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Abstract 1H nuclear magnetic resonance (NMR) spec-

troscopy was utilized to distinguish the brands of rapeseed

oils. As there are more than four hundreds of NMR vari-

ables which can cause the discrimination model redun-

dancy, it is necessary to do effective variable selection.

Successive projections algorithm (SPA) executed on the

full spectrum only improved a few correct answer rate

(CAR) and Cohen’s kappa coefficient (K) compared to full

spectrum-least-square support vector machine (LS-SVM)

model. The better results of uninformative variable elimi-

nation (UVE)-based SPA calculation show that it is nec-

essary to do UVE before SPA. Because the cutoff threshold

selection in UVE algorithm using an artificial random noise

cannot obtain the optimal results, we applied simulated

annealing (SA) algorithm to estimate the optimal cutoff

threshold. The discrimination results show that UVE-SA

did better works than conventional UVE. Only 13 variables

were obtained by UVE-SA-SPA while the conventional

UVE-based SPA selected 77 variables. The best 97.5%

CAR and K of 0.967 result of UVE-SPA-LS-SVM model

show that it is feasible to distinguish different brands of

rapeseed oils using 1H NMR spectra. It shows that a

combination of SA, UVE, and SPA is effective method for

the classification of rapeseed oils. Final result shows that

all acyl chains, linolenyl and linoleyl chains, and triglyc-

erides were most important for the classification.
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Introduction

1H nuclear magnetic resonance (NMR) is the application of

NMR spectroscopy with respect to hydrogen-1 nuclei

within the molecules of a substance, in order to determine

the structure of its molecules. In sample analytes where

natural hydrogen (H) is used, practically all of the hydro-

gen from the analyte consists of the isotope 1H (hydrogen-

1; i.e., having a proton for a nucleus). Some researchers did

quantitative analysis using NMR spectroscopy [1–7].

However, the calibration methods they used were almost

based on the whole spectral range. They did not take into

account that some spectral regions might not contain useful

information about the chemical variations in the samples

and should be eliminated.

Because the 1H NMR instrumentations usually have a

high resolution, their obtained 1H NMR spectral data sets

often contain hundreds of variables. Thus, with these so

many variables and hundreds of samples, spectral data

are too complicated to be calibrated directly. The
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calibration process is time-consuming and not convenient

to fulfill the high-speed features of spectroscopy. How-

ever, the calibration methods the above-mentioned

researches used were almost based on the whole spectral

range. They did not take into account that some spectral

regions might not contain useful information about the

chemical variations in the samples. Thus, it is important

to select specific variables which contain useful infor-

mation. More stable model with superior interpretability

can be generated, and this can produce the lowest pre-

diction error.

Developing a calibration model involves a decision on

which wavelengths to be used to establish an optimal

model. Some wavelengths or wavelength bands may con-

tain useless or irrelevant information like noise and back-

ground which can worsen the predictive ability of the

model. The elimination of irrelevant variables can predi-

gest calibration modeling and improve the results in terms

of accuracy and robustness. Better calibration model may

be obtained by selecting characteristic information such as

sample-specific or component-specific variables instead of

the full spectra. Recently, both theoretical [8] and experi-

mental evidence [9] have proved that characteristic wave-

lengths instead of full spectra can improve quantitative

results [10, 11]. Specific regions can generate more stable

models with good interpretability [12]. Thus, it is important

to select specific variables which contain useful informa-

tion. More stable model with superior interpretability can

be generated, and this can produce the lower prediction

error.

Successive projections algorithm (SPA) is a novelty

variable selection algorithm in order to solve the collin-

earity problems. It selects variables with minimally

redundant. SPA employs a simple projection operation in a

vector space to select subsets of variables with minimum of

collinearity [13]. SPA can provide more reproducible

results than genetic algorithm [14]. However, the SPA

operation is time-consuming when the whole 1H NMR

spectra which usually have hundreds of variables were

calculated. Moreover, its selected variables may be with

low signal noise ratio (S/N) or useless for multivariate

calibration, which can affect model precision of prediction

[15]. Thus, it might be possible to improve the calibration

model when SPA is followed to select variables which

have minimum redundant information from the informative

variables with high S/N.

Uninformative variable elimination (UVE) is another

novelty variable selection method based on the stability

analysis of partial least-square (PLS) regression coeffi-

cient [16]. UVE can eliminate the variables which have

no more informative variables for modeling than noise.

Employing the selected variables by UVE for modeling

can avoid a model over-fitting and usually improve its

predictive ability. In UVE process, wavelength variable

whose absolute number of stability value is larger than a

cutoff threshold is retained. The cutoff threshold is eval-

uated by the maximum of absolute stability value of an

artificial random variable matrix with very small ampli-

tude [15–17]. However, there is a stochastic way for

evaluating the cutoff threshold, which is not easy to find

the optimal cutoff threshold and results in a defect in the

UVE algorithm. Therefore, we proposed the simulated

annealing (SA) algorithm to estimate the optimal cutoff

threshold of UVE, instead of using an artificial random

noise.

Rapeseed (Brassica napus), also known as canola, is a

bright yellow flowering member of the family Brassica-

ceae. Rapeseed is grown for the production of animal

feed, vegetable oil for human consumption, and biodiesel.

Rapeseed oil contains both omega-6 and omega-3 fatty

acids in a ratio of 2:1 and is second only to flax oil in

omega-3 fatty acid. Rapeseed oil’s proponents claim that

it is one of the most heart-healthy oils and has been

reported to reduce cholesterol levels, lower serum tri-

glyceride levels and keep platelets from sticking together.

Recently, rapeseed oil consumption increases quickly in

the Chinese rapeseed oil market. However, to make

enormous profits, some factories produce inferior rape-

seed oil that contains insufficient or superfluous nutri-

tional contents. Others mix brands of rapeseed oil of

different qualities, such as by packing a rapeseed oil

belonging to a conventional brand in the packaging of a

high-grade brand. These behaviors badly infringe on the

rights and interests of consumers. These illegal behaviors

could be avoided if a fast and accurate analytical method

were in place to determine the brands and quality of

rapeseed oil. Consumers conventionally judge the quality

of a rapeseed oil by color and smell which are subjective

and less accurate. A chemical analysis and a physical

property assessment are routinely performed in the com-

mercial trading of rapeseed oil. However, the processes of

chemical methods are complex, destructive, and profes-

sional. In practice, only a small number of samples can be

measured. It always takes long time to obtain the testing

result for one sample from the preparation to the end [18].

The use of chemical reagents is a problem against to the

sample safety and low cost. Therefore, the need exists for

a rapid and nondestructive method that is suitable for

screening rapeseed oil, at least for authenticity informa-

tion such as brand and quality.

In this study, we studied the feasibility of the discrimi-

nation of rapeseed oil using 1H NMR spectroscopy. A

hybrid variable selection algorithm composed of UVE-SA

and SPA was utilized to select optimal 1H NMR spectral

variables. UVE-SA was operated before SPA procedure to

improve the discrimination results.
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Theory and algorithms

Successive projections algorithm (SPA)

SPA is a forward variable selection method for multivariate

calibration [13, 19, 20], its purpose is to select wavelengths

whose information content is small collinearity. The main

procedures are summarized here. First, the maximum

number of variables N is set. Subsequently, a start vector

(the first wavelength x(j)) is chosen, and calculate the

projection of on the subspace orthogonal to the remaining

wavelengths, the wavelength of higher projection is

selected and becoming the new starting wavelength, so this

new starting is small collinearity to the previous wave-

length. This step is iterated until the number of selected

wavelengths reaches the optimal number of variables (K).

In the SPA, the optimal initial variable and number of

variables can be determined on basis of the smallest root

mean squared error of prediction in validation set of MLR

calibration. The details of SPA could be found in the lit-

eratures [13, 19, 20].

Conventional uninformative variable elimination

(UVE)

The UVE method was put forward in reference [16]. In the

conventional uninformative variable elimination method,

PLS regression is performed on instrumental response data

X and property values (y) of calibration, the optimal latent

variable number is calculated firstly, and then, a noise

matrix N(n 9 p) with very small amplitude (e.g. 10-10) is

generated and append to the X matrix, forming an extended

matrix Z(n 9 2p) (with twice as many variables as the X

matrix). Finally,the PLS model is computed on the matrix

Z, and the regression coefficient matrix b = [b1, …, bp] of

model is calculated through a leave-one-out validation

[16]; the reliability of each variable is quantitatively

measured according to its stability. The stability of variable

j can be calculated as:

sj ¼ meanðbjÞ=stdðbjÞ ð1Þ

In this equation, mean(bj) and std(bj) are the mean and

standard deviation of the regression coefficients of variable

j. The larger the absolute stability, the more important the

corresponding variables is. It is obvious that any variables

whose stability is less than that of noise variables should be

known as uninformative and be eliminated. Usually the

cutoff threshold is calculated as:

cutoff ¼ k �maxðabsðSnoiseÞÞ ð2Þ

In the definition, k is an arbitrary value, in our work, we

used k = 0.9. The detailed descriptions of UVE are given

in Ref. [16, 17].

Simulated annealing (SA) algorithm

SA algorithm is a simulation of the annealing process used

for metals, its potential as a general combinatorial search

method was put forward by Kirkpatrick et al. [21]; it was

originally developed as a simulation model for physical

annealing process, and hence, it is referred to as simulated

annealing. SA algorithm belongs to the class of iterative

improvement strategies, which allows occasional worsen-

ing moves so that these can prevent the algorithm freezing

in local optimum. The acceptance criterion of the wors-

ening s move is determined by probability:

pðDFÞ ¼ exp
�DF

T

� �
ð3Þ

where DF is the change in the energy value from one point

to the next, T is temperature (control parameter), this

equation is popularly referred to as the Metropolis criterion

[22]. In the SA algorithm, if temperature T is lowered

sufficiently, no further changes in the solution space are

possible. The detailed descriptions of SA algorithm are

given in Ref. [21, 23, 24]. Therefore, due to the merit of SA

algorithm, it was employed to search for the optimal cutoff

threshold for UVE.

Simulated algorithm-based uninformative variable

elimination

On the combination of the UVE method and SA algorithms

(UVE-SA), a new method is developed for variable

selection in NMR modeling. In the UVE-SA method, the

stability of each variable was calculated in PLS model as

the first step. Then, instead of adding artificial random

noise variables to the original data matrix for the estimate

the cutoff threshold, SA algorithm is employed to select

optimal cutoff threshold. Finally, according to obtained

cutoff threshold, the variables are selected for the further

calculation. On the aspect of cutoff threshold value selec-

tion, the obvious advantage of the UVE-SA method

excludes the shortcoming of selecting the cutoff threshold

value experientially.

Chemometric calibration methods

LS-SVM is an optimized algorithm based on the standard

support vector machine. As giving a good performance

under general smoothness assumptions on handling the

nonlinear relationships between the spectra and target

attributes, RBF kernel was used in this study. Grid-search

technique was applied to find out the optimal parameter

values which include regularization parameter gam (c) and

the RBF kernel function parameter sig2 (r2). In this study,

these parameters were optimized with values of c in the
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range of 2-1–210 and r2 in the range of 2–215 with ade-

quate increments. These ranges were chosen from previous

studies where the magnitude of parameters to be optimized

was established. For each combination of c and r2

parameters, the root mean square error of cross-validation

(RMSECV) was calculated and the optimum parameters

were selected when produced smaller RMSECV. The

details of LS-SVM description could be found in the lit-

erature [25].

Model evaluation standard

In this study, the performances of all the established

spectral models were evaluated in terms of two parameters,

namely correct answer rate (CAR) and Cohen’s kappa

coefficient. CAR is the common used simple percent cal-

culation. Cohen’s kappa coefficient (K) is a statistical

measure of inter-rater agreement for qualitative (categori-

cal) items [26]. It is generally thought to be a more robust

measure than simple percent agreement calculation. In this

study, K was calculated between referenced brand and

classified brand. Landis and Koch gave the following

interpretation: K \ 0.00 means no agreement, K between

0.00 and 0.20 means slight agreement, K between 0.21 and

0.40 means fair agreement, K between 0.41 and 0.60 means

moderate agreement, K between 0.61 and 0.80 means

substantial agreement, and K between 0.81 and 1.00 means

almost perfect agreement [26].

Experiment and calculation

Rapeseed oil samples

In the present work, four brands of rapeseed oil were

prepared for the experiment. All of these brands are pop-

ular in Chinese markets. Finally, 120 samples of rapeseed

oil samples were obtained. Each brand has thirty samples.

In order to obtain a 2:1 division of calibration/prediction

spectra, the four samples of every six samples are selected

into the calibration set. Finally, the calibration set contains

80 samples, and other 40 samples constitute the prediction

set.

1H NMR spectra measurement

Hundred microliter of the bulk oil was dissolved in 600 lL

of deuterated chloroform, shaken in a vortex, and placed

in a 5-mm NMR capillary. The 1H NMR spectra were

recorded on a Bruker AVANCE 300 spectrometer operat-

ing at 300.13 MHz for the proton nucleus at 300 K. The

experiments were carried out to obtain 1H NMR spectra

with the following acquisition parameters: time domain,

32 K; 90� pulse width, 11 ls, spectral width, 12 ppm;

relaxation delay, 2 s. Sixteen scans and four dummy scans

were accumulated for each free induction decay. Baseline

correction was performed carefully by applying a polyno-

mial fourth order function in order to achieve a quantitative

evaluation of all signals of interest. The spectra were

acquired without spinning the NMR tube in order to avoid

artificial signals, such as spinning sidebands of the first or

higher order. The 1H NMR spectra (d 0.5–5.5) were divi-

ded into regions with equal width of 0.004 ppm using

AMIX (v. 3.8, Bruker Biospin) after phase and baseline

corrections.

Determination of SA algorithm parameters

In this work, initial temperature TI of the SA algorithm was

100 and the termination temperature Ts was 0. Student’s t-

distribution was employed to generate a new solution in the

SA algorithm. The random disturbance can be regarded as

the jumping of the optimal model. The metropolis criterion

was used to determine whether a new point was acceptable

or not by calculating the difference of function values at

the current point and the new point [27]. The annealing

schedule behaves exponentially, which updates the current

temperature based on the following formula:

Tnþ1 ¼ 0:95kTn ð4Þ

where, the parameter k is the number of evaluations of the

objective function.

In general, there are two stopping rules; The first one

works when the number of temperature transitions satisfies

the temperature termination rules, while the second rule

takes effects when the neighbor solution is not improved

after a certain period [27]. In our strategy, the algorithm

stopped when the average change on the value of the fitness

function at the current point was less than 10-6 after 300

iterations. In this work, all calculation was executed in

MATLAB 7.6 (The Math Works, Natick, USA).

Results and discussion

Overview of the spectra

The typical 1H NMR spectrum of rapeseed oil is shown in

Fig. 1. It shows some typical peaks of rapeseed oil. Peak 1

was CH=CH which was attributed to all unsaturated fatty

acids. Peak 2 was CH–OCOR, and peak 3 was CH2–

OCOR. Both of them were attributed to triglycerides. Peak

4 was CH=CH–CH2–CH=CH which was attributed to lin-

olenyl and linoleyl chains. Peak 5 was CH2-COOH, peak 7

was CH2-CH2COOH, and peak 8 was (CH2)n. All of them

were attributed to all acyl chains. Peak 6 was CH2–CH=CH
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which was all unsaturated acyl chains. Peak 9 was

CH=CH–CH2–CH3 which was attributed to linolenyl

chain. Peak 10 was CH2CH2CH2–CH3 which was attrib-

uted to all acyl chains except linolenyl.

Full-spectra analysis

From Fig. 1, it could be seen that there are no other peaks

except peak 1 to 10. Therefore, spectra chemical shifts

whose values are close to zero were eliminated before data

analysis. The remaining chemical shifts have 557 variables.

An LS-SVM-based discrimination model was established

based on these variables. A good performance of 85.0%

CAR and K of 0.800 was obtained. The K values show the

agreement between referenced brand and classified brand is

good. Each four brands of rapeseed oils can be mostly

classified. However, the CAR is not enough high for the

industry application. It can be seen that there are more than

five hundreds of variables calculated in the full-spectra

model, where some wavelengths which contain irrelevant

information were considered. These wavelengths can

worsen the predictive ability of the model. Variable

selections can let the model more interpretable. More

simple calibration model may be obtained by selecting

characteristic information such as sample-specific or

component-specific variables instead of the full spectra.

SPA calculation directly based on the full spectrum

SPA was carried out on selecting effective variables from

the full spectra. Figure 2 shows the RMSE scree plot

obtained by SPA based on the whole spectra. The solid

square shows the selected variable numbers. As can be

seen, a sharp fall is shown in the starting part of the RMSE

curve as the numbers of selected variables were from one

to fourteen. Then, the trends of RMSE curves become

marginal with further increasing number of selected vari-

ables. The curve tends to level off after the determination

of selected variables by the SPA cutoff threshold procedure

by F-test criterion with a = 0.25 [15]. Finally, 72 variables

(RMSE = 0.016072) were selected.

The selected 72 variables were set as the input variables

of LS-SVM model for the discrimination. After the vari-

able selection using SPA, the variable numbers were much

reduced (72 vs. 460). CAR of 87.5% and K of 0.833 were

obtained. However, based on the selected variables, the

performance of SPA-LS-SVM model only little increased

compared to full spectrum-LS-SVM model. The reason of

little improvement might be because the SPA process

operated on the whole spectra caused the selected variables

with low S/N [15]. Moreover, the SPA operation based on

the whole spectra with hundreds of variables is time-con-

suming. Thus, it might be possible to reduce the SPA

calculation time and improve the SPA performance by

eliminating uninformative variables before SPA.

Uninformative variable elimination process

In the process of UVE, different LV numbers of the PLS

model in UVE process were compared. The numbers of

LVs were calculated from one to thirty. Full cross-valida-

tion was used in UVE to prevent overfitting problems. The

smallest RMSECV values were obtained based on fifteen

LVs. Figure 3 shows the stability of each wavelength

variables based on the fifteen LVs. Wavelength variables

are at the left of the vertical line, while random variables

are at the right side. Two horizontal lines show the lower

and upper cutoff thresholds. The variables whose stability

is within the cutoff threshold lines should be treated as

uninformative and be eliminated. On the basis of optimal

LVs, 132 variables were selected from 460 full-spectral

variables.

Fig. 1 Typical 1H NMR spectrum of rapeseed oil

Fig. 2 RMSE scree plot of SPA operated based on the whole 1H

NMR spectra for the discrimination of rapeseed oil brands
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The selected variables by UVE were set as input vari-

ables of LS-SVM. Although there are more than three

hundreds of variables were eliminated, a good discrimi-

nation result of 90.0% CAR and K of 0.867 was obtained. It

could be seen that UVE can much eliminated uninforma-

tive variables. Therefore, after UVE process, the informa-

tive variables can be remained and the model’s

discrimination ability was increased.

However, as mentioned earlier, the cutoff threshold

selection using an artificial random noise cannot obtain the

optimal results and results in a defect in the UVE algo-

rithm. Therefore, we applied SA algorithm to estimate the

optimal cutoff threshold, instead of using an artificial

random noise.

SA-based UVE process

In UVE-SA method, the designed fitness function guides

the PLS model to obtain the optimal cutoff threshold.

Finally, the optimal cutoff threshold value was obtained as

75, and the best function value is 0.8682. Figure 3 shows

the stability obtained by the UVE (a) and UVE-SA (b). In

the Fig. 3, the cutoff threshold is shown by the dot lines.

Variables with their stability within the cutoff threshold are

eliminated. With a comparison of Fig. 3a, b, it can be seen

that the two stability curves are similar when the ampli-

tudes are not considered. The different amplitudes are

because of the extended noisy matrix which was used for

the stability calculation in the conventional UVE method.

On the contrary, the spectral data matrix is the only matrix

for the stability calculation in UVE-SA.

Further variable selection using SPA

After UVE analysis, variables with no more information

for modeling than noise were eliminated. Then, SPA was

operated based on the variables selected by conventional

UVE and UVE-SA, respectively. Finally, UVE-SPA

obtained 77 variables (RMSE = 0.00096138) based on

RMSE, and UVE-SA-SPA obtained 13 variables Fig. 4

shows the selected variables by UVE-SPA (a) and UVE-

Fig. 3 Stability of each variable in the conventional UVE (a) and

UVE-SA (b). Two horizontal lines indicate the lower and upper
cutoff threshold

Fig. 4 1H NMR plot of 77 variables by UVE-SPA (a) and 13

variables by UVE-SA-SPA (b) for the discrimination of rapeseed oil

brands. Black columns represent selected wavelength variables
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SA-SPA (b). Columns represent the selected wavelengths.

The curve shows the original spectrum. The selected

effective variables by UVE-SA-SPA in Fig. 4b show that

peaks 3, 4, 5, 7, and 8 are more important for the dis-

crimination, which shows that all acyl chains, triglycerides,

and linolenyl and linoleyl chains are the main components

for the discrimination.

The selected variables by UVE-SPA and UVE-SA-SPA

were separately set as input variables of LS-SVM. UVE-

SPA obtained 92.5% CAR and K of 0.900, and UVE-SA-

SPA obtained 97.5% CAR and K of 0.967. Their dis-

crimination results are improved compared to the full

spectrum-LS-SVM model and SPA-LS-SVM model.

Moreover, the SPA calculation operated on the UVE

selected variables is simpler than on the full spectrum, as

fewer variables were considered. Therefore, it shows that it

is necessary to operate UVE before SPA, which can both

reduce the calculation time and increase the model’s

performance.

Comparing the results of UVE-LS-SVM and UVE-SA-

LS-SVM and their further SPA calculations, it can be seen

that UVE-SA did better works than conventional UVE.

When SA was added for UVE calculation, UVE-SA

obtained K of 0.933 which is higher than conventional

UVE of 0.867 K. UVE-SA-SPA also better than UVE-SPA

on both CAR and K. Moreover, only 13 variables were

obtained by UVE-SA-SPA while the conventional UVE-

based SPA selected 77 variables. It shows that SPA can do

more effective variable selection according to SA-based

UVE. The best CAR of 97.5% and K of 0.967 were

obtained by UVE-SA-SPA-LS-SVM, and are suitable for

the industrial application. The results show that SPA can do

better discrimination based on UVE, and SA is helpful for

UVE to selection more informative variables.

Analysis of final selected variables

After the variable selection of UVE-SA-SPA, there were

13 variables remained, which were from peaks of 3, 4, 5, 7,

and 8. In order to find out the most important variables, the

performances of each variable, all the combination of each

two variables, and all the combination of each three vari-

ables were analyzed. When only one variable was used to

establish LS-SVM model, their CARs were between 27.5%

and 65.0%, which were not good. Therefore, it was not

possible to do the classification by only considering one

variable. When two variables were used, the best CAR of

87.5% was obtained by the combination of variables 1 and

11 and the combination of variables 8 and 11, respectively.

When three variables were considered, the best CAR of

95.0% was obtained by the combination of variables 1, 8,

and 11. The results show that variables of 1, 8, and 11 were

more important for the classification. Specifically, variable

1 was at peak 8 which was (CH2)n and attributed to all acyl

chains, variable 8 was at peak 4 which was CH=CH–CH2–

CH=CH and was attributed to linolenyl and linoleyl chains,

and variable 11 was at peak 3 which was CH2–OCOR and

attributed to triglycerides. As a conclusion, all acyl chains,

linolenyl and linoleyl chains, and triglycerides were most

important for the classification.

Conclusion

1H NMR spectroscopy was successfully utilized for the

discrimination of rapeseed oil. The result 97.5% CAR and

K of 0.967 by UVE-SPA-LS-SVM model shows that it is

feasible to distinguish different brands of rapeseed oils

using 1H NMR spectra. SPA executed on the full spectrum

was time-consuming and only improved a few CAR

compared to full spectrum-LS-SVM model. UVE was used

to eliminate uninformative variables and improve SPA’s

performance. The better results of UVE-based SPA cal-

culation show that it is necessary to do UVE before SPA,

which can both reduce the calculation time and increase the

model’s performance. Because the cutoff threshold selec-

tion in UVE algorithm using an artificial random noise

cannot obtain the optimal results and results in a defect, we

applied SA algorithm to estimate the optimal cutoff

threshold, instead of using an artificial random noise.

Finally, SPA obtained 77 and 13 effective variables,

respectively, based on conventional UVE and UVE-SA.

Comparing the results of UVE-LS-SVM and UVE-SA-LS-

SVM and their further SPA calculations, it can be seen that

UVE-SA did better works than conventional UVE. Only 13

variables were obtained by UVE-SA-SPA while the con-

ventional UVE-based SPA selected 77 variables. It shows

that SA algorithm is helpful for UVE to select more

informative variables and SPA can do more effective var-

iable selection according to SA-based UVE. Final result

shows that all acyl chains, linolenyl and linoleyl chains,

and triglycerides were most important for the classification.
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