
Abstract Established methods for imaging of biological
or biomimetic samples, such as fluorescence and optical
microscopy, magnetic resonance imaging (MRI), X-ray
tomography or positron emission tomography (PET) are
currently complemented by infrared (both near-IR and
mid-IR) as well as Raman spectroscopic imaging, whether
it be on a microscopic or macroscopic scale. These vibra-
tional spectroscopic techniques provide a wealth of infor-
mation without a priori knowledge of either the spectral
data or the composition of the sample. Infrared radiation
does not harm the organism, no electric potential needs to
be applied, and the measurements are not influenced by
electromagnetic fields. In addition, no extrinsic labeling
or staining, which may perturb the system under investi-
gation, has to be added. The immense volume of informa-
tion contained in spectroscopic images requires multivari-
ate analysis methodologies in order to effectively mine
the chemical and spatial information contained within the
data as well as to analyze a time-series of images in order
to reveal the origin of a chemical or biochemical process.
The promise and limitations of this new analytical tool are
surveyed in this review.

Introduction

It is an old dream of scientists, engineers and physicians
to be able to generate high-fidelity chemical images along-
side conventional optical images. Chemical images such
as these should be rapidly obtainable and should be of high
spatial and energetic resolution. Within recent years, a
new imaging technique has emerged which serves this
goal: focal plane array detectors (FPA) coupled to near-
IR, mid-IR or Raman spectrometers produce spatially-re-
solved spectral information in a short observation time. 
A wealth of information can be derived from the intrinsic
characteristics of the vibrational images thus obtained.
Most importantly, no sophisticated markers have to be
added in order to determine the presence and distribution
of the chemical constituents (Fig.1) [1]. The contrast in
vibrational images is solely derived from differences in
the spectral and spatial heterogeneity of the biochemical
components. Therefore, a single imaging data set contains
an inherent multiplicity of contrast-producing mechanisms
that arise from differences in the biochemical composition
[2] (Fig.2). This type of spectroscopic imaging is typi-
cally referred to as hyperspectral imaging because of the
additional chemical or spectra dimensionality afforded
over conventional optical imaging by the ability to image
the sample at a number of different optical wavelengths or
frequencies. Each spectral channel or image slice can be
considered as another chemical probe or dimension to the
data. So far, the lack of appropriate in-situ imaging tech-
niques imposed certain limits to investigations [3]. Exist-
ing microscopic raster-scanning techniques cannot repeat-
edly be applied because of the extremely high time de-
mand of 15 to 20 h per chemical image. Over such ex-
tended measuring times, on-going processes within a bio-
logical sample may have been disturbed or a synthesized
sample may have undergone changes.

Most of the array detectors used nowadays for mid-IR
chemical imaging have been developed for military appli-
cations. They became available for civil application in the
early nineties [4, 5]. The first commercial mid-IR imaging
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spectrometer appeared on the market soon afterwards.
Presently, the main application fields for imaging spec-
trometers in civil research are biomedical diagnosis and
polymer research. In polymer research, IR imaging has
been applied to analyze the static and dynamic behavior
of multi-component systems [6]. These include diffusion,
phase separation, and identification of the different com-
ponents [7]. IR imaging has allowed dynamic processes
with a half-life of three minutes to be followed, e.g. poly-
mer dissolution. Raman imaging has revealed the spatial
distribution of crystallinity of syndiotactic polystyrene af-
ter all other instrumental methods failed [8]. Moreover,
the chemical heterogeneity in emulsion systems, an im-
portant feature in understanding the microstructure of
commercial products, could be described by Raman imag-
ing as well [9]. The course of solid-phase combinatorial
syntheses has been monitored and multiple products have
successfully been characterized by near-IR imaging [10].

Bioanalytical imaging

One of the best known examples to demonstrate the
promise of vibrational spectroscopy in bioanalytical ap-
plications is in the diagnosis of breast cancer [11], the

most common malignant tumor among women. Breast
cancer causes approximately 500.000 deaths each year
world-wide. The conventional method for diagnosing and
evaluating the prognosis is histopathological examination
of biopsy samples. Even with the utilization of a clearly
defined classification standard, pathologists do not always
arrive at the same conclusion [12]. The search for more
quantifiable methods, which can maintain existing visual-
ization protocols while simultaneously adding a quantita-
tive analytical aspect, has significant appeal. Vibrational
spectroscopy has already shown its ability to meet the de-
mands for more quantifiable results with virtually any
kind of sample [13]. Its greatest promise consists in its in-
herent ability to detect chemical changes in biosamples
even before they become morphologically apparent.

Unlike previous step-and-collect or mapping experi-
ments, the new technique using FPAs is a true imaging
technique, acquiring both spatial and spectral information
simultaneously [14]. State-of-the-art commercial instru-
ments are able to provide thousands of spectra with near-
diffraction-limited spatial resolution and medium spectral
resolution in only a few minutes. The huge gain in mea-
surement speed in imaging is based on the simultaneous
detection of several thousand spectra by individual pixels
across the detector array. Sample domains of unexpected
properties are uncovered because the total area is always
surveyed. The disadvantage of current FPA technology is
a slight variation of physical parameters between individ-
ual detector pixels.

In comparison to imaging, the time-consuming map-
ping technique (Fig.3) relies on one single detector. The
advantages of the mapping technique are mainly based on
the practically invariant physical parameters of this detec-
tor during the experiment. This advantage may result in
lower detection limits and/or a reduced danger of spectral
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Fig.1a, b Mid-IR and VIS transmission images of a brain tissue
section of a rat, sample size approx. 400 × 400 µm2. The tissue sec-
tion was transferred onto a CaF2 window and air dried. The image
area per pixel of the 64 × 64 MCT detector array meets the size of
a single biological cell. (a) Mid-IR image of the protein/lipid ratio
determined from the band intensities at 3293 cm–1 (N-H str) and
2926 cm–1 (C-H str); red color indicates high values, blue color
low values. (b) Microscopic image in the visible range; due to the
alignment of the CCD camera with respect to the IR camera the
VIS image is rotated counter-clockwise by approx. 10°



artifacts. On the other hand, the lengthy measurement
times in mapping experiments often require that a pre-se-
lection of just a minimum number of positions across the
sample area has to be made. The chances of finding do-
mains with unexpected properties across the sample area
are markedly reduced in this kind of supervised investiga-
tion. Obviously, mapping and imaging are to a large ex-
tent complementary.

Vibrational properties can be measured of any type of
sample under any given physical conditions. This unique
advantage together with the recent appearance of high-
tech spectrometer components put high expectations on
vibrational imaging and led to an increasing number of
feature articles and accelerated papers appearing very re-
cently [3, 15–18]. As with every emerging technique, the
terminology has not yet been completely settled. The
terms imaging (by taking all the spectra of the chosen
sample area at once under an array detector without mov-
ing the sample, cf. Fig.1) and mapping (by stepwise mov-
ing the sample under a single channel detector while tak-
ing a spectrum after each movement, cf. Fig.3) are no
longer disputed; however, the distinction between macro
imaging and micro imaging is still ambiguous. For exam-
ple, if a sample of 1 cm2 size is imaged at a spatial resolu-
tion of less than 10 µm per pixel, its size is macro but its
spatial resolution is micro. Clearly, the range of spatial
scales that vibrational imaging can be applied to is enor-
mous. There has a 13 order of magnitude size difference
been reported for images collected on similar FPAs [17].
With respect to biomedical applications, the ambiguous
terms macro imaging and micro imaging may be replaced
by in-situ imaging and ex-situ imaging, because macro-
scopic measurements are usually performed under in-situ
conditions, whereas microscopic measurements typically
demand ex-situ conditions.

The recent technical development of focal-plane array
detectors, tunable optical filters, as well as computer hard-
ware and software enables us to exploit a variety of near-
IR, mid-IR and Raman techniques for practical analytical
applications [3]. The complementary mid-IR and Raman
techniques both provide superior specificity due to their
fingerprint capability. The advantage of NIR imaging is
that its enhanced penetration depth makes analyses under
in-vivo conditions possible [19]. In addition, near-IR data
may contain contributions from electronic excitations to-
gether with the vibrational information [20]. This combi-
nation of electronic and vibrational information has been
proven to provide specific insight into biochemical pro-
cesses [21].

Thanks to the array detection, the time required for the
data collection has been cut down by almost two orders of
magnitude, presently to 1 to 15 min per data set. These ex-
perimental data are generated at such a fast rate (several
megabytes per minute) that image processing often is be-
coming more demanding than the spectral measurement
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Fig. 2a–c Mid-IR imaging of carotid plaques: (a) VIS micro-
graph of a transverse section across a human aorta wall. The inte-
rior part of the section (intima) is on the left side, the junction to
muscular tissue (adventitia) on the right side. A continuous se-
quence of 64 × 64 images has been taken and pooled for evalua-
tion. (b) Typical infrared spectrum of the intima area. (c) Histo-
logical (I - sudan stain) and FTIR spectral images of the transverse
section across the human aorta (II - 1620 cm–1; III - 1735 cm–1; 
IV - 1170 cm–1; V - 1655 cm–1; VI - 1454 cm–1). Red color indicates
high values, blue color low values. New features are found partic-
ularly in (V) and (VI), whereas (III) and (IV) resemble the conven-
tionally stained image (I) more closely

Intima                        Media                                   Adventitia



itself. The smallest FPA presently used in commercial in-
struments consists of 64 × 64 pixels. This FPA type al-
ready generates 4096 independent spectra per scan. Under
such circumstances, the familiar problem of collecting a
statistically required minimum number of independent
data becomes more or less obsolete. The huge amount of
spectral data now at hand leads to quite another problem:
image construction algorithms are able to provide colorful
images of reasonable appearance even from junk spectra
if those algorithms are uncritically applied or used as

black boxes. The necessity of carefully checking the ex-
perimental spectra behind the images has to be empha-
sized.

Conventional optical images are collected over the en-
tire wavelength response range of a detector. Such images
convey information about bulk properties of the sample
such as topography, thickness or refractive index; how-
ever, they rarely contain specific chemical information.
Those images will subsequently be referred to as bright-
field images (Fig. 4a). In contrast, an image sampled
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Fig.3a, b Mid-IR mapping of
squamous cell carcinoma tis-
sue. (a) VIS transmission image
of a tumor section, the map-
ping positions are indicated.
(b) Mid-IR microscope spectra
of the selected sampling posi-
tions in (a). Arrows point to
spectral regions showing dis-
tinct differences for different
tumor areas. Sample spot sizes
are 150 × 150 µm. The micro-
scope is equipped with a com-
puterized XY stage. The spec-
tra are off-set for clarity



merely over a very limited wavelength range – usually
one particular spectral band – is called a spectral image
(Fig.4b). Contrast in a chemical image as a function of
absorption by a particular molecular functional group in
the sample is often denoted a functional group image.

Biosystems are often far too complex to be fully ex-
plained in the traditional terms of functional group imag-
ing. Ascertaining a biological response of a particular bio-
functional system to an external stimulus may be more
important than their investigation in terms of chemical
composition. Ascertaining the biological or biochemical
response is denoted functional imaging. The concepts be-
hind functional imaging can be applied to a wide variety
of problems, medical and non-medical, where the spatial
and temporal response to an excitation is of interest.

Spectroscopic background

Spectra of biomolecules

Vibrational spectra of cells and tissues are dominated by
bands due to proteins, since proteins are the most abun-
dant species in cells (Fig.5). Protein spectra in turn are
dominated by the so-called amide I band between 1700–
1600 cm–1 that is primarily associated with the stretching
motion of the C = O unit within the amide group. This
peak sensitively indicates changes in the neighborhood 

of the peptide linkage and provides excellent insight into
the secondary structure of the protein [22]. The amide I
band has already been used to image the microstructures
in Fig.4b. Weaker protein bands include the amide II
band between 1580–1510 cm–1 (C-N stretching coupled to
a CNH deformation motion), the amide III band between
1400-1200 cm–1 (coupled C-H/N-H deformation) and a
number of side-chain vibrations. These weaker bands in
the fingerprint region are often of higher diagnostic value
[23] than broader bands such as those assigned to NH
stretching vibrations (amide A around 3300 cm–1, amide
B around 3100 cm–1).

Until recently, practically all vibrational studies on
structural changes in proteins have used the mid-IR region
and have concentrated on the conformation-sensitive
amide I, amide II, and amide III modes. The well-estab-
lished structure-spectra relationships of the mid-IR region
[24] are now being correlated to features in less well un-
derstood spectral regions. The generalized 2-D correlation
method developed by Noda [25] was successfully applied
for monitoring structural changes of proteins in aqueous
solution [26]. Near-IR wavelengths have been attributed
by this method to secondary structural blocks of proteins
[27]. A 2-D static correlation mode was developed in or-
der to interpret structurally less clearly assigned bands, or
possibly misassigned bands in other spectra [28]. Exam-
ples have been given for correlations of IR vs. Raman and
Raman vs. circular dichroism [28].
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Fig.4a–c Microstructured
biopolymer (poly-ε-benzoyl-
carbonyl-L-lysine) grown on a
self-assembled thiol mono-
layer. A thiol monolayer was
formed on a CaF2 substrate
covered by a 50 nm gold layer.
(a) Bright field transmission
image (64 × 64 MCT detector
array) of the mid-IR region
2000-900 cm–1 reveals topo-
logical information. The com-
plete data set comprises 4096
IR spectra, total collection time
is less than 10 min. Black
spots in the boundary regions
indicate bad pixels due to par-
tial delamination of the detec-
tor array. (b) Spectral image
computed from the same data
by taking the ratio of the inten-
sities of C = O stretching
(1696 cm–1) and amide I (1657
cm–1) bands. Darker shades in-
side the squares indicate lower
C = O/amide concentration ra-
tios, brighter shades between
the squares correspond to sites
of increased C = O/amide con-
centration ratios. (c) Typical
spectra (averages from 5 pix-
els) of the squares and the
spaces between squares indi-
cate the high sensitivity of the
measurements



Vibrational spectroscopic techniques

Vibrational techniques are easy-to-perform, non-destruc-
tive, are minimally invasive or even non-invasive [29]. 
IR spectroscopy has attracted great attention for biodiag-
nostic purposes [30]. One restriction in the mid-IR range
is the requirement for tissue to be removed from subjects
before analysis (ex-vivo investigation) [31]. However, this
is not a serious restriction as biopsies are routinely taken
for many conditions. Whether it is a mapping or imaging
experiment, diffraction effects limit the spatial resolution
in the mid-IR range (4000-400 cm–1 or 2.5-25 µm) to ap-
prox. 5-10 µm.

Most mid-IR imaging measurements are still per-
formed in transmission mode. This is partly due to the fact
that the microscopes that have been employed are modi-
fied single-point systems. As a result they are not opti-
mized for imaging into an infrared focal-plane array de-
tector and perform particularly poorly in reflectance
where there is less opportunity to compensate for optical
losses. More recently, an infrared microscope that was
specifically designed for infrared imaging has appeared
on the market. Recall that typical conventional measure-
ments are assumed to be performed on optically homoge-
neous sample areas (diffuse reflection measurements are
an exception in this regard), whereas images are only ob-
served in the case of optically inhomogeneous samples.
Nowadays, measurements of mid-IR external reflection
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Fig.5a,b Representative microscopic spectra tissue sections: (a)
IR spectrum; (b) Raman spectrum. The assignments of the major
bands are indicated

Fig.6 a,b Cellular structure of untreated onionskin. (a) VIS bright-
field image with the nucleus in the upper left part of the cell (15 ×
objective; 107 × 107 µm2). (b) Spectral reflectance image (MCT
detector array, 32 × 32 pixels shown) of the same area computed
from the integrated intensity between 4550-4450 cm–1 in order to
highlight the cellular contours. Red color indicates high values,
blue color low values. Note the structural differences between (a)
and (b) for the nucleus and the distribution of the cytoplasma at the
cell border
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are easily accomplished (Fig.6). Mid-IR imaging can
even be done under ATR conditions (Fig.7), which is an
important step towards the fast in-situ analysis of bioma-
terial, e.g. the real-time analysis of tissue sections right in
the operating theatre.

Early Raman measurements of biosamples were hin-
dered by two problems [32]: (i) the often strong fluores-
cence within these samples and (ii) limitations in previous
instrumentation, which necessitated high laser intensity
and long exposure time in order to obtain spectra of good
quality. Recent technical improvements helped remedy
this situation, particularly upon excitation of the Raman
spectra in the near-IR region [29], where fluorescence is
widely reduced and the penetration depth of the radiation
shows a maximum. In contrast to complementary IR spec-
troscopy, water is an ideal solvent in Raman spectroscopy,
which makes in-vivo Raman measurements by fiber optic
probes more feasible [33]. Typical acquisition times of
less than 30 s have been reported for fiber-optic-based Ra-
man in-vivo spectroscopy [34]. We want to make clear
that the cited acquisition times hold for spectroscopy and
not for imaging. In theory, the image quality in Raman
microscopy should be superior to IR microscopy based on
diffraction arguments, but the latter typically provides
higher sensitivity and faster acquisition times [3]. In-situ
Raman imaging of biological materials is typically not
performed for this reason. The sensitivity and selectivity
of Raman measurements may be improved (i) by utiliza-
tion of surface enhancement (Surface Enhanced Raman
Spectroscopy, SERS) [35] or (ii) by excitation in the UV
range from 200 to 260 nm, where the Raman signals from
aromatic amino acids as well as the purine and pyrimidine
bases of nucleic acids and proteins are resonance en-
hanced (Resonance Raman Spectroscopy) [36]. However,

based on existing technologies, in-vivo Raman imaging
utilizing the SERS effect is unlikely to be practical.

The near-IR region is sometimes considered a compro-
mise between the trade-offs that must be made in choos-
ing between IR and Raman imaging. Near-IR spectral
imaging just like IR spectral imaging should not be con-
fused with IR thermography, where the thermal emission
of the tissue is recorded. Near-IR spectral imaging relies
on overtone and combination vibrational bands as well as
low energy electronic transitions between 13000 and
4000 cm–1 (770–2500 nm). Light of those wavelengths
penetrates deeper into tissue than visible or mid-IR radia-
tion. Spectral features are broad and weaker than the cor-
responding fundamental modes. Lower extinction coeffi-
cients, initially considered a drawback, allow thicker sam-
ples to be investigated, and they cause an extended linear
range of the Lambert-Beer law. In-vivo monitoring by
near-IR reflectance imaging has already been introduced
into the clinic [21]. The near-IR reflectance of tissue is
governed by the absorbance of the tissue as well as its
bulk scattering properties. Powerful multivariate statisti-
cal methods permit the extraction of chemical and spatial
information [19].

One lasting reservation concerns the separability
among particular classes of organic compounds found in
the near-IR range. Recently, this question was explored
both qualitatively and quantitatively [37]. While there 
is more chemical specificity in the IR region 2500 to 
500 cm–1 there is sufficient specificity throughout the
near-IR region to allow organic compounds of one class to
be identified and quantified in the midst of interference
from the other classes. In conclusion, near-IR spec-
troscopy is not just a convenient tool for quantitative de-
terminations of less complex mixtures. The combination
of superior technical properties, larger penetration depth
and particular information content currently makes near-
IR among the first choices as an in-vivo imaging tech-
nique.

Instrumentation for vibrational imaging

In order to build a spectroscopic imaging system, one
needs two major components: a camera with which to col-
lect images, and some means of selecting the wavelengths
at which images will be collected. For Fourier transform
instruments, images are acquired as a function of mirror
displacement of a Michelson interferometer, and the re-
sulting interferogram-based spectroscopic imaging data
cube is later Fourier transformed, giving the final spectro-
scopic data set. Fourier transform instruments have to be
operated in the step-scan mode in order to collect a com-
plete image at each particular mirror position [5]. For
non-Fourier transform instruments, images are collected
using some form of a bandpass filter to allow through to
the camera only a narrow portion of the light to which the
camera is sensitive. The simplest means of accomplishing
this is to use a set of bandpass filters, often mounted in a
wheel-like apparatus for ease of switching and to change

Fig.7 IR ATR spectral image (64 × 64 MCT detector array) of a
piece of ham. The intensity observed at 1535 cm–1 was used to
construct the image. The sample was laid on the optical surface of
a horizontal ATR crystal, no sample preparation was necessary



the filters with each image. This method, while useful,
can be cumbersome.

Two other means of accomplishing this separation are
acousto-optical tunable filters (AOTF) and liquid crystal
tunable filters (LCTF) [38]. While AOTF technology can
be utilized to create near-IR spectrometers, image-quality
AOTF crystals are difficult to produce and suffer from im-
age blurring along one axis of the image. For this reason,
LCTF technology has been much easier to apply. The op-
tics are simpler (straight through for LCTFs and at an an-
gle for AOTFs), resulting in a much easier marriage be-
tween filter and camera lens.

Charge Couple Device (CCD) cameras are commonly
employed today. They are sensitive from 400 to 1100 nm.
In order to get reasonable quality spectra, near-IR spectro-
scopic imaging application require a CCD camera with at
least a 12-bit analog-to-digital (A/D) converter (4096
grayscale levels), and sometimes as high as a 16-bit A/D
(65 536 grayscale levels). This increase in dynamic range
is gained at the cost of speed, with the lower dynamic
range camera systems being much faster. Front-illumi-
nated CCD array elements have a maximum quantum ef-
ficiency (QE) of approximately 40%, while the more effi-
cient back-illuminated CCD array elements have a maxi-
mum QE of approximately 80%, as well as a shift in max-
imum sensitivity towards the near-IR. For this reason,
back-illuminated CCD elements are preferable for near-
IR spectroscopic imaging applications.

The longer wavelength near-IR spectral region can also
be accessed using InGaAS, InSb or PtSi array cameras.
The detection regions for arrays of these types are very
similar to the wavelength sensitivity regions of their sin-
gle-pixel element versions and extend partly into the mid-
IR region. A comprehensive review of IR detector arrays
has recently been published [17]. The currently dominant
array type for the mid-IR is the HgCdTe (MCT) detector,
as in the case of the single-pixel element version. The
technical breakthrough occurred after the hybrid principle
was introduced for the construction of the array, i.e. the
photon detection and the signal readout were separated
into two semiconductor layers. Intended for use in ther-
mal imaging systems the two layers of the hybrid arrays
start to disintegrate after a large number cool-thaw-cycles
because of the thermal mismatch of the two layers. Aver-
age lifetimes of MCT arrays are between 1 and 2 years if
not kept permanently at liquid nitrogen temperatures. The
replacement costs for a 64 × 64 MCT arrray amount to ap-
prox. $5000, rising significantly with increasing pixel
numbers. Other types of infrared array detectors such as
InSb or uncooled cameras have significantly longer life-
times.

Processing

Figure 8a shows a representation of a spectroscopic imag-
ing data cube. The resulting data set is a three-dimen-
sional array of values with spatial distance in the x and y
dimensions and wavelength or frequency along the z di-

mension. Slices of the array along the x, y directions and
perpendicular to the z direction provide images at individ-
ual wavelengths, frequencies or mirror positions, depend-
ing on the data collection methodology, while rows of
data extracted along the z direction provide individual
spectra of interferograms from particular spatial locations.
The two spectroscopic imaging data cubes in Fig.8b re-
present spectroscopic imaging data collected over time.
The result of this is a four-dimensional data set which can
be analyzed in a variety of ways.

Given the size of these multi-dimensional data sets
which can sometimes be larger than 100 MB, it is not sur-
prising that much work is being focused on developing
processing methodologies to extract relevant information
and reduce the size and complexity of the data down to a
more manageable and information-rich set [39].

Image analysis

For some applications, viewing images simply taken at a
single wavelength may suffice, or new images created
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Fig.8a–c Spectroscopic imaging data cube. (a) Each slice of the
data cube in the xy directions represents an spectral image taken by
the detector array at a particular wavelength or at a particular mir-
ror position in the case of a Fourier transform instrument. A spec-
trum is obtained from the series of consecutive pixels in the z di-
rection. (b, c) Measurement series may be evaluated in a variety of
ways depending upon instrumentation used (Fourier transform/
non-Fourier transform) and parameters observed



from the difference or ratio between two individual wave-
length images representing the maxima of two absor-
bances. Even though these simple approaches do not fully

utilize the wealth of data contained in a spectroscopic im-
age, they already provide rich structural insights. The sin-
gle wavelength approach involves some risk of misinter-
pretation, because the depicted absorbance changes may
be dominated or at least biased by variations in thickness
across the sample layer. Such variations are common
among biosamples, and the evaluation of band ratios is by
far the safer choice (Fig.9).

Analysis methodologies that use the entire spectral
width of the data are more powerful than their discrete
wavelength counterparts. Partitioning together those spec-
tra that share common features into a small number of
groups or classes is one means by which the large
amounts of data can be reduced to a more meaningful and
interpretable set. Two such classification methodologies
are supervised classification, where the data are parti-
tioned according to their similarity to pre-defined training
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Fig.9a–d Algae from eutrophic waters, air dried on a CaF2 win-
dow. (a) VIS bright-field image showing algae filaments and egg-
shaped diatoms (15 × objective; 107 × 107 µm2). (b) Normalized
spectral transmittance image (32 × 32 MCT detector array) of the
same area computed as ratio of the integrated intensity in the range
1290-1010 cm–1 (silica, sugar, phosphates) divided by the intensity
in the range 1700-1600 cm–1 (proteins). Red color indicates high
values, blue color low values. Diatoms are easily located by their
silica content emphasized after normalization. (c) This image was
computed by subtraction instead of taking ratios. First a spectrum
was extracted from the filament and subsequently subtracted from
all spectra across the image (factor automatically adjusted for com-
plete compensation of protein). Note the different image obtained
by this procedure. (d) IR spectra for representative positions (sil-
ica/non-silica) in image (b)



sets, and unsupervised classification, where the data are
partitioned based solely on some measure of their vari-
ance without use of any a priori information. Each of
these methodologies has its strengths and weaknesses, but
the two are in many ways complementary. Unsupervised
analyses, in conjunction with a variety of spectral normal-
ization routines, are powerful exploratory tools, and, be-
cause they have a paradigm or model-free analysis
methodology, they allow for the discovery of both novel
and anticipated results. The usefulness of these methods
in the analysis of a variety of near-IR spectroscopic imag-
ing applications has been shown [40, 41]. Supervised
classification methodologies, on the other hand, require
some a priori knowledge of the data and the selection of
pre-defined training sets against which to classify the
data. This can be a limitation in data exploration but al-
lows for a more precise classification within the bound-
aries determined by the choice of training sets [42, 43].

The spectra contained in a spectroscopic imaging data
cube are in all ways identical to those acquired as a single
spectrum. They may, therefore, be manipulated using all
of the same tools used by spectroscopists for decades.
This includes the taking of derivatives, the normalization
of spectra, peak enhancement/deconvolution methods,
offset corrections and more. Functional group mapping is
the most frequently used approach to the analysis of spec-
troscopic maps. In functional group mapping, the inte-
grated area, peak intensity, peak position or intensities of
absorption bands arising from specific functional groups
are plotted as a function of spatial position within the
map. The functional group mapping approach is valuable,
but it gives information only on a single peak. Taking the
ratio of the intensity of two bands or the application of
some multi-wavelength computational algorithm can pro-
duce a variety of functional group maps from a single im-
age cube.

One other approach to display multi-wavelength com-
ponents is composite imaging, which has been used ex-
tensivley to analyze visible and IR satellite geographical
images [44, 45]. In composite imaging, the distribution of
one feature/component of interest in an image is displayed
in red, green or blue. The distributions of two other com-
ponents are displayed with the remaining colors. Com-
bining these individual color maps produces an RGB image
that shows the distribution of all three features/compo-
nents simultaneously. This technique allows the simulta-
neous display of up to 3 functional group maps in a man-
ner that takes advantage of our mind’s natural ability to
detect subtle differences and patterns in color, shading
and spatial positioning in 2-dimensional images. As ap-
plied to microscope maps of tissue samples, this tech-
nique can be quite useful, and has been given the term
“digital staining” [46]. Digital staining remains subjec-
tive, however, as the spectral features corresponding to
the component of interest in the tissue must still be cho-
sen by the investigator. Subjectivity can be largely re-
moved by the application of multivariate pattern recog-
nition of classification techniques to spectroscopic maps
[42, 47].

Unsupervised classification methodologies

Principal component (PC) analysis identifies directions
(prinicpal components) along which the variance of the
data is maximal. PC methods are a useful means of reduc-
ing an otherwise unmanageable number of individual
wavelength images (sometimes more than 2000) to a
smaller set of data, which sometimes contains useful in-
formation about the spatial variability of the spectra of the
sample [48, 49]. However, there is no guarantee, theoreti-
cal or empirical, that identifying directions of maximal
variance can or should differentiate distinct responses. If
more than one response occur, there is no guarantee that
each response will be assigned to one, and only one prin-
cipal component.

Other unsupervised classification methods, such as
hard k-means and fuzzy C-means clustering, can be used
to group spectra based upon the degree of similarity be-
tween spectra. Unsupervised cluster analysis methods are
generally excellent tools to use in the exploration of spec-
troscopic images because no previous knowledge of the
sample is required and since they do not introduce bias
into the analysis. As unsupervised analysis methodologies
are model-free, unexpected as well as anticipated re-
sponses can be identified [50]. However, even in the ex-
ploratory phase of the analysis, the user should have a
clear question about the sample in mind, and therefore an-
alyze the data in a fashion appropriate for addressing this
question.

Cluster analysis identifies regions of the sample that
have a similar spectral response by clustering the spectra
such that the differences in the intra-cluster spectral re-
sponses are minimized, while simultaneously maximizing
the inter-cluster differences between spectral responses.
In this implementation, the results of a cluster analysis in-
clude, for each cluster, the cluster centroid spectrum (viz.,
the weighted mean spectrum for the cluster), and the cor-
responding cluster membership map (viz., the spatial dis-
tribution of the cluster). Taken together, they answer two
commonly posed questions about spectroscopic imaging:
where did the different types of spectra occur (shown by
the cluster membership maps, Fig.10) and what were the
spectral characteristics (depicted by the cluster centroids,
Fig.11).

Supervised classification methodologies

Once regions with specific components have been identi-
fied through exploratory unsupervised analyses, the loca-
tion of those components can be more thoroughly investi-
gated using a supervised classifier. Training set spectra re-
quired for the supervised classifier can be extracted from
regions identified by the unsupervised analyses as con-
taining a specific component, or they can be selected from
the data set using previous knowledge of the composition
of the sample. The supervised classifier can then refine
the segmentation of the image by locating regions which
have spectral profiles matching the training spectra (Fig.12).
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Unsupervised analyses, combined with a supervised clas-
sifier, provide a means of locating the constituent compo-
nents without a priori knowledge of number or nature of
the components present in the sample. In addition, using
the spectra selected for the training set as targets in library
spectral search routines would also enable an automated
identification of the components.

Supervised pattern recognition methods are potentially
better suited to the development of clinically or industri-
ally useful data analysis methods. Supervised pattern
recognition techniques such as linear discriminant analy-
sis [51] (LDA) or neural networks make use of the fact
that the investigator often has a substantial amount of
spectroscopic data available (either biochemical or clini-
cal). For example, the investigator may know that spectra
arise from well-defined sample components or tissue
types. This information may then be used to train a LDA
algorithm to recognize the particular combinations of
variables (peak frequencies, bandwidths, relative intensi-
ties, etc.) in the spectra that are characteristic of these
sample components or tissue types.

Fig.10a–c IR reflectance im-
age of a biomineralized tita-
nium surface. Thin layers of
hydroxylapatite were synthe-
sized under a variety of condi-
tions. The uniformity of the
non-crystalline layer (approx. 1
cm2) was evaluated. (a) Indi-
vidually evaluated IR re-
flectance images each covering
an area of 400 × 400 µm2 do
not permit intercomparisons.
Blue color indicates low val-
ues. (b) 7 representative IR im-
ages were combined into one
contiguous file and subject to
cluster analysis (C-means clus-
tering). 5 distinct clusters were
found (cf. Fig.11 for the corre-
sponding centroid spectra).
Black areas indicate hydroxyl-
apatite-free regions. (c) The
distance between clusters is de-
picted by a correlation map.
Larger distances are indicated
by shades of orange. Faults in
material are easily recognized
by shades of gray [54]

Fig.11 Centroid spectra of the hydroxylapatite clusters shown in
Fig.10b reveal the physical and chemical uniformity across the
synthesized layer. Spectra 1–5 correspond to cluster colors red-or-
ange-lilac-yellow-green. Physical uniformity is related to the parti-
cle size and is indicated by the stray light slope towards shorter
wavelengths. The chemical uniformity is related to the phos-
phate/water ratio (band complexes at around 1000 cm–1 and 
3200 cm–1)



In-vivo applications

As an example of the image and spectral quality obtain-
able under in-vivo conditions a spectroscopic imaging
data set acquired from the dorsal surface of the hand of a
volunteer is used (Fig.13). As a representation of the
spectral variability of such a sample is difficult without
some form of data processing, fuzzy C-means clustering
was used to cluster together those spectra whose spectral
shapes were most similar. In order to reduce the spectral
variability due to offset from the unevenness of illumina-
tion across the curved surface of the hand, all of the opti-
cal density (OD) spectra in the data set were offset-cor-
rected such that the OD value of the 980 nm water ab-
sorbance of each spectrum was set to 0.2 OD.

Figure 13 shows the results of clustering the spectra
from the dorsal surface of the hand into five clusters.
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Fig.13a–c Results of an unsupervised classification (fuzzy C-
means cluster analysis) of a spectroscopic image of the dorsal sur-
face of a human hand. (a) A 760 nm reflectance image of the hand
surface as a reference. (b) The 760 nm reflectance image of the
dorsal surface of the hand with superimposed clustering results. 
(c) Shows the clusters centroid spectra, with the color of each
spectrum corresponding to the color of the cluster result depicted
in (b). The spectra were offset corrected at 980 nm (arrow) to re-
duce variability due to lighting

Fig.12 Microstructured polystyrene grown on a self-assembled
thiol monolayer. A thiol monolayer was formed on a CaF2 sub-
strate covered by a 50 nm gold layer. The stamped thiol squares
are 50 µm across and 20 µm apart from each other. Two IR trans-
mission images (64 × 64 MCT detector array) sampled at sites of
different layer thickness are combined into one contiguous file. (a)
Unsupervised classification (C-means clustering) recognizes mi-
crostructural patterns in a part of the image. (b) The central region
of the identified clusters was used as input for a linear discriminant
analysis (dark pixels). LDA reveals microstructures all over the
sampled area, regardless of the difference in layer thickness



Figure 13a shows a 760 nm reflectance image of the hand
as a reference. Figure 13b shows the spatial locations of
the pixels comprising each of the clusters. Figure 13c
shows the centroid, or average, spectrum from each of the
five clusters. The color of the cluster shown in Fig.13b
matches the color of the centroid spectra shown in Fig. 13c
(with the exception of the cluster shown in white, whose
centroid spectrum is represented by a dashed line). The
arrow shows the point at which the spectra were offset-
corrected. The centroid spectra shown in Fig.13c are
good-quality spectra which match well with those col-
lected using fiber optics, each exhibiting an obvious 
760 nm deoxy-hemoglobin absorbance and a prominent
980 nm water absorbance. Closer examination reveals
that the peak areas of both the deoxy-hemoglobin and wa-
ter bands are approximately the same for each of the five
clusters. The major difference between each of the cen-
troid spectra lies in the depth of the curve between 650
and 950 nm as well as the slope of the spectra between
800 and 950 nm, both of which represent to some degree
the scattering properties of the tissue and show the vari-
ability in scattering across the hand. This observation is
critical for the assessment which of data analysis method-
ologies will be useful for such in-vivo data sets; those
methods which assume homogeneity in the scattering
properties of tissue will not be as useful as those which
make no such assumption.

In addition to being used to analyze the spectral char-
acteristics of a sample at a single time instance, spectro-
scopic imaging techniques can also be used to monitor
changes in a sample over time. By collecting spectro-
scopic imaging data cubes (or relevant subsets of the entire
cube) over time, a four-dimensional data set can be built
up. A data set of this nature can be reduced to a more
manageable size in a variety of ways (cf. Fig.8b). The
spectroscopic imaging data cubes from each time-point in
the series can be individually analyzed for spatial varia-
tions in their spectra, individual wavelength images can
be extracted from the data cube for each time-point and
put together to form a time-series for a given wavelength,
or some form of algorithm can be used on the spectra of each
data cube to reduce it down to a single (or small number) of
relevant images to form a time-series. Or, conversely, the
entire set of spectra or the entire set of wavelength time-
series can be pooled together for one large analysis. None
of these, individually will allow for the full visualization
of the information contained in the four-dimensional data
set. However, taken together, they can allow the spectro-
scopist to understand the variations in the data more fully.

One example of this type of analysis is the assessment
of cardiac oxygenation and perfusion. It is important dur-
ing assessment of heart perfusion and ischemic damage
models to be able to determine the regional oxygenation
status of the cardiac tissue. To assess the usefulness of
near-IR spectroscopic imaging in this arena, a crystalloid-
perfused (i.e., not blood-perfused) arrested porcine heart
model was used, with three different perfusion states be-
ing utilized [52]. Figure 14 shows fuzzy C-means cluster-
ing results from the data sets acquired from hearts with

the three perfusion states. Figure 14d shows the centroid
spectra from clustering analysis of the pooled set of spec-
tra from all three data sets. As expected, the spectra match
those acquired using fiber optic spectrometers [53]. The
760 nm deoxy-myoglobin band (as there is no hemoglo-
bin in the crystalloid perfusate) is clearly larger in cen-
troid spectra III and IV, which dominate the surface of the
heart in Fig.14c, in which there is no perfusion of the sys-
tem, while those regions of clusters I and II, which domi-
nate the surface of the heart in both perfused states (Figs.
14a and 14b), have less deoxy-myoglobin. What is also
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Fig.14a–d Results of an unsupervised classification (fuzzy C-
means clustering) of the pooled spectra from a near-IR spectro-
scopic image taken of a porcine heart undergoing three different
perfusion states: normal perfusion, LAD artery occluded regional
ischemia, and no-flow global ischemia. As the spectra were pooled
prior to clustering, the clusters depicted in column I of (a)–(c), for
example, all belong to the same biochemical situation represented
by spectrum I in (d). (a) Clustering results superimposed on a 760
nm reflectance contour of the heart during normal perfusion. (b)
depicts the clustering results superimposed on the left anterior de-
scending (LAD) artery regional ischemia model, wherein the left
ventricle has had its perfusion compromised. (c) Shows the clus-
tering results superimposed on an image of the heart during com-
plete ischemia (no flow). (d) Shows the cluster centroid spectra
from each of the four clusters. The number of each spectrum cor-
responds to the number of the cluster depicted in (a), (b), and (c)



noticeable is that while the oxygenation of the left ventri-
cle is reduced on occlusion of the left anterior descending
(LAD) artery, as is expected, the oxygenation of the right
ventricle increased. This is due to the fact that the total
perfusion flow was not altered during LAD artery occlu-
sion, causing an overall increase in the perfusion rate to
the right ventricle and resulting in an increase in myoglo-
bin oxygenation.

Experimental

Near-IR spectroscopic images were collected using a Princeton In-
struments charge coupled device (CCD) camera consisting of a
512 × 512 back-illuminated SiTe CCD element and a 16-bit ST-
138 A/D converter (Princeton Instruments, Trenton, NJ). The im-
ages were collected as 256 × 256 arrays, binning the CCD in 2 × 2
squares. Wavelength selection was provided by a liquid crystal
tunable filter (LCTF) unit from Cambridge Research Instruments
(Cambridge, MA), which was used to scan through from 640 to
1040 nm at 10 nm intervals. Raw reflectance images were con-
verted to an optical density scale by ratioing the reflectance images
against images of a Kodak “Gray Card” white surface (Eastman
Kodak, Rochester, NY) taken at the same wavelengths and illumi-
nated identically to the images of the subjects [41]. This conver-
sion to an optical density scale allowed the spectra in each data
cube to be input into standard spectroscopic algorithms, as well,
and simultaneously giving the images a flat-field correction to ac-
count for inhomogeneities in the lighting and any clipping of the
image by the LCTF housing.

Mid-IR spectroscopic images shown in this paper were col-
lected on different Bio-Rad Stingray instruments, on a Bruker
Equinox 55/S equipped with an IRscope II microscope, as well as
on a prototype of the InSight IR from SpectralDimensions (Ol-
ney/MD). MCT detector arrays operating at liquid nitrogen tem-
perature were used in all instruments. Spectral resolution was typ-
ically set to either 8 or 16 cm–1. Due to the chosen resolution it was
not necessary to purge the optical path with dry gas. Single IR im-
ages were evaluated using software provided by the manufacturers
as well as using the Matlab software package. Pooled IR images
were evaluated using the 3D analysis package EvIdent (NRC, In-
stitute for Biodiagnostics, Winnipeg).

Conclusions and outlook

Spatially resolved chemical information can be obtained
for all kinds of molecules in their natural environment 
by IR and Raman imaging. The quality of the spectral
data in the images compares reasonably well with the
quality of spectra collected by traditional single-pixel de-
tectors. Acquisition times for complete images amount to
a few minutes, which leads to short total analysis times
and permits near-process analyses. Measurements can be
performed with the IR microscopes in either transmission
or reflection modes. Presently, these advantages are
mainly employed in polymer research and biomedical di-
agnosis.

Within a short time interval array detectors used in
imaging spectrometers produce an enormous number of
individual spectra and chemical images. Even the smallest
detector array of 64 × 64 pixels provides 4096 complete
spectra every few minutes. Such huge amounts of data
can no longer be evaluated by traditional methods. New
chemometric approaches need to be developed in order to

locate not only expected, but more importantly, to detect
unexpected events in the data stream. Common 2-dimen-
sional computational procedures do fully interpret the
data and for effective analysis we have to resort to multi-
variate methods. Among the existing multi-dimensional
evaluation procedures, clustering analysis has proved to
be extremely useful for the investigation of spectroscopic
imaging data. It is robust, rapid, and non-subjective; and,
as a priori knowledge of the spectral responses of the
sample is not involved in the analysis, it allows for the
discovery of both novel and anticipated features in the
data. Cluster analysis, especially when combined with
various spectral normalization routines, therefore makes
an excellent exploratory tool. Supervised classification
techniques, such as LDA, provide a much clearer picture
of both the spectral and spatial properties of the sample.
However, supervised methods required a priori know-
ledge of the spectral and spatial properties of the sample.
These can be obtained either by prior knowledge of the
chemical composition of the sample or by first performing
a series of exploratory clustering analyses.

Current infrared and Raman imaging instruments are
reliable and ready for routine applications, even though
they represent a new generation of technology. On-going
efforts, to open up more application areas by developing
novel accessories, and by elaborating data evaluation
strategies for spectral images will further improve the
range of uses of spectral imaging. Combinatorial analysis
as a complement to combinatorial synthesis will certainly
be one of the areas with high application potential. Simul-
taneous processes in complex systems will soon be inves-
tigated under in-situ conditions, e.g. reactions inside
nanostructured materials or within biological samples.
The present bottleneck in spectral imaging, treatment of
the vast amount of data, will be overcome by innovative
strategies for evaluation of spectral information. Tens or
even hundreds of thousands of spectra obtained day after
day cannot anymore be treated in the approved classical
manner. This development will likely proceed in a manner
similar to that witnessed for the evaluation of near-IR
spectral data which are typically treated in a statistical
manner rather than by molecular-physical considerations.
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