, the 2-phenylethyl acetate concen-
tration was identical for both strains.

Differences between strains observed in the concentra-
tion of 2-phenylethyl lactate can be related with the con-
centration of lactic acid in the wine, since this compound 
is produced during MLF as result of the esterification of 
the lactic acid with the 2-phenylethanol. Thus, wines from 
Da32 strain, which showed highest lactic acid production, 
exhibited concentrations of this ester higher than those 
from O. oeni CECT 7621 with the lowest lactic acid pro-
duction. An exception occurred with strain Ab11.

Esters are important in determining wine aroma, and the 
presence of some short-chain esters, such as ethyl acetate, 
isobutyl acetate, isoamyl acetate and hexyl acetate, pro-
vides fruity flavours. However, there is a great disagree-
ment regarding the influence of MLF on the final ester 
content in wine and the convenience of using LAB showing 
esterase activity for MLF in order to improve sensory char-
acteristics of wines. Thus, whereas some authors state that 
the metabolism of LAB may induce significant increases in 
the concentrations of different esters originating from alco-
holic fermentation [28, 61], others affirm that their concen-
trations decrease significantly during MLF with the subse-
quent reduction in fruity attributes [62].
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Conclusions

The results obtained in this study reveal that although dif-
ferences in the concentration of some volatile compounds 
in wines obtained with the different O. oeni strains have 
been quantitatively not significant, they could affect the 
sensory characteristics of the wines, because some of them 
contribute either positively or negatively to their aroma.

It has been confirmed that both glycosidase and ester-
ase activities are strain dependent making necessary a 
previous assay of the strains to know their behaviour 
before the selection to be used as a starter culture. In 
addition, it has been observed that sometimes correlation 
between results obtained using synthetic substrates, such 
as p-nitrophenol-linked substrates, and those from wines 
is not coincident, and therefore, those previous studies 
should be carried out using the particular wine on which 
the strain will act.

From the results reported, it can be concluded that the 
strain 93, presenting the lowest esterase activity, is the best 
to preserve the fruity aroma of wines, while strains Da32 
and Ab11, showing the highest glycosidase activity, are 
good candidates to produce wines with higher floral aro-
matic profile. Future researches using each of these strains 
will be carried out to know their influence in the sensory 
characteristics of the wines.
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