
1 3

Eur Food Res Technol (2014) 238:573–580
DOI 10.1007/s00217-013-2137-0

Original Paper

Effect of fresh grass feeding, pasture grazing and organic/biodynamic 
farming on bovine milk triglyceride profile and implications 
for authentication

Edoardo Capuano · Rita Boerrigter‑Eenling · 
Anjo Elgersma · Saskia M. van Ruth 

Received: 17 September 2013 / Revised: 22 November 2013 / Accepted: 30 November 2013 / Published online: 12 December 2013 
© Springer-Verlag Berlin Heidelberg 2013

increasing interest for practices that are environmental 
friendly and perceived as more respectful of animal wel-
fare. In the dairy sector, pasture grazing and organic/bio-
dynamic farming are known to confer distinct organoleptic 
properties and superior nutritional quality to milk [1] in the 
same time guaranteeing animal welfare and exploitation 
of local resources. Along with the organic or biodynamic 
certification, the “weidemelk” label has been recently intro-
duced in the Netherlands for farm and processed milk (and 
other dairy products) produced from cows that have been 
allowed to graze on pasture at least 4 months per year, 6 h 
per day. Organic and “weidemelk” products are retailed 
at an higher price compared to conventional milk which 
might lead to mislabelling of dairy products for economic 
gain. Robust analytical methodologies that may underpin 
the paper-trail-based system of certification of products 
traceability are thus sought for.

Previous investigations proved that authentication 
of cows pasture feeding cannot be attained by the analy-
sis of single biomarkers but rather by means of chemical 
or physical fingerprinting combined with chemometrics. 
For instance, Coppa et  al. [2] showed that discrimination 
between milk from cows on pasture and stabled cows may 
be achieved by near infrared spectroscopy. However, the 
most suitable candidate for authentication of cows feeding 
regimen is the milk fat fraction since fatty acid (FA) and 
triacylglycerols (TAGs) profiles change very quickly fol-
lowing changes in the animals’ diet. Different diets would 
indeed be characterized by a different FA profile and would 
differently modulate the microbial biohydrogenation activ-
ity in the rumen. TAGs account for approximately 98  % 
of milk fat thus constituting its major fraction. Milk fat 
TAGs vary considerably in molecular weight and degree of 
unsaturation [3]. This complexity is the direct result of the 
large number of FAs which are incorporated in the TAGs 
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structure. Several studies have reported the seasonal effect 
on bovine milk TAG composition which stems from differ-
ent feeding regimen implemented in winter and in spring-
summer [4–6]. The effect of dietary lipids and specific 
feed supplementation on TAGs distribution has been also 
extensively addressed in the scientific literature [7–10]. 
However, the effect of fresh grass feeding and pasture graz-
ing on bovine milk TAG composition has not. Analogously, 
information is scarce on the effect of organic/biodynamic 
farming on bovine milk TAGs composition.

The aim of this study was to explore the effect of fresh 
grass feeding, pasture grazing and organic farming on TAG 
profile of raw farm bovine milk and investigate the implica-
tions for the authentication of the cattle’ management sys-
tem. For that purpose, binary classifications models based 
on chemometric modeling have been developed for the 
authentication of fresh grass feeding, pasture grazing and 
organic farming based on cows’ milk TAG profile.

Materials and methods

Study design

A total of 113 raw, tank milk samples were collected from 
30 different farms located in the Gelderland region (6 
farms) and in the Friesland/Groningen region (24 farms) in 
the Netherlands. Most of the farms provided 4 milk sam-
ples in different months, i.e., in April, May and June–July 
2011 as well as in February 2012. The sampling scheme 
was setup so as to cover the spring feeding transition period 
(April and May) and the summer period (June–July) as 
well as the winter period (with cows on zero-grass ration). 
For practical reasons, it was not possible to plan an extra 
sampling round in autumn. The sampling was conducted 
in the framework of a larger project in which also other 
techniques/biomarkers were tested for the authentication 
of farming practice. The following information was col-
lected at farms by means of interviews and questionnaires: 
(1) The hours spent by the cows on pasture at the moment 

of sampling and (2) the composition of animals’ diet at the 
moment of sampling. Data on the amount of fresh grass 
in the daily ration were also provided by the farmers. The 
amount of fresh grass of stabled cows was calculated from 
the acreage of cut land and the weight of fresh grass fed 
to the cows. The grass intake from grazing was estimated 
based on animal energy needs (based on milk production) 
minus what was fed next to the grassland. The milk sam-
ples were collected from the tanks by using 30-mL plastic 
screw-top containers after stirring the tank for at least 30 s. 
The milk samples were cooled (4  °C) immediately after 
sampling and frozen at −18°C within 6 h after sampling. 
Samples were categorized in five groups: Milk samples 
from cows that were at least 19-h outdoor on pasture on a 
daily basis at the time of sampling (group GP2); milk sam-
ples from cows were 6–9-h outdoor on pasture on a daily 
basis at the time of sampling (group GP1); milk samples 
from cows were indoors with fresh grass in the daily ration 
(group GI); milk samples collected in spring–early summer 
from cows that were indoors with no fresh grass in the diet 
(group NGI); milk samples collected in winter (group W). 
In group GP2, GP1 and GI, the estimated amount of fresh 
grass in the cows’ daily ration varied from 36 to 94 %. All 
the milk samples of group W were from cows indoors all 
year-round with no fresh grass in the daily ration. Two cer-
tified organic farms and three certified biodynamic farms 
were included in the sample set. In Table 1, an overview of 
the study design is provided.

TAG analysis

The TAG analysis was carried out according to Interna-
tional Standard ISO 17678|IDF 202 (milk fat—detection of 
foreign fats by gas chromatographic analysis of triglycer-
ides). The TAGs were determined by gas chromatography 
by means of a Thermo Trace GC ultra model gas chroma-
tograph (Thermo Scientific, Rodano, Italy), fitted with a 
flame-ionization detector (FID) and a column injector port. 
Chromatographic separation of TAGs was performed on a 
UltiMetal CP7532 (5  m ×  0.53  mm ×  0.17 μm, Varian, 

Table 1   Summary of the study design. Composition and characteristics of the different groups

a  In parenthesis the number of organic/biodynamic farms

Group Hours on pasture  
per day

Min–max (average)  %  
fresh grass per day

Samples collected per montha Totala

April May June February

GI 0 38–71 (54) 4 4 4 0 12

GP1 6–9 36–74 (51) 13 (4) 9 (1) 7 0 29 (5)

GP2 >19 52–94 (76) 4 (1) 9 (4) 11 (4) 0 24 (9)

NGI 0 0 7 6 6 0 19

W 0 0 0 0 0 29 (4) 29 (4)

Totala 28 (5) 28 (5) 28 (4) 29 (4) 113 (18)
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The Netherlands). TAGs were identified by their retention 
times compared to those found in the TAG standard mix-
ture (certified reference materials BCR 632a and BCR632b, 
Institute for reference materials and measurements, IRRM, 
Geel, Belgium). All milk samples were analyzed in tripli-
cate, and results were expressed as normalized peak areas 
(%). Data used for modeling were the average values of the 
three replicates of each milk sample.

Fatty acids analysis

Approximately 15  g of milk were mixed with 24  mL of 
a dichloromethane–ethanol solution (2:1 ratio, v/v) in a 
40-mL glass test tube. The mixture was shaken with a 
vortex for 5 min and then centrifuged for 15 min (2,500 g 
at 48  °C). The upper organic phase was removed with a 
pipette, and further 15 mL of the dichloromethane–ethanol 
solution was added to the test tube and then the mixture 
vortexed and centrifuged for 15 min (2,500 g at 48 °C). The 
combined upper organic phases containing the milk fat was 
filtered, and dichloromethane–ethanol was evaporated until 
dryness under a stream of nitrogen.

The FAMEs were obtained using a two-step methylation 
procedure with sodium methoxide (0.5 N) and boron trif-
luoride–methanol complex (20 %) as previously described 
[11]. The FAME analysis was carried out by means of a 
Focus GC gas chromatograph (Thermo Scientific, Italy), 
fitted with a flame-ionization detector (GC–FID) and split–
splitless injector port, set at 280 and 250 °C, respectively, 
and a split ratio of 1:30. Chromatographic separation of 
FAMEs was performed on a CP 7419 FAME capillary col-
umn (50 m × 0.25 mm inner diameter; Varian, Palo Alto, 
CA). Helium (1 mL min−1 flow) was used as a carrier gas. 
The oven was programmed as follows: initial temperature, 
100 °C, increased at 5 °C/min to 230 °C and held for 9 min. 
The sample volume injected was 1 μL. FAMEs were iden-
tified by comparing their retention times with that of the 
available FAME standards (Supelco 37 Component FAME 
mix, Supelco, St. Louis, MO and standards for cis-9, 
trans-11, C18:2 and trans-11 C18:1 methyl esters, Sigma-
Aldrich, St. Louis, MO). All milk samples were analyzed 
in triplicate, and results were expressed as normalized peak 
areas (%). Data used were the average values of the three 
replicates of each milk sample.

Statistical analysis

First, the normality of TAGs distribution within the groups 
GI, GP1, GP2, NGI and W was checked by means of a 
Shapiro–Wilks test for normality (p < 0.05 was considered 
significant). Since TAGs distribution appeared to be non-
normal in the groups, a Kruskal–Wallis test for group com-
parisons was performed among the groups NGI, GI, GP1, 

GP2 and W (p < 0.05 was considered significant). Corre-
lation between pairs of TAGs was calculated by means of 
Spearman correlation test (2-tails, p  <  0.05 was consid-
ered significant). SPSS version 19.0 (IBM Statistics Inc., 
Armonk, NY) was used to perform all those tests.

For multivariate analysis, principal component analy-
sis (PCA) of the TAGs data was performed with the 113 
samples to explore the presence of outliers, the presence 
of any natural clustering in the data and to visualize the 
correlation between TAGs and FAs. Pirouette 4.5 (Info-
metrix, Seattle, USA) was used to develop the PCA mod-
els. Partial least squares discriminant analysis (PLS-DA) 
was performed to develop classification models to verify 
the presence of fresh grass in the animal diet, pasture 
grazing and organic/biodynamic management system. In 
a PLS-DA model, new variables (latent variables or fac-
tors) are created from the combination of the original var-
iables in order to find the maximum correlation between 
the new variables and the class variable and, as a result, 
the maximum separation among the classes. The perfor-
mance of the PLS-DA algorithm was assessed using a 
stratified random resampling approach including internal 
and external model validation as described in Tres et  al. 
[12]. Briefly, the resampling approach consisted in four 
steps as follows: (i) A training set (75 % of the samples of 
each class) is randomly selected and the data processed, 
(ii) the optimal number of latent variables is computed 
using the routine of Boulesteix [13], (iii) the preproc-
essed dataset is cross-validated and (iv) the optimized 
model is validated with the test set (the remaining 25 % of 
the samples). These four steps were repeated 300 times. 
Thus, 300 data subsets were created, and each of them 
was subjected to the three data preprocessing techniques, 
namely mean-centering, auto-scaling (scaling to unit vari-
ance) and direct orthogonal signal correction (DOSC). In 
DOSC, the information that is not related to the response 
variable (or class membership) is largely ignored [14]. 
Then, each of the 900 models was internally and exter-
nally validated. The optimal number of latent variables to 
be included in each model was selected in order to give 
the least number of misclassifications among the samples 
of the training set. Sensitivity (i.e., % of samples of class 
1 correctly assigned to the class 1) and the specificity 
(i.e., % of samples of class 2 correctly assigned to class 2) 
were calculated for the training and the validation set and 
then averaged on the whole procedure yielding mean sen-
sitivity and specificity. A variable selection approach was 
used to identify which variable (TAG) most contributed 
to the PLS-DA classification models as described in Tres 
et al. [12]. Finally, we assessed the frequency of misclas-
sification by determining the number of instances where 
each sample in the dataset was incorrectly classified dur-
ing external validation and dividing that number by the 
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number of instances where that sample was present in the 
external validation set.

R version 2.12.2 (www.R-project.org) [15] was used to 
develop the PLS-DA classification models using built-in 
functions and the package “pls.genomics” for various PLS-
DA algorithms. For DOSC preprocessing, the MATLAB 
code provided by the Biosystems Data Analysis Group of 
the University of Amsterdam (http://www.bdagroup.nl/) 
was rewritten to R code.

Results and discussion

TAG composition of milk

A total of 16 TAG groups plus cholesterol were quanti-
fied by GC–FID. Each TAG group is constituted by all 
the triglycerides with a certain total number of acyl car-
bon number (similar molecular weight), e.g., CN54 is the 
sum of all the TAG containing 54 acyl carbon atoms. The 
chromatographic method that was used cannot resolve 
a TAG group in its individual triglycerides components. 
The average TAG composition was in agreement with lit-
erature data [16]. The TAG profiles that were obtained in 
this study were bimodal, which is typical of cows’ milk, 
with clear maxima at CN38 and CN50 (Table 1). The most 
abundant TAGs (expressed as mean  ±  SD) were CN38 
(13.16 ± 0.38 g 100 g fat−1), C36 (11.17 ± 0.79 g 100 g 
fat−1), CN40 (10.42  ±  0.45  g 100  g fat−1) and CN50 
(10.45 ± 0.95 g 100 g fat−1). The average cholesterol con-
tent was 0.37 ± 0.03 g 100 g fat−1 which was higher than 
reported in European bulk milk by Precht [17] but in line 
with other literature data [18]. Significant positive correla-
tions were found between TAGs within each of the groups 
CN26–30 (r  >  0.804, p  =  0.000), CN32–36 (r  >  0.559, 
p = 0.000), CN42–46 (r > 0.609, p = 0.000) and CN50–54 
(r > 0.731, p = 0.000) and significant negative correlation 
between any TAG from the groups CN50–54 and any TAG 
from groups CN32–36 (r  >  0.560, p =  0.000), CN42–46 
(r > 0.445, p = 0.000) as well as between CN50 and any 
TAG from groups CN26–30 (r > 0.438, p = 0.000). Cho-
lesterol content was significantly correlated only with 
the content in CN24 (r  =  0.451, p  =  0.000) and CN38 
(r = −0.311, p =  0.01). A relatively higher positive cor-
relation between cholesterol content and short-chained tri-
glycerides, especially CN26, CN28 and CN30, has been 
previously reported [17] which was not observed in the pre-
sent study.

Exploring the TAGs data: PCA and inferential statistics

First, a PCA model was created to check natural cluster-
ing in the data and the presence of outliers. The data matrix 

consisted of 113 rows (samples) and 17 variables (16 TAG 
groups and cholesterol). The first two principal components 
(PCs) explain approximately 76  % of the total variance. 
The PCA scores plot of the auto-scaled data is depicted in 
Fig. 1a. From the visual inspection of the PCA scores plot, 
the most clear difference was between milk samples col-
lected in February and those collected in spring–early sum-
mer. Winter samples are mostly enclosed in the SE quadrant 
with positive scores along PC 1 and negative scores along 
PC 2. In Fig. 1b, the PCA loadings plot visually illustrates 
the correlations among TAGs and TAG groups discussed in 
“TAG composition of milk” section and the compositional 
differences among the different groups. The outcome of the 
PCA analysis is confirmed by the results of the Kruskal–
Wallis test reported in Table 2. The distribution of 12 TAGs 

Fig. 1   First and second principal components of the PCA scores 
plot (panel a) and PCA loadings plot (panel b) of triacylglycerols 
profile  +  cholesterol (auto-scaled data) for farm milk samples (the 
amount of explained variance is provided in parenthesis). Group 
GI = milk from cows that have been fed grass indoors; GP1 = milk 
from cows that have been on pasture 6–9 h per day; GP2 = milk from 
cows that have been on pasture >19  h per day; NGI  =  milk from 
cows not fed fresh grass collected in spring–early summer; W = milk 
collected in winter; ORG = organic milk samples; BD = biodynamic 
milk samples

http://www.R-project.org
http://www.bdagroup.nl/
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as well as of cholesterol is significantly different among 
the 5 groups. The distribution of 11 TAGs and cholesterol 
is significantly different between the samples collected in 
February and at least one of the groups of milk samples 
collected in spring–early summer.

Seasonal differences in TAG profile has been already 
reported in the scientific literature [4–6]. Differences in 
animals diet are responsible for the observed differences 
with feeding regime implements in spring–early summer 
richer in grass related feeding, e.g., fresh grass and grass 
silage compared to feeding regime implemented in winter. 
In winter, when fresh grass is not available, maize silage 
and concentrates make up most of the animals daily ration. 
The different content in CN54 was especially expected. The 
CN54 group is almost exclusively made up of triglycerides 
incorporating three C18 FA [19] which content is higher 
in milk from cows fed fresh grass because of α-linolenic 
acid being the predominant FA in fresh grass [20, 21]. 
Similarly, TAG CN52 is also made up of triglycerides 
that contains two C18 FAs, and thus, its relative content is 
expected to be higher in spring–early summer milk. The 
medium molecular weight triglycerides CN34 and CN36 
incorporate mostly short- and medium-chain saturated 
FAs (butyric, myristic, palmitic) and stearic acid which 

concentration is higher in winter [16]. It is thus not sur-
prising that those TAG groups were higher in winter milk. 
Finally, TAG CN42–46 were also more abundant in winter 
milk compared to spring–early summer milk. According to 
Gresti et al. [19], those TAG are mainly made up of a satu-
rated FA esterified in C1, a saturated FA (mainly palmitic 
acid) or oleic acid in C-2 and mostly oleic acid in C-3. To 
visually illustrate the correlation between the TAG and the 
FAs content in our samples, a PCA model was created with 
the combined TAG and FA data. The PCA loadings plot is 
reported in Fig. 2. The first two PCs explain almost 50 % of 
the total variance. Variables that are close in the PCA load-
ings plot, especially along the first component, are highly 
correlated. Figure 2 shows that TAG50–54 are highly posi-
tively correlated with oleic acid (cis-9 C18:1) and stearic 
acid (C18:0) and negatively correlated with short-chain 
saturated fatty acids; CN30–34 and CN42–44 are highly 
positively correlated with short-chain saturated FAs (C6:0-
C12:0), whereas CN34, CN36 and CN44 are highly posi-
tively correlated with myristic acid (C14:0). Finally, CN40 
is highly positively correlated with several long-chain poly-
unsaturated FAs and negatively correlated with palmitic 
acid (C16:0).

Interestingly, cholesterol content was higher in spring–
early summer compared to winter milk, whereas no effect 
of fresh grass feeding/pasture was observed. A decrease 
in milk cholesterol under energetic underfeeding condi-
tions and during the pasture period has been reported [17]. 
Conversely, a mean cholesterol content of 310  mg 100  g 
lipids−1 in German summer milk compared to 240  mg 
100 g lipids−1 winter summer milk was also reported [22].

Since the presence of fresh grass and pasture grazing 
are among the causes for the differences in the TAG pro-
file between spring–early summer and winter samples, we 
expected to find analogous differences between the milk 

Table 2   Triacylglycerols composition (g 100 g fat−1) in the group GI 
(milk from cows that have been fed grass indoors), GP1 (milk from 
cows that have not outdoors on pasture 6–9  h per day), GP2 (milk 
from cows that have not outdoors on pasture >19  h per day), NGI 
(milk from cows not fed fresh grass collected in spring) and W (sam-
ples collected in winter)

Different letters within a row indicate significant difference among 
triacylglycerols distribution within the 5 groups (Kruskal–Wallis test 
for groups comparisons, p ≤ 0.05)

TG GI GP1 GP2 NGI W

CN24 0.09ab 0.09a 0.10a 0.10a 0.08b

Cholesterol 0.38a 0.37a 0.38a 0.37ab 0.35b

CN26 0.31ab 0.32a 0.33a 0.31ab 0.28b

CN28 0.70 0.72 0.73 0.72 0.66

CN30 1.28 1.28 1.31 1.34 1.25

CN32 2.60 2.58 2.63 2.72 2.71

CN34 5.98ab 5.84a 5.89ac 6.34bc 6.56b

CN36 10.96ab 10.70b 10.66b 11.49ac 11.93c

CN38 13.30b 13.15ab 12.93a 13.28b 13.20ab

CN40 10.53ab 10.61ab 10.64a 10.30bd 10.07cd

CN42 7.43ab 7.27a 7.48ab 7.64ab 7.86b

CN44 7.23a 7.06a 7.26a 7.50ab 7.95b

CN46 8.23a 8.14a 8.33a 8.47a 8.94b

CN48 9.81 9.80 9.91 9.91 10.13

CN50 10.61ab 10.82a 10.69a 10.32ab 9.91b

CN52 7.83ab 8.26a 7.87ab 7.03bd 6.29cd

CN54 2.74ab 2.98a 2.88a 2.18bc 1.81c

Fig. 2   First and second principal components of the PCA loadings 
plot of triacylglycerols  +  cholesterol and fatty acid profiles (auto-
scaled data, the amount of explained variance is provided in parenthe-
sis). *Sum of all trans-C18:1 fatty acids; **cis-9, trans-11 conjugated 
linoleic acid
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samples from cows with and without fresh grass in their 
daily ration collected in spring–early summer. From the 
PCA scores plot of Fig. 1, it appears that an extensive over-
lap occurs between group NGI and groups GP1 and GP2. 
From Table  2, it can be inferred that the distributions of 
CN36 and CN54 are significantly different in groups GP1 
and GP2 compared to group NGI. The distributions of two 
TAGs, namely CN34 and CN52, were significantly differ-
ent between groups GP1 and NGI, whereas the distribution 
of CN38 and CN40 was significantly different between 
groups GP2 and NGI. The higher content in CN52 and 
CN54 and the lower content in CN34, CN36 and CN38 
in the milk of cows with fresh grass in the diet is consist-
ent with a diet rich in fresh grass compared to milk from 
cows without fresh grass as discussed above. From Fig. 1a 
and Table 2, it is evident that the differences between milk 
from cows on pasture and spring–early summer milk from 
cows indoors without fresh grass in the daily ration are less 
remarkable than those between winter and spring–early 
summer milk. This would indicate that the seasonal dif-
ferences observed in the TAG profile are not exclusively 
related to the presence/absence of fresh grass in the diet 
but relate to the animal diet in a more complex way, for 
example to the presence of grass silage in the spring–early 
summer diet and higher concentrates and maize silage in 
the winter diet. When milk from cows with fresh grass in 
the diet was considered, no difference appears in the PCA 
scores plot between group GP1 and GP2 which is also con-
firmed by the results reported in Table  2 (no TAG distri-
bution was significantly different between the two groups 
from their pairwise comparison), nor within group GI and 
group GP1 or GP2. In the PCA scores plot of Fig. 1a, the 
organic/biodynamic milk samples are also indicated. In the 
plot, the organic/biodynamic samples are mostly mixed 
with the conventional samples and do not form a distinct 
cluster which suggest limited differences between the two 
management systems.

The sample set constituted by the samples collected in 
winter was also subjected to an independent multivariate 
analysis. A PCA model was created with the 29 samples 
collected in February. The PCA scores of the first two PCs 
plot did not show any clear clustering of the samples. The 
four samples from organic/biodynamic farms were quite 
distant from the main sample cloud, but they were scattered 
over the PCA scores plot and did not form a homogene-
ous group. However, a moderate discrimination between 
milk from farms with cows on pasture during spring–early 
summer and milk from farms implementing an indoors 
management system year-round can be observed along 
the third PC (Fig.  3). Cholesterol and CN24 showed the 
highest loadings along that component, whereas CN36 
and CN38 showed the lowest. This difference would sug-
gest that milk fat from grazing cows shows differences 

not only in spring–early summer but year-round. Consist-
ent differences in the feeding strategies between the two 
housing systems were observed, with lower ratio of grass 
silage + hay relative to concentrate + maize in those farms 
implementing zero-grazing systems year-round.

Binary classification models

One of the aims of the present study was to investigate the 
possibility to exploit the variability in TAG profile induced 
by diet for authentication purposes. In particular, three inde-
pendent sets of binary classification models were created to 
predict whether a new unknown milk sample (1) was from 
cows that have been fed fresh grass or not, (2) was from 
cows that have been kept indoors or grazing on pasture and 
(3) was from conventional or organic/biodynamic farming.

In the first set of PLS-DA models, the samples of group 
NGI and W were pooled in the class NO GRASS, whereas 
the remaining three groups were pooled in the class 
GRASS. The three preprocessing techniques gave very 
similar results, with auto-scaling and DOSC giving sensi-
tivity (% of corrected classification in group GRASS) and 
specificity (% of correct classification in class NO GRASS) 
values of 95 and 91  % in internal validation and 91 and 
86 % in external validation which makes the performance 
of the PLS-DA model satisfactorily (Table  3). However, 
when the results are recalculated over the spring–early 
summer samples only, a specificity of 72 % was achieved, 
whereas the sensitivity was not affected since milk samples 
from grass-fed cows were obviously all collected in spring–
early summer. This in fact limits the practical applicability 
of this approach for the verification of fresh grass feeding. 
The first five variables (TAGs) that contributed most to the 
discrimination between the classes in the PLS-DA models 

Fig. 3   First and third principal components of the PCA scores plot of 
triacylglycerols profile +  cholesterol (auto-scaled data) for 29 farm 
milk samples collected in February (the amount of explained variance 
is provided in parenthesis)
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were: CN36, CN54, CN52, CN40 and CN34. The results of 
this analysis are in agreement with the outcome of the PCA 
analysis described in “Exploring the TAGs data: PCA and 
inferential statistics” section and depicted in the PCA load-
ings plot in Fig. 1b.

The second set of PLS-DA classification models was 
created for the discrimination between milk samples 
according to whether or not cows have been grazing on 
pasture. Groups NGI, W and GI were grouped in the class 
INDOORS and groups GP1 and GP2 in the class PAS-
TURE. The DOSC preprocessing of the data proved more 
satisfactorily in terms of sensitivity and specificity com-
pared to mean-centering and auto-scaling (Table 3). Over-
all, the discrimination between milk from cows on pasture 
or indoors is less accurate than the discrimination between 
milk from cows with or without fresh grass in the diet. An 
average percentage of correct prediction of 93 and 90  % 
in internal validation and 84 and 81 % in external valida-
tion was achieved. Also in this case, when the prediction is 

limited to the spring–early summer samples, the specificity 
values further reduce to approximately 63 % that make the 
approach of limited use in practice. The analysis of the mis-
classified samples showed that, within the class INDOORS, 
the frequency of misclassification was much higher for 
milk from cows fed fresh grass indoors (group GI) com-
pared to the milk from cows without fresh grass (group 
NGI). This was expected because TAG profile of samples 
of group GI was on average more similar to that of milk 
from cows on pasture compared to stabled cows (Fig. 1a).

For the verification of the organic/biodynamic manage-
ment system, since remarkable differences exist between 
the feeding regime implemented in spring–early summer 
and that implemented in winter, only milk samples col-
lected in spring–early summer were included in the binary 
classification models. A set of binary classification mod-
els with samples collected in winter was not developed 
because of the limited number of samples collected in 
February. From Table 3, it appears that the DOSC preproc-
essing of the data gave the best prediction results in inter-
nal and external validation compared to auto-scaling and 
mean-centering. However, it is clear from the low specific-
ity values in external validation (60 %) that the correct clas-
sification of the organic/biodynamic milk samples was dif-
ficult. We already reported the results of a PLS-DA model 
for the discrimination between organic and conventional 
bovine farm milks [23]. In that study, 85 and 89 % of the 
organic and conventional samples were correctly classified 
by the model in internal validation, which is comparable 
to the results obtained in the present study, but no external 
validation of the PLS-DA model was performed.

Conclusions

In the present study, we provided insight into the effect 
of fresh grass feeding, pasture grazing and organic/biody-
namic farming on bovine farm milk TAG profile. We dem-
onstrated that winter farm milk showed a TAG profile that 
was remarkably different from that of spring–early summer 
milk because of the seasonal differences in feeding strate-
gies. In spring–early summer, fresh grass feeding and pas-
ture grazing contributed to the differences in the TAG pro-
file between milk from stabled cows and milk from cows 
on pasture, increasing the relative concentrations of CN52, 
CN54 and CN40 in the latter. PLS-DA binary classifica-
tion model appeared to be successful in the prediction of 
the presence of fresh grass in the animal’s diet, with sen-
sitivity and specificity values ≈90 % when milk collected 
in spring–early summer, and winter was considered but 
the specificity values drastically reduced to 72 % when the 
prediction was limited only to samples collected in spring–
early summer. The difference in the TAG profile of milk 

Table 3   Mean sensitivity and specificity of PLS-DA models during 
internal and external validation established from 300 realizations of 
the PLS-DA model using several methods of data preprocessing

Preprocessing Mean sensitivity (%) Mean specificity (%)

Model 1: Fresh grass versus no fresh grass

 Internal validation

  Mean-centering 93 90

  Auto-scaling 95 91

  DOSC 95 91

 External validation

  Mean-centering 90 85

  Auto-scaling 90 86

  DOSC 91 85

Model 2: Pasture grazing versus indoors feeding

 Internal validation

  Mean-centering 90 87

  Auto-scaling 90 85

  DOSC 93 90

 External validation

  Mean-centering 82 81

  Auto-scaling 82 80

  DOSC 84 81

Model 3: organic/biodynamic farming versus conventional farming

 Internal validation

  Mean-centering 96 79

  Auto-scaling 96 82

  DOSC 97 90

 External validation

  Mean-centering 91 57

  Auto-scaling 90 56

  DOSC 89 60
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from cows indoors and that from cows on pasture is related 
to the different share of fresh grass in the animals’ diet. The 
authentication of pasture grazing based on TAG profile is 
therefore less accurate than the authentication of fresh grass 
feeding because of the possibility of feeding fresh grass to 
cows indoors. Analogously, authentication of organic farm-
ing seems to be limitedly feasible based on TAG profiles in 
spring–early summer or in winter. It is possible that more 
detailed information on triglyceride composition such as, 
for instance, milk fat fractionation into more specific tria-
cylglycerol classes on the basis of molecular weight and 
degree of unsaturation or even the separation of individual 
triglycerides may provide more insight into the animal diet/
farming systems.
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