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Abstract Ratings of visual characteristics of bread

crumb images obtained by panellists were correlated

with features obtained by digital fractal and texture

analysis and simple thresholding. Trained panellists

were asked to rate 168 bread crumb images on fineness,

homogeneity and degree of orientation, using contin-

uous line scales. The relative orientation of the main

and secondary peaks of the image power spectrum was

the only parameter related to the human perception of

the degree of crumb orientation. Single fractal

dimension terms correlated better with the panellists’

perception of grain fineness and homogeneity than the

single crumb features from thresholding. Second-order

polynomial models were significantly better (P < 0.01)

in most predictors than simple linear models. Grain

fineness was better approached by the method of

relative differential box-counting fractal dimension

(R2 = 0.822) whereas grain homogeneity was highly

related to the mass fractal dimension (R2 = 0.820).

Multiple linear models to estimate grain fineness with

higher predictive capacity included predictors such as

fractal dimension, mean intercellular distance and void

fraction (R2 > 0.860).

Keywords Bread crumb � Grain � Fractal dimension �
Coarseness � Homogeneity � Orientation � Panellists

Introduction

Several studies ([1–3], among others) have shown that

the development of an objective method to assess

bread crumb grain properties using image processing

techniques is useful not only from the point of view of

quality assessment but also for studies concerning

structural and mechanical properties [4–6]. For studies

embracing bread crumb acceptance or preference by

consumers, it is particularly desirable that the features

obtained from image analysis are able to reflect pan-

ellists’ ratings of bread crumb quality.

In this sense, a number of researches have attempted

to predict panellists’ ratings of bread crumb visual

texture from image features. Zayas [7] extracted tex-

tural features from co-occurrence matrices along with

shape and size measurements of the bread slices. The

correlation of expert visual scores with image features

was not very high (R ~ 0.5) in spite of statistical sig-

nificances. Wang and Coles [8] employed both the fast

Fourier transform and segmentation analysis to obtain

features that could be related to experienced judges’

scores. They awarded higher scores to finer textures

and ignored occasional very large bubbles in sub-ima-

ges. The power spectrum was calculated after a pre-

processing series of band-pass filtering on the Gaussian

masked bread image and generated textural features

that correlated well with the expert score (R2 < 0.77).

The image segmentation was based on region growing

from the estimated centres of gravity of the particles.

The pore area and standard deviation gave better

prediction of visual texture score (R2 < 0.84). Day and

Rogers [9] and Rogers et al. [3] utilised the frequency

domain of sub-images of bread slices. They calculated

composite results of fineness and elongation by
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computing the power spectral density of the Fourier

transform and stacking the magnitudes of the trans-

form from each sub-image. The composite spectrum

was thresholded and an elliptical curve was fit by using

Fourier descriptors. The fineness and elongation com-

posite estimates derived from the ellipse correlated

well to the experts’ scores (R2 < 0.79).

On the other hand, fractal dimension has been

shown to be a highly accurate measure that presents

strong correlation with human judgement of smooth-

ness versus roughness of surfaces [10, 11]. Field [12]

explained that many natural textures have a linear log

power spectrum (which is related to fractal dimension),

and that the processing in the human visual system is

well suited to characterise such textures. Liu et al. [6]

related the fractal dimension for cell numbers and

fractal dimension for cell wall area to the elastic

modulus of hydrated starch foam. Fractal texture

analysis [13] has been successfully applied to cha-

racterise bread crumb grain in terms of crumb fineness,

crumb homogeneity, cell wall tortuosity and interface

ruggedness of cell–cell wall. However, the fractal

dimensions have not been assessed with regard to their

ability to correlate with sensory panellists’ scores of

crumb grain visual appearance. Therefore, the objec-

tive of this work was to assess the suitability of several

fractal dimensions and orientation-related features

(extracted from the Fourier power spectrum) in com-

parison with crumb features from thresholding to

predict crumb grain attributes of fineness, homogeneity

and orientation visually rated by trained panellists.

Materials and methods

Image acquisition and panellists’ visual evaluation

One hundred and sixty eight bread crumb images

presenting a wide range of fineness—coarseness,

homogeneity—heterogeneity and degree of orientation

were chosen from the images acquired by Gonzales-

Barron and Butler [13]. Details of how the images were

acquired are given in Gonzales-Barron and Butler [13].

A panel of ten assessors was trained in descriptive

analysis of bread crumb grain images. During training,

the panellists were first acquainted with the meaning of

the visual descriptors selected, and then with the use of

continuous scales with reference standards. They were

exposed to a series of bread crumb images on which

they were asked to agree on the score for each

descriptor. Sets of 14 images were evaluated per ses-

sion and assigned randomly to the panellists in differ-

ent sessions so that all the results were the average of

five replicates. Continuous scales were employed to

record the visual sensory ratings of the images on the

following descriptors:

1. Fineness: related to visual estimation of the

amount of gas cells; the continuous scale presented

eight equally-spaced points. The reference stan-

dards from coarsest to finest grain of the Porenta-

belle scale [14] were anchored to each point over

the scale;

2. Degree of homogeneity: which refers to the degree

of uniformity of the pore sizes. This attribute was

rated on a continuous category scale with the fol-

lowing unipolar intensity adjectives: 1 = poorly,

2 = slightly, 3 = moderately, 4 = very and,

5 = highly uniform; and,

3. Orientation: the degree of orientation of the crumb

grain was rated on continuous category scale con-

taining the words: 1 = not oriented, 2 = moder-

ately oriented and 3 = very oriented. For both

degree of uniformity and orientation, reference

standard images were attached to the extremes of

the scales [15].

Because the descriptive visual analysis was per-

formed on images of the slices rather than on the ori-

ginal slices, biases due to differences in image

properties were avoided. Thus, the difference in

tonality and contrast between images were eliminated

by setting the grey level mean to 140 (grey level scale)

and equalising the histogram of all images. In addition,

all the panellists’ assessments were carried out using

the same PC and under the same light conditions.

Image features from thresholding and fractal

methods

To determine crumb features from thresholding, the

images were binarised (converted from grey-level to

black and white) using an automated fuzzy measure

method [16]. One-pixel and two-pixel objects were

cleaned out by an opening operation (erosion and

dilation) with a two-row two-column structuring ele-

ment of ones and small void areas within pores were

filled. The following crumb features were obtained: (1)

number of cells (Nc), (2) mean cell area in mm2

(MCA), the average of all cells areas present in the

crumb image, (3) standard deviation of cell areas in

mm2 (stCA), (4) void fraction (VF), defined as the

fraction of the total area corresponding to the cells in

the cut surface bread crumb, (5) mean intercellular

distance in mm (ICD), defined as the average of

the distances between cells at 0�, 45�, 90� and 135� of

orientation [15], and (6) cell size uniformity (CSU),
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defined as the ratio number of cells lower than 5 mm2

to number of cells higher than 5 mm2 were computed.

The fractal dimensions were obtained from the

fractional Brownian motion method (FBM), the

transform method (FFT), the relative differential box-

counting method (RDBC), the morphological method

(M), the mass fractal method (MF) and the random

walks method (RW), following the equations outlined

in Gonzales-Barron and Butler [13].

Image texture and orientation features

The following features were extracted from the Fourier

power spectrum of the images:

(a) Radial distribution of the Fourier power spec-

trum. The discrete Fourier transform of an image

I(x,y) is defined by

Fðu; vÞ ¼ 1

M2

XM�1

x;y¼0

I x; yð Þe�2p
ffiffiffiffiffi
�1
p

uxþvyð Þ

and the Fourier power spectrum is |F|2 = FF*,

where * denotes the complex conjugate. It is well

known that the radial distribution of values in

F(u,v) is sensitive to texture coarseness in I(x,y)

[17]. A coarse texture will have high values of

F(u,v) concentrated near the origin, while in a

fine texture, the values of F(u,v) will be more

spread out. Thus, a set of useful energy features

are the averages of F(u,v) taken over ring-shaped

regions (Ering) centred at the origin for various

values of r, the ring radius.

Ering r1r2
¼
Xr2

r1

F u; vð Þ; r2
1 � u2 þ v2\r2

2;

0 � u; v � n� 1

(b) Angular distribution of the Fourier power spec-

trum

The angular distribution of values in the power

spectrum is sensitive to the directionality of the

texture in I. If a texture is oriented in given

direction h, it will have high values of |F|2 con-

centrated around the perpendicular direction

h+(p/2) [17]. Thus, a set of energy features

(Ewedge) for analysing texture directionality will

be taken over wedge-shaped regions by using,

Ewedge h1h2
¼
Xh2

h1

F u; vð Þ; h1 � tan�1ðv=uÞ\h2;

0 � u; v � n� 1

The ring-shaped regions were computed for the

radii [r1, r2] = [2, 4], [4, 8], [8, 16], [16, 32] and [32,

64]; and the wedge-shaped regions for the angles

[h1, h2] = [–22.5, 22.5], [22.5, 67.5], [67.5, 112.5],

[112.5, 157.5]. Also, all possible intersections of

rings and wedges were computed.

(c) Orientation of major and secondary peaks. Liu

and Jernigan [18] defined a set of 28 frequency

domain features for texture discrimination in

additive noise from which the major and second-

ary peaks orientations were utilised. The fre-

quency coordinates of the maximum peak (u1, v1)

and second largest peak (u2, v2) of the power

spectrum F(u,v) were found and their orientation

computed as tan–1(v1/u1) and tan–1(v2/u2),

respectively.

The fuzzy thresholding method, the crumb features

from thresholding, the fractal methods, and the image

orientation features were written in Matlab 6.12 (The

MathWorks Inc., Natick, MA, USA).

Statistical evaluation

An incomplete block experimental design was devised

for the three descriptors used. Sets of 14 images were

evaluated per session and assigned randomly to the

panellists in different sessions so that all the results

were the average of five replicates. Analysis of vari-

ance of linear and second-order regressions with their

respective coefficient of determination (R2) between

all possible pairs of a visual sensory property and an

image feature was computed. The stepwise regression

option (sle and sls = 0.15) of SAS (version 8.2, SAS

Institute Inc, NC, USA) was used to select the best

predictors of the panellists’ sensory responses from all

the image textural features in order to build multiple

regression models. Comparisons between nested

models were performed using the F-test according to

Mendenhall and Sincich [19].

Results and discussion

Table 1 shows the coefficients of determination for the

regressions of the panellists’ perception of grain fine-

ness and homogeneity with the crumb features from

thresholding and the fractal dimensions. From the

crumb features, ICD and Nc exhibited the highest

coefficients of determination with grain fineness

(R2 = 0.785 and 0.725, respectively, in Table 1). It is

clear that as the number of cells increases, the distance

between gas cells becomes smaller and the grain is

Eur Food Res Technol (2008) 226:779–785 781

123



finer. In most crumb features, the second-order poly-

nomial models (Table 1) presented a higher R2 for

grain fineness and homogeneity than their counterpart

linear models.

From the fractal dimension, the RDBC method

displayed the best correlation to grain fineness

(R2 = 0.822). Thus, the RDBC method was found to be

a better predictor of fineness than the crumb grain

features obtained by thresholding (ICD, Nc). For grain

homogeneity, sdCA and ICD were the crumb features

that showed the highest coefficients of determination

(R2 = 0.677 and 0.650). However, the fractal dimension

from the MF method correlated very well with grain

homogeneity and its coefficient of determination

(0.820) was much higher than the ones with sdCA and

ICD. Again for the fractal dimensions, the second-or-

der polynomial models showed in Table 1 presented

the higher R2 for grain fineness and homogeneity. The

prediction of grain fineness and homogeneity as per-

ceived by panellists fitted polynomial models (Figs. 1,

2) because the human perception of sensory signals is

thought to involve non-linear processing of sensory

information by a massive network of neurons [20].

Excepting for MCA, ICD, Rw and M, all the polyno-

mial models in Table 1 were found statistically better

in predictive terms (P < 0.01) than their respective

simple linear models. Consequently, the fractal

dimensions provided better approximation to the hu-

man perception of grain fineness and homogeneity

than the crumb features extracted from thresholding.

There was sizeable interdependence between many

of the visual and the crumb grain features. Grain

fineness and homogeneity were found to be linked

properties (R2 = 0.6230). Fineness is related mainly to

the cell size while the homogeneity is related to cell

size variability. However, mean cell size and its vari-

ability were also related parameters. As the cell size

increased, the standard deviation increased as well, as

shown in Fig. 3, which displays the second-order

polynomial relationship (R2 = 0.669).

Models for predicting the grain fineness and homo-

geneity were developed using stepwise regression

analysis. All variables: crumb features, fractal dimen-

sions and Fourier power spectrum features were con-

sidered. For grain fineness, the significant predictors

Table 1 Coefficients of determination of the regression models
(p < 0.05) of grain fineness and homogeneity from panellists’
scores with image features: crumb features from thresholding
and fractal dimensions

Independent variables Radj
2 for

fineness
Radj

2 for
homogeneity

Crumb features from thresholding
1 Nc 0.699 0.483
2 Nc, Nc2 0.725 0.505
3 MCA* 0.657 0.455
4 sdCA 0.638 0.654
5 sdCA, sdCA2 0.644 0.677
6 ICD* 0.785 0.650
7 CSU 0.450 0.274
8 CSU, CSU2 0.534 0.327

Crumb fractal dimensions
9 RDBC 0.783 0.660
10 RDBC, RDBC2 0.822 0.688
11 FBM 0.525 0.341
12 FBM, FBM2 0.545 0.351
13 FFT 0.690 0.582
14 FFT, FFT2 0.713 0.601
15 MF 0.705 0.764
16 MF, MF2 0.766 0.820
17 Rw* 0.384 0.252
18 M* 0.187 0.116

* Coefficient of determination of this linear regression was
higher than that of its second order polynomial

R2 = 0.822
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were RDBC fractal dimension, mean intercellular

distance, void fraction, energy of power spectrum,

morphological fractal dimension and random walks

fractal dimension (Table 2). The term RDBC squared

was not selected by the stepwise analysis, but model 1

in Table 2 was included for comparison as the rela-

tionship between fineness and FD was non-linear

(Fig. 1). Models 2, 3, 4 and 5 added one predictor at a

time to the previous equation so that the predictive

capacity of the new model was improved significantly

(P < 0.01). The variables selected by the stepwise

selection for predicting grain homogeneity were mass

fractal dimension, squared mass fractal dimension,

squared fast-Fourier-transform fractal dimension and

energy of power spectrum. Likewise, models 7 and 8

inserted one significant predictor. The energy of the

power spectrum in the ring from frequencies 4 to 8

(Ering4–8) was selected as a variable for predicting both

grain fineness and homogeneity because the radial

distribution of values of the power spectrum is sensi-

tive to texture coarseness. To estimate fineness and

homogeneity, models 3 and 7 provided a good trade-off

between predictive capacity and number of terms.

Grain orientation was not linked to any crumb fea-

tures extracted by thresholding or the fractal dimen-

sions. Bread crumb isotropy, a parameter related to

cell shape and orientation [15], is not determined either

by grain coarseness (coefficient of correlation of 0.324

[15]) or by grain heterogeneity (coefficient of correla-

tion of 0.333 [15]). The results of the power spectrum

wedges indicated that 68% of the images rated by the

panellists as not—slightly oriented (1.0–1.5 on the

continuous scale) presented higher energies in the

wedges of the spectrum with centres 0� and 90� (i.e., x

and y axes). However, none of the power spectrum

wedges correlated with the panellists’ scores of crumb

orientation.

Figure 4 is a plot of Liu’s features, major and sec-

ondary peak orientations, showing the contours of the

orientation intensities in the intervals [1 1.5], <1.5 2],

<2 2.5] and <2.5 3]. Two main clusters were observed

for the images rated between moderately and highly

oriented (2.0–3.0 on the continuous scale). The first

cluster A (Fig. 4) lies between the major peak angle

range of [45� 100�] and the secondary peak angle range

of [130� 160�] and contains 60% of the images rated in

this interval. The second cluster B is positioned be-

tween the main peak angle range of [110� 155�] and

R2 = 0.669
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Fig. 3 Relationship between mean cell area and cell area
standard deviation for the images analysed

Table 2 Multiple regression models that best predict panellists’
scores of grain fineness and homogeneity selected by stepwise
regression analysis

Regression models Radj
2

Fineness (F)
1 F = –1185 + 936 RDBC – 184 RDBC2 0.822
2 F = –38.2 + 20.3 RDBC – 0.0304 ICD 0.821
3 F = 0.48 + 10.3 RDBC – 0.0509 ICD – 24.7 VF 0.864
4 F = 7.42 + 8.23 RDBC – 0.0519 ICD – 27.3

VF – 3.14 Ering4–8

0.874

5 F = –10.6 + 12.6 RDBC – 0.050 ICD – 23.1
VF – 3.29 Ering4–8 + 2.33 M

0.884

6 F = –11.6 + 13.5 RDBC – 0.046 ICD – 22.7
VF – 3.43 Ering4–8 + 3.28 M – 1.57 RW2

0.886

Homogeneity (H)
7 H = –31.01 + 19.46 MF – 2.66 MF2 0.820
8 H = –34.7 + 19.0 MF – 2.65 MF2 + 0.733 FFT2 0.826
9 H = –36.4 + 20.2 MF – 2.88 MF2 + 0.769

FFT2 – 1.24 Ering4–8

0.830
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Fig. 4 Contours plot of intervals of bread crumb orientation [1.0
1.5], <1.5 2.0], <2.0 2.5], <2.5 3.0] as perceived by panellists as a
function of the major and secondary peaks orientation of the
Fourier power spectrum
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secondary peak angle range of [35� 60�] and contains

28% of the images perceived as moderately to very

oriented. To explain the occurrence of these clusters,

Fig. 5 shows an example of two bread crumb samples

with different degree of orientation. Sample x has a

more oriented texture compared to Sample y. For

sample x (position x in Fig. 4), the orientations of main

and secondary peaks were 75.0� and 135.0�. While for

sample y, those values were 75.9� and 84.3�, respec-

tively (position y). This implies that when the orien-

tation of the main and secondary peaks of the power

spectrum is considerably different, the bread crumb

image tends to be observed as moderately—highly

oriented due to the existence of either at least two

directions of orientation or a curly textured pattern.

This would explain the presence of the two main

clusters A and B. Nonetheless, some textures having

their peaks located at nearby orientations around 20�–

45� were detected as moderately oriented in one

direction (bread crumb orientation <2.0 2.5]). This can

be distinguished in the small island near the origin in

Fig. 4. However, no equations to predict the panellists’

perception of image orientation from the Fourier

power spectrum could be modelled considering the

non-continuous nature of the data distribution.

Conclusions

The high coefficient of determination between fractal

dimension and visual appearance of the bread-crumb

images clearly validates the usefulness of the fractal

approach for the study of the bread crumb quality

assessment. The panellists’ visual scores of grain fine-

ness and homogeneity could be predicted by second-

order polynomial models of the fractal dimensions

obtained with the relative differential box-counting

method and the mass fractal method, respectively, with

coefficients of determination of 0.82. Regarding the

crumb features obtained by image thresholding, grain

fineness showed high correlation to both mean inter-

cellular distance and number of cells, and grain

homogeneity correlated well with the standard devia-

tion of cell areas, although the fractal dimensions

adjusted better to the panellists’ perception of these

properties than did the crumb features extracted by

thresholding. However, multiple models, developed

with stepwise regression, could attain coefficients of

determination higher than 0.82. A significantly-im-

proved model to predict grain fineness including terms

such as fractal dimension, mean inter cell area, void

fraction and a measure of power spectrum energy

achieved a coefficient of determination of 0.87. Finally,

no model to predict the degree of orientation of the

grain could be ascertained from the textural features

used here; although results showed that relative ori-

entation of the main and secondary peaks of the power

spectrum was related to the human perception of the

image orientation. Images, whose relative orientation

of peaks of power spectra was high, were mostly per-

ceived as moderately to highly orientated. Other ori-

entation features should be investigated in order to

predict the degree of orientation perceived by panel-

lists.
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