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Abstract
Raman spectroscopy is an important technique for analyzing the chemical composition of samples in many fields. A severe 
challenge often encountered in Raman measurements is the presence of a concurrent fluorescence background, especially 
in biological samples. In order to obtain accurate Raman spectra, the fluorescence background must be subtracted from the 
original Raman spectra. We proposed a shifted ratio spectrum method to subtract the strong fluorescence background from 
the original Raman spectrum. First, the original Raman spectrum is divided into multiple regions according to the spectral 
shape of the shifted ratio spectra, and then, Gaussian fitting is performed in each region. The fitting results are stitched 
together in order to obtain the complete fluorescence background. Finally, this fluorescence background is subtracted from 
the original spectrum to obtain a pure Raman spectrum. This method can accurately subtract the fluorescence background 
of Rhodamine 6G (R6G)/ethanol solution and serum. This highlights the great potential of this method for applications in 
both biological and non-biological samples.
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Introduction

To date, Raman spectroscopy has developed into a useful 
and powerful spectral analysis technique that can quickly 
and non-destructively identify the composition and micro-
structure of a sample. This technology has great applica-
tion potential, such as disease diagnosis [1–6], food safety 
testing [7, 8], mineral analysis [9, 10], explosives detection 
[11, 12], cultural relic identification [13], and quality control 
[14, 15]. A serious challenge often encountered in Raman 
measurements is the presence of a concurrent fluorescence 
background. Fluorescence often affects the detection of 
Raman signals because the fluorescence intensity is usually 
several orders of magnitude larger than the Raman scatter-
ing signal, especially in biological samples. For example, in 

human serum [16, 17], skin [18], and most drugs [19], some 
low-concentration impurities with large fluorescence yields 
are often difficult to remove. Even weak fluorescence with 
a quantum yield of about  10−4 can mask the Raman signal 
with a quantum yield of about  10−7. Strong fluorescence 
interference limits the application of Raman spectroscopy. 
Therefore, in order to obtain an accurate Raman spectrum 
of the sample, its fluorescence interference needs to be sub-
tracted from the original Raman spectrum.

A variety of methods have been developed to remove the 
fluorescence background, which can be divided into three 
types. The first type is based on sample pretreatment. For 
example, filtering [16] or photobleaching [18, 20] the sample 
before acquiring the Raman spectrum can effectively reduce 
the fluorescence background. However, pretreatment may 
change the composition and structure of the sample.

The second type is based on the difference between the 
intrinsic properties of Raman signals and fluorescence. For 
example, Raman signals precede fluorescence radiation, so 
the fluorescence signal can be reduced by using ultrashort 
laser pulses, intensified charge-coupled devices (ICCD), 
Kellman devices, and other time-resolved devices [19, 21]. 
The polarization characteristics of Raman signals and flu-
orescence are also different. Two spectra can be obtained 
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using parallel and perpendicular polarized excitation light. 
Subtracting these two spectra can also remove a certain 
amount of the fluorescence background [22]. The sources 
of Raman signals and fluorescence are also different. Usu-
ally, fluorescence is generated only when the wavelength of 
the laser matches the molecular energy level. Many samples 
have weak absorption of infrared and ultraviolet light. There-
fore, using infrared or ultraviolet light as an excitation light 
can effectively suppress fluorescence [23, 24]. In addition, 
fluorescence has another characteristic: when the wavelength 
of the excitation light shifts slightly, the Raman signal will 
also shift slightly accordingly, while the fluorescence back-
ground will hardly change. Based on this characteristic, the 
shifted excitation Raman difference spectroscopy (SERDS) 
method was proposed [25–29]. This method requires the 
use of light sources with different wavelengths that are very 
close to each other as excitation light, which can also remove 
the fluorescence background. However, the above methods 
all require the design and modification of the instruments, 
and the instruments involved may be complex and expen-
sive, so it is difficult to promote them on many devices.

Different from the previous two methods, the third type is 
to process the original Raman spectrum, such as frequency 
domain filtering [16, 30], wavelet transformation [31, 32], 
and polynomial fitting [33–35]. Among them, the use of 
polynomial fitting to subtract fluorescence background has 
been more commonly used in recent years. However, the 
above data processing methods may produce some artifacts 
or overfitting, which may cause errors when discussing spec-
tral details.

Recently, we proposed a Raman ratio spectrum method 
and successfully used it to extract weak Raman bands that 
heavily overlap with strong bands [36, 37]. We also extracted 
weak Raman spectra of hydration shells in aqueous solution 
to infer the microstructure of the hydration shells [38–40]. 
Inspired by this, we further proposed a data processing 
method for a shifted ratio spectrum method to subtract 
the fluorescence background in the Raman spectrum. This 
method can accurately subtract the fluorescence background 
in Rhodamine 6G (R6G)/ethanol solution and serum.

Experimental details

R6G (> 99.0%) and  C2H5OH (> 99.7%) were purchased from 
Sinopharm Chemical Reagent Co., Ltd. The R6G/ethanol 
solutions were prepared by weight. The serum samples were 
provided by the Affiliated Hospital of Xidian University and 
came from a healthy volunteer. The solutions were held in a 
 SiO2 cuboid cell (1 cm × 1 cm × 3 cm).

The experiments were conducted using a spontaneous 
Raman spectrometer equipped with a continuous laser 
(coherent, GenesisMX532-1000, 532 nm), a three-stage 

monochromator (Beijing Zhuoli Hanguang Instrument Co., 
Ltd., Omni λ-180D and Omni λ-5008i), and an electrically 
cooled CCD (Andor, DR-316B-LDC-DD), as described in 
detail previously [41]. The Raman spectra were measured 
in a back-scattering geometry with a spectral resolution of 
approximately 2.0  cm−1. The polarization of the laser was 
controlled using a Glan-Taylor prism and a half-wave plate. 
The polarization of the excitation light and the collected 
Raman scattering are in the same direction. The laser power 
used for R6G/ethanol solution is 120 mW and the exposure 
time is 12 s. The laser power used for serum is 250 mW and 
the exposure time is 60 s. The CCD was cooled to − 60 °C 
during the experiment.

Results and discussion

Principle of shifted ratio spectra

The proposed shifted ratio spectrum is a method to subtract 
the fluorescence background from the Raman spectrum by 
mathematical processing. Since the fluorescence peak is 
usually broad, a segment of the fluorescence spectrum can 
be fitted using a Gaussian peak. Here, it is assumed that an 
original fluorescence peak can be expressed by the follow-
ing equation:

A is the maximum intensity, λ0 is the center position of 
the Gaussian peak, and ω controls the width of the spec-
trum. Move the center position by Δλ nm, and the shifted 
fluorescence spectrum can be written as the following equa-
tion. The principle is to make Δλ as small as possible while 
clearly highlighting the spectral characteristics, about one 
order of magnitude smaller than the peak width.

Dividing the original spectrum I(λ) by the shifted spec-
trum I′(λ), the shifted ratio spectrum R(λ) is obtained, as 
shown in the following equation:

Then, plugging Eqs. (1) and (2) into Eq. (3), the shifted 
ratio spectrum R(λ) can be written as the following equation:

The first term in the above Eq. (4) is a constant. For 
a fluorescence peak, its width ω is usually relatively 
large, and Δλ is a small value selected artificially, so the 
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exponent of the second term 2Δλλ/ω2 tends to be infini-
tesimal. The second term can be approximately expanded 
using the first-order Taylor formula as follows:

Plugging Eq. (5) into Eq. (4), the shifted ratio spectrum 
R(λ) can be simplified to a linear equation as follows:

For example, the black solid line in Fig. 1a is a simu-
lated original fluorescence spectrum I(λ) (λ0 = 567 nm, 
ω = 30), and the red dotted line is the shifted fluorescence 
spectrum I′(λ) (Δλ = 0.5 nm). I(λ) divided by I′(λ) gives the 
shifted ratio spectrum R(λ), as shown by the pink solid line 
in Fig. 1b, which can be well fitted with a straight line, as 
shown by the blue dotted line. The above analysis should 
also be true in reverse, that is, if the shifted ratio spec-
trum R(λ) can be fitted with a straight line within a certain 
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wavelength range, then the fluorescence spectrum within 
this range can also be well fitted with a Gaussian peak.

In order to verify the correctness of the above analysis, 
we measured the fluorescence spectrum of R6G/ethanol 
solution. R6G is an organic laser dye with a high fluores-
cence quantum yield and is often used as a fluorescence 
probe molecule [42, 43]. As shown in Fig. 1c, the black 
solid line is the fluorescence spectrum of R6G/ethanol solu-
tion with a concentration of 0.0167 mM, and the red dotted 
line is the shifted spectrum (Δλ = 0.2 nm) which is obtained 
by shifting the spectrum to the low wavelength direction 
by 0.2 nm. The corresponding shifted ratio spectrum R(λ) 
is shown as the pink solid line in Fig. 1d. R(λ) is a curve 
instead of a straight line because the fluorescence spectrum 
of R6G is not a simple Gaussian distribution. However, we 
noticed that if the shifted ratio spectrum R(λ) is divided into 
several regions (vertical grayscale stripes), a straight line can 
be approximately fitted in each region, as shown in Fig. 1d 
(blue dotted line). So, the original fluorescence spectrum can 
also be fitted with a Gaussian peak in each divided area. The 
more region R(λ) is divided into, the smaller the fitting error 
is, but the amount of calculation will increase. Usually, the 
regions can be selected by observing the shape of the shifted 
ratio spectrum R(λ).

The fluorescence spectrum of the above R6G/ethanol 
solution (Fig. 2a, black solid line) was divided into six 

Fig. 1  a The simulated original fluorescence spectrum I(λ) 
(λ0 = 567  nm, ω = 30, black solid line) and the shifted fluorescence 
spectrum I′(λ) (Δλ = 0.5 nm, red dotted line). b The obtained shifted 
ratio spectrum R(λ) (pink solid line), which can be well fitted by a 
straight line (blue dotted line). c The fluorescence spectrum of 
R6G/ethanol solution with the concentration of 0.0167  mM (black 

solid line), and the shifted fluorescence spectrum (red dotted line, 
Δλ = 0.2  nm). d The obtained shifted ratio spectrum R(λ) of R6G/
ethanol solution (pink solid line), and the results of piecewise linear 
fitting (blue dotted line). The vertical gray stripes are the 6 regions 
divided by shifted ratio spectra
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regions and fitted with Gaussian peaks. The fitting result 
is shown in the red dotted line of Fig. 2a. The process of 
regional fitting is shown in Fig. S1 (as seen in Support-
ing Information). In order to highlight the accuracy of this 
method, the polynomial fitting method widely used in the lit-
erature was also applied to fit the original fluorescence spec-
trum, and the results are shown in Fig. 2b (green dotted line). 
The sixth-order polynomial fitting function used in Fig. 2b is 
shown in Equation S1 (as seen in Supporting Information). 
The literature usually uses fourth- to sixth-order polynomi-
als for fitting [44–46], so we use a sixth-order polynomial 
for fitting here. The fitting results of the two methods can 
be compared by the difference spectrum between the fitting 
spectrum and the original spectrum, as shown in Fig. 2c. 

From the results, it can be seen that the error of the piece-
wise Gaussian fitting (red line) is significantly smaller than 
that of the polynomial fitting (green line). Therefore, the 
shifted ratio spectrum method we proposed here can fit the 
fluorescence spectrum more accurately, and we can use this 
method to eliminate the fluorescence background in Raman 
spectra.

Fluorescence components subtraction in Raman 
spectrum of R6G/ethanol solution

In order to verify whether the shifted ratio spectrum method 
can be used to remove the fluorescence background in the 
Raman spectrum, the Raman spectrum of R6G/ethanol solu-
tion was measured, as shown in Fig. 3a (black solid line). 
By comparison, in the Raman spectrum of Fig. 3a, the shape 
of the fluorescence background is different from that in the 
fluorescence spectrum of Fig. 2a. This is because the con-
centration of the solution here is different from before. This 
solution was prepared by continuously diluting the concen-
tration of R6G until the Raman signal of ethanol could be 
weakly observed against a strong fluorescence background. 
The fluorescence spectrum of R6G will change with its 
concentration [47], but these do not affect the use of this 
method.

In the measured spectrum, the Raman signal of ethanol is 
very weak, almost being overwhelmed by the strong fluores-
cence signal of R6G. Therefore, the Raman signal of etha-
nol is difficult to obtain directly from the original spectrum. 
The shifted Raman spectrum (Fig. 3a, red dotted line) was 
obtained by shifting the original Raman spectrum toward 
low wavenumbers by 4.1  cm−1. And then, the shifted ratio 
spectrum R(λ) (Fig. 3b) was obtained by dividing the origi-
nal Raman spectrum by the shifted Raman spectrum. In the 
shifted ratio spectrum, it can be clearly observed that there 
are at least five spectral peaks, corresponding to the Raman 
signal of ethanol, and the star symbols are used to mark the 
peaks in Fig. 3b. This indicates that the Raman signal of 
ethanol, which is very weak in the original spectrum, can 
be amplified in the shifted ratio spectrum.

The entire original spectrum is appropriately divided into 
multiple regions according to the linearity of the shifted 
ratio spectrum. The principle of division is that in each small 
area, the shifted ratio spectrum can be linearly fitted. In this 
way, the fluorescence background of the original spectrum 
in the corresponding region can be fitted by a Gaussian peak. 
The pure Raman spectrum is obtained by subtracting the 
corresponding fluorescence background from the original 
spectrum. The same operation is performed in each area and 
then spliced to obtain a Raman spectrum without the fluo-
rescence background. It should be noted that before fitting 
the spectrum of each region, the band with the Raman signal 
must be deleted first. This can reduce the fitting error. The 

Fig. 2  a The black solid line is the fluorescence spectrum of R6G/
ethanol solution with a concentration of 0.0167 mM, the red dotted 
line is the results of the fitting by piecewise Gaussian fitting, and the 
vertical gray stripes are the 6 regions divided by shifted ratio spectra. 
b The black solid line is the fluorescence spectrum of R6G/ethanol 
solution with a concentration of 0.0167 mM and the green dotted line 
is the results of the fitting by a sixth-order polynomial. c The red line 
is the differential spectrum of panel (a) and the green line is the dif-
ferential spectrum of panel (b)
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specific range of the deleted band can be selected by observ-
ing the shifted ratio spectrum.

Taking the spectral range of 820 ~ 990  cm−1 as an exam-
ple, it can be seen from Fig. 3c that when the Raman sig-
nal is ignored, the shifted ratio spectrum (pink solid line) 
in this region can be well linearly fitted (blue dotted line). 
So, in this region, the fluorescence background of the origi-
nal spectrum can be fitted by a Gaussian peak in Fig. 3d 
(green dotted line). The pure Raman spectrum of ethanol 
can be obtained by subtracting the fitted fluorescence back-
ground from the original spectrum in this region, as shown 
in Fig. 3e.

The entire original spectrum was divided into several 
spectral regions, and the fluorescence background of each 
region was removed one by one, and then spliced it together 
to obtain the complete pure Raman spectrum of ethanol, as 
shown in Fig. 4a. The Raman characteristic peaks of etha-
nol were clearly observed at 443, 881, 1048, 1093, 1274, 
and 1453  cm−1 [48, 49]. This result is significantly better 
than that before subtracting the fluorescence background 
(Fig. 3a). Therefore, it can be seen from the results in Fig. 4 
that the Raman spectrum of ethanol obtained after subtract-
ing the fluorescence background is basically the same as the 
Raman spectrum of pure ethanol, except that the signal-to-
noise ratio is slightly reduced. This shows that the shifted 
ratio spectrum method can indeed effectively remove the 

fluorescence background in the Raman spectrum. In actual 
measurements, we can improve the signal-to-noise ratio by 
increasing the excitation light intensity, integration time, 
and number of repeated measurements when collecting the 
Raman spectrum.

Fluorescence interference subtraction in Raman 
spectrum of biological sample

The shifted ratio spectrum method of removing fluorescence 
interference can be used not only in the R6G/ethanol system, 
but also in biological samples such as blood. The content 
of blood components has always been an important basis 
for doctors to control drug dosage, analyze the interaction 
between pathogens and drugs, and track the recovery of 
patients. In addition, Raman spectroscopy analysis of human 
blood has been used in the detection of many pathogens [50, 
51]. However, there is strong fluorescence interference in the 
Raman spectrum of blood, which will affect the analysis of 
the Raman spectrum, so the fluorescence interference needs 
to be subtracted. Next, we will use the shifted ratio spectrum 
method to subtract the fluorescence background from the 
Raman spectrum of human blood.

The Raman spectrum of human serum was measured, as 
shown in Fig. 5a (black solid line), which is accompanied by 
a strong fluorescence background. Here, we shift the original 

Fig. 3  a The black solid line is 
the original Raman spectrum 
of R6G/ethanol solution and 
the red dotted line is the shifted 
spectrum, Δν = 4.1  cm−1. b The 
shifted ratio spectrum R(ν) of 
R6G/ethanol solution. c The 
pink solid line is a part of the 
shifted ratio spectrum in the 
range 820 ~ 990  cm−1 taken 
from panel (b) and the blue 
dotted line is the result of linear 
fitting after ignoring the Raman 
signal from the spectrum. d The 
black solid line is a part of the 
original Raman spectrum in 
the range 820 ~ 990  cm−1 taken 
from panel (a), the green dotted 
line is the result of Gaussian 
fitting after ignoring the Raman 
signal from the spectrum, and 
the vertical gray bands are the 
fluorescence background range 
on which the fitting depends. e 
The Raman spectrum of ethanol 
obtained by subtracting the 
fluorescence background
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spectrum to a low wavenumber by 3.2  cm−1 to obtain the 
shifted spectrum (red dotted line). The original spectrum was 
then divided by the shifted spectrum to obtain the shifted ratio 
spectrum (Fig. 5b). By regional fitting and subtracting the 
fluorescence background, the Raman spectrum of serum can 
be obtained (Fig. 5c). The Raman peaks at 1001  cm−1, 1154 
 cm−1, and 1514  cm−1 can be clearly observed, which may be 
attributed to C-C stretching vibration of the aromatic ring and 
the C-C (and C-N) stretching vibration and the C=C stretching 
vibration of carotene in serum [16, 52]. In addition to these 
three obvious peaks, several other peaks with extremely small 
intensities can also be obtained, located at 1212  cm−1, 1282 
 cm−1, and 1443  cm−1. These three peaks are almost unobserv-
able in the original spectrum.

Conclusions

In summary, in order to obtain accurate Raman spectra, the 
fluorescence background must be subtracted from the orig-
inal Raman spectra. We proposed a shifted ratio spectrum 

method to subtract the strong fluorescence background 
from the original Raman spectrum. First, the original 
Raman spectrum is divided into multiple regions accord-
ing to the spectral shape of the shifted ratio spectrum, and 
then, Gaussian fitting is performed in each region. The 
fitting results are stitched together in order to obtain the 
complete fluorescence background. Finally, this fluores-
cence background is subtracted from the original spectrum 
to obtain a pure Raman spectrum. This method can accu-
rately subtract the fluorescence background of Rhodamine 
6G (R6G)/ethanol solution and serum. This method has 
great potential in biological and non-biological sample 
applications.
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Fig. 4  Raman spectrum of R6G/ethanol solution after removing fluo-
rescence background (a) and Raman spectrum of pure ethanol (b)

Fig. 5  a The black solid line is the original Raman spectrum of 
the human serum and the red dotted line is the shifted spectrum, 
Δν = 3.2  cm−1. b The shifted ratio spectrum obtained by dividing the 
original Raman spectrum by the shifted spectrum. c The Raman spec-
trum of the human serum obtained by subtracting the fitted fluores-
cence background
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