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Abstract The European Union classifies virgin olive oils
into three categories, extra virgin, virgin and lampante;
lampante being the only oil that cannot be consumed
before undergoing a refining process. A mathematical
model based on two metal-oxide sensors has been
designed and checked in order to detect on-line lampante
oils inside the production systems. The model was
developed using 114 samples and was successfully tested
with an external test set of 55 samples taken from
different single varietal olive oils and geographical
origins. The model was able to detect 100% of non-
lampante virgin olive oils and 89.5% of lampante virgin
olive oils.
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Introduction

The current EU regulation [1] defines three categories for
virgin olive oils (extra virgin, virgin and lampante)
because of their diverse sensory and chemical character-
istics. The last category also includes the old category
“ordinary” [2]. These designations affect their market
prices as lampante virgin olive oils cannot be consumed
without refining. Thus, the on-line detection of the
lowest-quality category, during the olive oil industrial
production process, has a notable economical impact.

The sensory analysis plays a crucial role in the
classification of virgin olive oils (VOO) into the cited
designations. The official method for olive oil sensory
analysis is carried out by trained assessors (panel test), a
lengthy and costly procedure that cannot be afforded by
small enterprises. Besides, the panel test is not an error

free procedure since wrong classifications have been
detected in international trials due to assessors’ subjec-
tivity [3]. A more rapid and cheaper alternative is the
analysis of phenols and volatile compounds that are
responsible for taste and aroma of virgin olive oil,
respectively [4, 5]. Here, the error could be ascribed to the
repeatability of whole process without any influence of
subjective opinions but the process would not be applied
on-line.

The second alternative is the use of sensors for
detecting volatile compounds. Sensors do not need any
pre-treatment and do not use solvents to detect the
presence of volatiles. Furthermore, their main advantages
are their low cost and the rapid evaluation of the aroma.
Sensors have been applied in many fields of analytical
chemistry with success, and they are seen as an emergent
technique in food quality and assessment [6, 7]. Thus,
metal-oxide semiconductor sensors (MOS) have been
used, with varying degree of success, in the classification
of edible oils [8], the determination of VOO geographical
origin [9] and edible oil shelf-life predictions [10]. On the
other hand, previous papers by the authors have stated
that metal-oxide sensors are sensitive to certain VOO off-
flavors such as rancid, vinegary and fusty [11, 12].
However, VOO sensory classification at the lowest grade
(lampante) does not distinguish among the cited off-
flavors as samples are so classified. Thus, sensors would
be useful in distinguishing the highest quality virgin olive
oils from the lowest quality ones if they were able to
cluster together all low quality VOO whichever the off-
flavor, or combination of off-flavors, was presented in the
oil. This paper analyzes the possibilities of metal-oxide
semiconductor sensors after working with the samples of
a training set and verifying the results with an external
test set.
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Materials and Methods

Materials

114 samples of virgin olive oil (var. Hojiblanca) were used for
training the sensors (training set). The samples were supplied by an
association of cooperatives (Hojiblanca SCA, M�laga, Spain) that
represents 4% of total Spanish olive oil production. 56 of these
samples were qualified as lampante by the assessors of the cited
association. The mathematical model (canonical equations) was
checked with a test set of 55 samples. 13 of these samples (var.
Arbequina, Cornicabra and Picual), collected in different geo-
graphical regions, were supplied by Aceites del Sur SA (Sevilla,
Spain); four samples were classified as lampante by the trained
assessors of the enterprise. The remaining 42 samples originating
from 8 producing countries (Spain, Italy, Greece, Tunisia, Moroc-
co, Syria, Algeria and the USA), are comprised of 27 monovarietal
virgin olive oils and 15 lampante virgin olive oils. The latter 15 had
undergone a rancidity process by subjecting the samples to light,
kept inside tubes with a 50% headspace, for three years. All these
samples were sensory evaluated by assessors of Instituto de la
Grasa. All the samples, training and test sets, were analyzed for 11
months to check the effect of drift in the sensor baseline.

Equipment

A Fox 4000 with ACU500 humidifier supplied by AlphaMOS SA
(Toulouse, France) was used. This instrument is equipped with 18
metal oxide sensors, inside three chambers, 6 of them being
undoped metal oxide sensors, and 12 being metal oxide sensors
doped with noble catalytic metals in order to shift the selectivity
spectrum towards different chemical compounds. The temporary
and reversible adsorption of volatile reducing compounds at the
sensor surface changes its electrical resistance in a non-linear
manner [13]. The response is characteristic of each sensor and
depends on the concentration and the profile of the volatile
compounds.

The air conditioning unit (ACU 500) consists of a thermostat
tank containing distilled water through which the carrier gas
bubbles continuously. When a valve is opened during the injection
time, a controlled mixture of dry and humid industrial air sweeps
the headspace of the sampling chamber whose temperature is
controlled automatically.

Industrial air, from an air compressor, was used as the carrier
gas after being filtered through two columns. The first column was
filled with a molecular sieve with a 8/12 mesh (Supelco, Bellefonte
PA, USA) to remove the moisture, while the second column was
filled with activated carbon (Supelco, Bellefonte PA, USA) to
remove hydrocarbons and other undesirable volatile compounds.

Measuring setup

The analytical parameters (sample amount, headspace generation
time, sample temperature, flow rate and injection time) were
determined following the optimization process described in [11].

A 5-g amount of each sample – enough to cover the bottom of
the 100 mL flasks – and these were heated at 34 �C inside a
controlled thermostat-sampling chamber for a headspace generation
time of 600 s. The responses of the sensors started to be collected
immediately after the headspace generation time for a further 600 s;
90 s for the injection time and 510 s for the desorption time.
Volatile compounds were pumped into the sensor chambers by the
carrier gas (air) at a flow-rate of 100mL/min. After the injection
time, a valve was switched and only carrier gas was blown into the
sensor chambers at the same flowrate of 100mL/min. After
collecting the sensor responses, 900 s of non-measurement time
remained. The flowrate of the carrier gas was kept at 500mL/min to
ensure that the baseline had indeed recovered before performing the
next analysis.

Samples were analyzed in duplicate. Standards for calibration of
the sensor array were measured at programmed times to check that
the aging of the sensors did not affect the measurements.

Measurements of repeatability

The repeatability studies, either between-days (for 6 months) or
during the day, were investigated by consecutively collecting the
sensor results of the same sample of virgin olive oil (cv. Farga
spiked with 60 ppm of acetic acid) [11]. The maximum %RSD
(relative standard deviation) of the repeatability study carried out
during the day was 12.0%, the mean being 6.1%. While the mean
results of the between-days repeatability study was 11.7%,with a
maximum (22.2%) being far higher.

Data pre-treatment

The response of the sensors yields an exponential-like shape but not
all this information is useful. After different methods of data
preprocessing had been tested, raw data (non-preprocessed data)
were selected because they showed the best differential properties
[12]. Windowed time slicing (WTS) [14] was used to reduce the
information to a small data set. The number of windowing
functions was 4, each one applied to a different region of the
sensor response [11].

A standard was analyzed before and after each series of
analyses with the objective of minimizing the effect of sensor aging
and environmental conditions. This information was used to
standardize WTS data.

The detection of multivariate outliers was carried out by
applying principal components analysis (PCA) [15]. Mahalanobis
distance, evaluated as c2, was used to discover outliers among
samples, while outliers among variables (WTS) were detected by
the squared multiple correlation.

Stepwise linear discriminant analysis (SLDA) was applied
under the strictest conditions for the selection of the variables in
order to diminish over-optimistic models. Thus, tolerance was fixed
at 0.01 while the F-to-Enter value (8.6) was obtained from the F-
distribution table at F(F)=0.995 for the number of groups (m=2) and
the group with the minimum number of samples (n=53) [15].

Statistica (Statsoft Inc., Tulsa, USA) release 5.5 [16], was used
to perform the data processing and to implement multivariate data
analyses.

Results and Discussion

The hypothesis that the sensor response depends on the
amount and composition of volatile compounds had
already been demonstrated by the authors when analyzing
some of the negative attributes (fusty, rancid and
vinegary) by canonical correlation [11]. Based on these
promising results, four steps were planned: (i) the
detection of multivariate outliers by PCA, (ii) the training
process of the supervised procedure SLDA, (iii) the
implementation of the canonical equation in a discrimi-
nating model, and (iv) the validation of the results with
the samples of an external test set.

The raw information was first clustered into four WTS
[14] and later standardized to avoid hypothetical sensor
ageing. The collected information was transferred into a
Statistica [16] file and the next step was the detection of
outliers.

The study of outliers is extremely necessary as they
can greatly affect the magnitudes of the decision equation

485



coefficients. This study was carried out by multivariate
procedures, as the problems originate mostly from
multivariate outliers among variables and cases. Thus,
five multivariate outliers among cases (2 non-lampante
and 3 lampante virgin olive oils) and four multivariate
outliers among variables (sensors 2, 5, 12 and 13) were
detected by PCA and removed.

Once the outliers had been removed (5 samples and 4
sensors), the WTS of the remaining sensors were
submitted to SLDA under the conditions cited above.
This statistical procedure automatically selected 3 vari-
ables from the initial set of 56 variables (14 sensors * 4
WTS per sensor). As there were only two groups
(lampante vs. non-lampante virgin olive oils) that needed
to be distinguished, SLDA produced only one canonical
equation based on the fourth WTS of sensors 1 and 18
plus the first WTS of sensor 1:

y ¼ 6:96� 0:25 � Sensor1 WTS4ð Þ
þ 0:10 � Sensor1 WTS1ð Þ þ 0:01 � Sensor18 WTS4ð Þ

ð1Þ
At first sight, the equation 1 contains information from

different aspects. Thus, relevant information concerns the
processes of adsorption (WTS1) and desorption (WTS4)
of volatiles. There is no discrimination concerning the
sensor characteristics because sensor 1 is undoped while
sensor 18 is doped [6]. No discrimination was detected in
terms of the sensor chambers since one sensor is placed in
the first chamber (sensor 1) and the other is inside the
third chamber (sensor 18).

Figure 1 shows the result of the canonical equation
distinguishing lampante virgin olive oil from the other
categories. The y-axis indicates the quality level of
samples according to the sensor responses as this axis
shows the values of applying the canonical equation to
each sample of the training set. Positive values of the
canonical equation correspond to non-lampante virgin

olive oils while negative values indicate that samples are
lampante virgin olive oil. The x-axis indicates the sample
number. The procedure was able to classify 100% of non-
lampante virgin olive oils versus only 83% of lampante
virgin olive oils. The diversity of possible off-flavors
(rancid, vinegary, fusty, winey, mould sediment, cucum-
ber, etc) and their intensity range might explain the
difficulty that sensors had in order to cluster all of them
into only one group.

The samples placed close to the value zero of the y-
axis, indicate that their quality is near to lampante virgin
olive oils, which means “ordinary virgin olive oil”
according to the previous EU regulation [2]. It is a zone
where the risk of wrong classifications is high enough due
to the absence of discontinuity in the sensory evaluation,
and hence it could be seen as a transition zone between
both large groups (lampante vs. non-lampante virgin olive
oils). The confidence limits of this zone correspond to
ȳ€SD; ȳ and SD being the mean and standard deviation of
the values of the canonical equation when applied to
samples classified as ordinary virgin olive oils by the
panel test of Hojiblanca SCA. All the wrongly classified
samples, with one exception, were located inside the zone
for ordinary virgin olive oils. The exception, classified
with a median of defects (Md) 6.4, was re-evaluated by
assessors of Instituto de la Grasa. A new score punctu-
ation of Md=5.8 was given which means that the sample
would be inside the category “ordinary”. Assessors also
detected a light vinegary note in this oil that was not
probably noted by the metal-oxide sensors.

The next objective was to check the canonical equation
with the external test set of 55 samples. First of all, the
equation was applied to a set of 13 different single
varietal olive oil samples (Arbequina, Cornicabra and
Picual) from different Spanish geographical origins. The
objective was to check if the varieties and the sensory
evaluation, now carried out by the panel test of a
multinational enterprise (Aceites del Sur SA), affected

Fig. 1 Results of applying the
canonical equation to the sam-
ples of training and first test sets
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the model. All the samples (100%) were correctly
classified thus pointing out the validity of the proposed
mathematical model (Fig. 1).

Finally, 42 single varietal olive oil samples were
submitted to the mathematical model. Assessors of
Instituto de la Grasa classified 27 of them as extra-virgin
olive oil and the remaining 15 as lampante-virgin olive
oils. The objective of this test was to check the model
with a large set of single varietal extra-virgin olive oils
from different geographical origins (Spain, Italy, Greece,
Tunisia, Morocco, Syria, Algeria and the USA), and with
a set of single varietal olive oils that had undergone an
extreme rancidity process by subjecting the samples to
light for three years. All the extra virgin olive oils were
correctly classified (100%) while the classification was
lower for lampante virgin olive oils (87%). The misclas-
sified samples belonged to varieties Cornicabra and
Lechin.

In conclusion, the model, based on exclusively a
canonical equation, was able to distinguish lampante
virgin olive oils from the other categories with only two
misclassifications when analyzing the test set (oxidized
varieties). The other misclassified sample (training set)
showed the difficulty of a complete agreement between
panel tests when evaluating olive oils [3].
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