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Abstract Construction, performance characteristics and appli-
cations of a carbon paste thallium(III) ion-selective electrode
are described. The electrode, which is based on ion-associate
compounds formed between cetylpyridinium and chlorothal-
late(III) complexes dissolved in tricresyl phosphate as pasting
liquid, showed near-Nernstian response over the concentration
range of 5.8 × 10–6 – 2.9 × 10–3 mol/L. Potentiometric titrations
of thallium(III) with cetylpyridinium chloride were affected by
higher concentrations of excess halides, probably due to the
formation of higher halogenothallates.

1 Introduction

The high toxicity of thallium and its compounds has made their
determination an important issue. Thallium is introduced into
the environment mainly as a waste from the production of other
metals (lead, zinc, and cadmium) and by coal combustion. There-
fore, simple control methods allowing selective detection are
often required.

Thallium(I) can be detected by means of potassium-selec-
tive liquid/polymeric membrane electrodes based on valinomy-
cin [1]. Solutions of thallium (I) can selectively be titrated with
sodium tetraphenylborate using PVC-based membrane elec-
trodes [2–5].

Thallium(III) tends to form anionic halide complexes which
are extractable into organic, water immiscible solvents in form
of ion-pairs with lipophilic cations; these extracts can be used
as electroactive ion–exchangers in liquid/polymeric membrane
ion-selective electrodes [6–14]. Using a salt containing a lipo-
philic cation, titrations of thallium(III) halide complexes were
possible [5, 11, 15–17]. Electrodes based on metallopophyrin
derivatives were also examined [18].

Recently, we reported on the use of carbon paste-based ion-
selective electrodes that, when compared with similar potentio-
metric sensors based on plasticized polymeric membranes,
showed similar behavior but had the advantage of very low
Ohmic resistance [19–22], probably due to the formation of a
very thin film of the pasting liquid coated onto small particles
of carbon powder [23]. Similarly, a thallium(III)-selective elec-
trode was constructed and its analytical applications were ex-
amined.

2 Experimental

Reagents and solutions. Thallium(III) stock solution was prepared
to contain 0.006 mol/L thallium(III) nitrate in either 0.1 mol/L
hydrochloric acid or 0.6 mol/L nitric acid (freshly prepared).
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For potentiometric titrations, aqueous solutions of cetylpyridi-
nium chloride (CPC), sodium tetraphenylborate (NaBPh4) and
thallium(I) nitrate (all in concentrations of 0.01 mol/L) were
prepared from corresponding salts of analytical grade purity.
The exact concentration of the CPC titrant was determined by
titration of NaBPh4 solution standardized potentiometrically
against standard thallium(I) nitrate solution. Stock 1 mol/L so-
lutions of both KCl and KBr were also prepared. Deionized and
distilled water was used throughout.

Preparation of the electrode. An electroactive ion-exchanger
substance was prepared by slowly mixing thallium(III)-HCl
stock solution (20 mL) with a slight excess of CPC solution (25
mL). The resulting precipitate (presumably cetylpyridinium
tetrachlorothallate) was filtered, washed with water and air-
dried for 24 h. Carbon paste was prepared by mixing the pre-
cipitate (0.1 g) with graphite powder CR5 (Tesla, Lanškroun,
0.9 g) and tricresyl phosphate (Fluka, 0.4 mL). This mixture
was used for filling the electrode body as described earlier [24].

EMF measurements. Potentiometric measurements were car-
ried out using either an OP-208/1 pH meter (Radelkis, Bu-
dapest) in case of manual mode, or an ATI Orion 960 Auto-
chemistry System (Orion Research Inc, Boston) connected to
an HW486 PX2 80 personal computer for automated mode.
The Tl(III)-selective carbon paste electrode (CPISE) described
was used in conjunction with an RCE-102 calomel electrode
(Crytur, Turnov) of double-junction construction filled with
saturated potassium chloride (inner compartment) and 0.1 mol/L
sodium nitrate (outer compartment).

Procedures. The calibration dependences were first studied by
measuring the EMF of the standard Tl(III) solutions (all in 0.1
mol/L HCl) with increasing concentration. The electrode was
conditioned by soaking for 24 h in a solution containing 10–3

mol/L Tl(NO3)3 and 0.1 mol/L HCl. The effect of excess chlo-
ride on the electrode potential was investigated by adding chlo-
ride as either KCl to Tl(NO3)3 solutions in 0.6 mol/L HNO3 or
HCl to Tl(III) solutions in 0.1 M HCl. For potentiometric titra-
tions, aliquots of the Tl(III) solutions in 0.1 M HCl corre-
sponding to 0.5–5.1 mg Tl were pipetted into a 100 mL beaker;
the volume was completed to 50 mL with 0.1 mol/L HCl, and
the solutions were titrated with 0.01 mol/L CPC. Additionally,
solutions of Tl(III) nitrate in 0.6 mol/L HNO3 were investigated
with different amounts of KCl or KBr. For automatic titrations,
the rate was held constant at a potential stability of 10 mV/min.

3 Results and discussion

Response characteristics of the electrode. Figure 1 shows the
dependence of the electrode potential on to the consecutive for-
mation of chlorothallates. Calibration curves constructed in the
concentration range of 5.0 × 10–3 – 1.0 × 10–6 mol/L for thal-
lium(III) showed nearly Nernstian responses for decreasing
concentration of TlCl4

–; however, both the slope and linear
range of the calibration graph varied with the total chloride pre-
sent (Table 1). In particular the data given for higher Cl– con-
centrations are interesting: if the electrode responds preferen-
tially to singly-charged TlCl4

– or doubly-charged TlCl5
2–, the

slope should be close to 59.2 or 29.6 mV/decade, respectively.
The decreasing response slope indicates that bivalent pen-
tachlorothallate(III) is gradually formed with increasing chlo-
ride concentration. It should be noted that a similar electrode
behavior was observed in case of chlorobismuthates(III) [25] .
The best characteristics were obtained in the presence of 0.1
mol/L Cl–. Detection limits evaluated by IUPAC recommenda-
tion [26] were closely around (1–2) × 10–6 mol/L.

Interference of thallium(I) with direct potentiometric measure-
ments. Interference of Tl(I) with the determination of Tl(III)
using the calibration graph procedures was studied from the
viewpoint of possible speciation. When the Tl(III) concentra-
tion was fixed at 10–4 mol/L and the Tl(I) concentration was
changed from 2.3 × 10–6 to 1.0 × 10–2 mol/L, the electrode po-
tential remained stable with a slight deviation of ± 2 mV up to
a 50-fold excess of Tl(I).

Selectivity measurements. The interference of various ions
studied by the mixed solution method showed that the selectiv-
ity coefficients of the CPISE were very similar to those de-
scribed for polymeric membrane-based Tl(III)-selective elec-
trodes [11, 14]. No detailed studies were performed taking into
account the known fact that for many electrodes, especially liq-
uid-membrane systems, selectivity coefficients are not highly
reproducible because they are time dependent.

Potentiometric titrations. In constrast to direct potentiometry,
the potentiometric titration technique usually offers the advan-
tage of high accuracy and precision, although at the cost of in-
creased time and increased consumption of titrants (which is,
of course, not so serious in automated titrations). A further ad-
vantage is that the potential break at the titration end-point
must be well defined, but the slope of the sensing electrode re-
sponse need be neither reproducible nor Nernstian, and the ac-
tual potential value at the end point is of secondary interest.
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Table 1 Response characteristics of the electrode at various
chloride concentrations

c(Cl–), mol/L Linear range, mol/L Slope, mV/decade

Added as KCl
0.00612 5.8 × 10–4–5.8 × 10–6 48.1 ± 0.9
0.0123 5.8 × 10–4–5.8 × 10–6 48.7 ± 1.8
0.0184 1.4 × 10–3–5.8 × 10–6 49.6 ± 1.9
0.025 2.9 × 10–3–5.8 × 10–6 61.7 ± 3.3

Added as HCl
0.100 1.2 × 10–3–1.2 × 10–5 59.5 ± 0.9
0.300 2.3 × 10–3–1.2 × 10–5 57.5 ± 3.3
0.500 2.3 × 10–3–1.2 × 10–5 57.2 ± 2.3
0.700 2.3 × 10–3–1.2 × 10–5 55.1 ± 2.8
1.00 2.3 × 10–3–1.2 × 10–5 53.7 ± 2.4

Fig.1 Effect of chloride ion concentration on the electrode po-
tential. Measured for 6.9 × 10–4 mol/L Tl(NO3)3 dissolved in
0.6 mol/L HNO3, chloride added as KCl



The method for thallium(III) is based on the decrease of the
TlCl4

– concentration by precipitation with cetylpyridinium salt.
The titration process was carried out either manually or auto-
matically in solutions acidified with HCl (0.05–0.1 mol/L) and
containing 0.5–5 mg Tl. The results corresponded to the given
amount with slight differences. For 2.0 mg of the metal, the re-
covery in manual and automated mode was 98.9% with stan-
dard deviation of 1.7% for 8 measurements, or 103.5% with
standard deviation of 1.1% for 10 determinations, respectively.
Corresponding titration curves showed a well-developed titra-
tion peak of about 180 mV (Fig.2). Analogous results were ob-
tained when samples of drinking water spiked with a known
amount of thallium(III) were titrated.

Possible interferences of Tl(I) with the potentiometric titra-
tion of Tl(III) with CPC were also studied by adding TlNO3.
Up to 30-fold excess, Tl(I) salt did not interfere with the recov-
ery of Tl(III). Therefore, the method could be applied to speci-
ation in solutions containing metal concentration levels de-
tectable by potentiometric titration.

Effect of excess halide and titration stoichiometry. Precipita-
tion of cetylpyridinium tetrachlorothallate was supposed to be
the only reaction influencing the titration stoichiometry. Poten-
tiometric titrations of tetrachlorothallate based on such ion-pair
formation with oppositely charged univalent cationic titrants
have been described [11, 15–17], and stoichiometric composi-
tion of the product formed between cetyltrimethylammonium

and tetrachlorothallate was confirmed by elemental analysis
[15]. Similarly, our previous results obtained for samples in
which Tl(III) was determined after oxidation of Tl(I) by chlo-
rine and using 1-(ethoxycarbonyl)pentadecyltrimethylammo-
nium titrant, did not indicate significant differences [5]. Vari-
ous spectrophotometric, gravimetric and voltammetric determi-
nations [27–31] based on presumptive tetrahalogenothallates(III)
were also investigated.

Concerning potentiometric titrations based on ion-pair for-
mation of tetrahalogenothallates(III) against univalent cationic
titrants, some discrepancy was first observed by Selig [17] when
the titrant of TlBr4

– was CPC, however the isolated precipitates
were not related to the calculated values. Experiments of this
study indicated from the start that the recoveries were usually
higher than expected, especially at higher excess of HCl pre-
sent in the solution (the recoveries reached repeatedly up to
125% and thus too far to be explained by experimental faults).
It seemed very probable that tetrachlorothallate(III) was not the
final step of the complex formation. In fact, evidence of such
species as TlCl5

2–, TlCl6
3–, Tl2Cl9

3– has been reported [32] and
chloride, bromide and cyanide complexes of Tl(III) have been
investigated more recently [33]; an evidence of higher chloride
complexes as TlCl5(OH2)2– and TlCl6

3– has been confirmed.
According to the data characterizing these equilibria (Table 2),
distribution coefficients for both chloro- and bromocomplexes
were calculated and corresponding distribution diagrams con-
structed (Figs. 3, 4). Evidently, there is no region of the exclu-
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Table 2 Stability constants for thallium(III) halide complexes

X– log β(TlXi
(i-3)–) for given i Ref

1 2 3 4 5 6

Cl– 6.25 11.4 14.5 17 19.15 – [34]
8.8 13.6 15.8 18.0 17.47 – [35]

Br– 8.3 14.6 19.2 22.3 25.8 26.5 [34]

Fig.2 Automatic potentiometric titration of thallium(III) in the
presence of excess chloride. Monitored with a thallium(III)
CPISE. Sample volume, 2.000 mL; titrant, 0.008843 mol/L
CPC; constant increment, 0.100 mL; titrant volume, 1.500 mL;
stability criterion, 10.0 mV/min; prestirring, 5.0 s; continuous
stirring. Output of the ATI Orion Autochemistry system

Fig.3 Distribution diagram for thallium(III) chlorocomplexes.
Distribution coefficients δ for individual species are denoted by
the following numbers: 0 – δ(Tl3+), 1 – δ(TlCl2+), 2 – δ(TlCl2

+),
3 – δ(TlCl3), 4 – δ(TlCl4

–), and 5 – δ(TlCl5
2–). Calculated from

the stability constants given in [35]



sive presence of either tetrachloro- or tetrabromothallate(III). It
seems probable that when stoichiometric portions of thallium
(III) and a halide are mixed (1:4), the tetrahalogeno complex
expected undergoes a reaction according to 2 TlX4

– = TlX3 +
TlX5

2–. If neutral ion-associates with lipophilic cations are
formed with both the charged species (1 :1 with the first, 1 : 2
with the second one), then the overall consumption of a
cationic titrant imitates the 1 :1 stoichiometry because TlX3 is
not charged. For higher halide concentrations, however, the re-

coveries based on the presumption of the 1 :1 stoichiometry
must be higher as well. To confirm these considerations, new
solutions of Tl(NO3)3 in HNO3 were freshly prepared and
titrated with changing additions of either KCl or KBr. Some
discrepancies between predicted and found values (Table 3)
may follow either from incorrect equilibrium data for stability
constants or, which also seems probable, from the influence of
precipitation reactions on the conditional values of these con-
stants. Concerning recoveries for higher excess of halides, the
data in Table 3 are intermittently in surprising agreement.

4 Conclusions

Although the equilibria of thallium(III) halide complexes seem
more complicated than usually considered, this fact did not se-
riously influence the analytical applications of procedures in
which direct measurement of the signal is utilized. Such proce-
dures usually prescribe the use of some constant conditions
which must be applied to both the calibration solutions and the
samples. Thus, analogously to spectrophotometric or stripping
voltammetric methods for the Tl(III) determination, the proce-
dures based on direct potentiometric measurements with a
CPISE described here can be recommended. To avoid the ma-
trix effect on the slope of the calibration graph, the well-known
standard multi-addition method, in which the slope factor is de-
termined simultaneously with the concentration by iterative
calculation, is especially suitable. On the contrary, the titration
method based on precipitation of Tl(III) halide anionic com-
plexes with cationic titrants is more sensitive to the overall con-
tent of halide present the sample and the interfering effect of
bromide is higher than of chloride.
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Abstract A sensitive and reliable ETAAS determination of
metal traces in high purity silver after total (Bi, Cd, Co, Cr, Cu,
Fe, Mn, Ni, Pb) and partial (As, Hg, Sb, Se) separation of the
matrix with ascorbic acid is described. The temperature pro-
gram is optimized for analyte determination in ascorbic acid
media and in 1% silver solution.

Introduction

The determination of trace impurities in high-purity silver is
important due to its application in microelectronics and phar-
macy. Due to the insufficient sensitivity of the flame atomic ab-
sorption spectroscopy (AAS) and the relative strong silver ma-
trix interference effect in the graphite furnace AAS [1] separa-
tion and preconcentration procedures are generally required prior
to the determination [1–6]. The applied methods include mainly
separation of the matrix either by precipitation as AgCl [2–5],
or by extraction of the macrocomponent silver with selectively
complexing agents [1, 6]. After precipitation as AgCl, the liq-

uid aqueous phase contains relative high concentration of chlo-
rides, undesired for electrothermal AAS. The extraction separa-
tion of the matrix does not allow the achievement of high pre-
concentration factors.

The present paper describes a simple preconcentration tech-
nique for determination of traces of As, Bi, Cd, Co, Cr, Cu, Fe,
Hg, Mn, Ni, Pb, Sb, Se after reductive precipitation of the ma-
trix with ascorbic acid. Ascorbic acid as organic modifier ensures
appropriate conditions for AAS measurements in the graphite
furnace. Silver as matrix media acts as physical modifier [7] in
the case of the determination of As, Hg, Sb and Se.

Experimental

Apparatus and reagents. The measurements were performed
with a Zeeman Perkin Elmer 3030 atomic absorption spectrom-
eter and HGA-600 atomizer. A high-purity silver metal in gran-
ular form, produced by electrolytic deposition (Institute for high-
purity substances, University of Sofia), was used for the inves-
tigations. Standard solutions for AAS of 1 g/L (BDH) were ap-
plied for preparation of working standard solutions by appro-
priate dilution. Nitric acid (p.a. Merck) was additionally puri-
fied by distillation and the ascorbic acid (p.a. Merck) – by re-
crystallization. Doubly distilled water was used throughout.

Procedure. In two small beakers (50 mL) two parallel silver
samples (0.500 ± 0.001) g each were weighed. To one sample
1.00 mL of mixed standard solution was added and then the
samples were dissolved in 5 mL HNO3 (1:1), covered by watch
glasses, by gentle heating. After the dissolution, the watch
glasses were rinsed above the beakers and removed. The sam-
ples were placed on a sand bath (120°C) and the nitric acid
evaporated till moisture salts were obtained. The samples were
quantitatively replaced into glass centrifuge tubes (10 mL) with
water (3.0 mL). Then the preconcentration procedure was car-
ried out in two different modes:

a) Procedure for separation after total reductive matrix precipi-
tation: To the centrifuge tubes with the sample solutions, 2.0 mL
10% ascorbic acid were added and heated in a water bath for 
15 min. After cooling to room temperature the samples were cen-
trifuged at 4500 rpm for 2 min. The supernatant solution above
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