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Abstract
CD-MONs (β-cyclodextrin-based microporous organic networks), derived from β-cyclodextrin, possess notable hydropho-
bic characteristics, a considerable specific surface area, and remarkable stability, rendering them highly advantageous in 
separation science. This research aimed to investigate the utility of CD-MONs in chromatography separation. Through a 
monomer-mediated technique, we fabricated an innovative CD-MON modified capillary column for application in open-
tubular capillary electrochromatography (OT-CEC). The CD-MON-based stationary phase on the capillary’s inner surface 
was analyzed using Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). We assessed 
the performance of the CD-MON modified capillary column for separation purposes. The microstructure and pronounced 
hydrophobicity of CD-MON contributed to enhanced selectivity and resolution in separating diverse hydrophobic analytes, 
such as alkylbenzenes, halogenated benzenes, parabens, and polycyclic aromatic hydrocarbons (PAHs). The maximum col-
umn efficiency achieved was 1.5 ×  105 N/m. Additionally, the CD-MON modified capillary column demonstrated notably high 
column capacity, with a methylbenzene mass loading capacity of up to 197.9 pmol, surpassing that of previously reported 
porous-material-based capillaries. Furthermore, this self-constructed column was effectively utilized for PAHs determination 
in actual environmental water samples, exhibiting spiked recoveries ranging from 93.2 to 107.9% in lake water samples. 
These findings underscore the potential of CD-MON as an effective stationary phase in separation science.
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Introduction

Chromatographic methods have attracted considerable inter-
est in the food and biopharmaceutical sectors because of 
their exceptional separation capabilities, reproducibility, 
and precise qualitative and quantitative analysis capabilities 
[1–4]. Capillary electrochromatography (CEC) represents a 
cost-effective microcolumn separation technique that merges 
the high separation efficiency of capillary electrophoresis 

(CE) with the superior selectivity of high-performance liq-
uid chromatography (HPLC) [5, 6]. Among the various CEC 
column formats, open-tubular CEC (OT-CEC) stands out for 
its advantageous features, including simple column prepara-
tion, surface modification ease, excellent permeability, and 
straightforward instrument operation [7]. Nevertheless, the 
limitations of relatively low phase ratio and column capacity 
impede the practical application of OT-CEC in real sample 
analysis [8]. Consequently, the continuous pursuit of devel-
oping new stationary phases to boost separation efficiency 
and capacity remains a critical area of interest in advancing 
OT-CEC. To address the evolving requirements of OT-CEC, 
a plethora of innovative stationary phases based on diverse 
materials have been suggested and synthesized, such as 
covalent organic frameworks (COFs) [9–13], metal–organic 
frameworks (MOFs) [14–18], materials derived from carbon 
dots [19], and porous organic cages (POCs) [20–22].
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Conjugated microporous polymers known as micropo-
rous organic networks (MONs) represent a distinctive 
category of polymers formed through the Sonogashira 
reaction, coupling rigid alkyne and arylhalide monomers 
[23–25]. With adjustable pore structures, high surface 
areas, and exceptional stability, MONs exhibit versatil-
ity for various applications such as adsorption, chroma-
tographic separation, sample pretreatment, sensing, and 
catalysis [26–30]. β-Cyclodextrin (β-CD), a natural host 
molecule composed of seven d-glucopyranoside units, 
possesses a hydrophilic exterior and a hydrophobic inner 
cavity. β-CD could provide numerous recognition sites 
for host–guest interactions, which are particularly benefi-
cial in separation science [31]. Leveraging its host–guest 
recognition capabilities, β-CD can selectively identify 
specific small molecules, enhancing its appeal in sepa-
ration applications [32, 33]. In a recent study, a multi-
functional microporous organic network of β-cyclodextrin 
(CD-MON) was synthesized and developed for wastewa-
ter treatment [34]. This CD-MON structure encompasses 
micro- and mesopores, facilitating diverse interactions like 
π-π interactions, hydrophobic bonding, hydrogen bonding, 
and inclusion mechanisms with target analytes, underscor-
ing its significant potential in separation science. Hence, 
there is a pressing need to investigate the utilization of 
CD-MON-based stationary phases in chromatography to 
advance the field of CD-MON, an area that, to our knowl-
edge, lacks prior exploration.

A novel microporous organic network (CD-MON) fea-
turing a dual micro- and mesoporous structure, excep-
tional stability, and pronounced hydrophobicity was syn-
thesized by combining 1,4-diethynylbenzene (DEB) and 
heptakis(6-iodo-6-deoxy)-cyclodextrin (I-β-CD). Subse-
quently, this CD-MON was employed as the stationary phase 
in capillary electrochromatography (CEC) separation using a 
straightforward monomer-mediated technique. The inclusion 
of β-CD in the structure of MONs significantly increases the 
number of interaction sites available (including host–guest 
interactions and hydrogen-bond interactions). In addition, 
the coupling units of alkynyl benzene rings offer favorable 
hydrophobic and π-π interactions. To demonstrate its effi-
cacy, a capillary column coated with CD-MON was utilized 
as the separation medium for OT-CEC analysis of alkylben-
zenes, halogenobenzenes, parabens, and polycyclic aromatic 
hydrocarbons (PAHs). The modified capillary column with 
CD-MON exhibited exceptional separation efficiency and 
selectivity for the target analytes. Additionally, this CD-
MON modified capillary column was successfully utilized 
for the detection and separation of PAHs in authentic envi-
ronmental water samples. This research not only introduces a 
novel method for preparing stationary phases based on CD-
MON but also contributes significantly to the progress of 
CD-MON within the realm of chromatographic separation.

Experimental

Materials and reagents

Methanol (MeOH) and acetonitrile (ACN) for chroma-
tography were procured from Merck in Germany. Vari-
ous compounds such as methylbenzene, ethylbenzene, 
propylbenzene, butylbenzene, methylparaben, ethylpara-
ben, propylparaben, chlorobenzene, 1,2-dichlorobenzene, 
1,2,4-trichlorobenzene, 3-aminopropyltriethoxysilane 
(APTES), copper(I) iodide (CuI), bis(triphenylphosphine)
palladium dichloride (Pd(PPh3)2Cl2), (3-iodopropyl)tri-
methoxysilane (IPTMS), 1,4-diethynylbenzene (DEB), 
and glutaraldehyde solution were sourced from Aladdin, 
a company based in Shanghai, China. Heptakis(6-iodo-6-
deoxy)-β-cyclodextrin (I-β-CD) was obtained from Zhiyuan 
Biotechnology Co., Ltd. in Shandong, China. Naphtha-
lene, fluoranthene, and phenanthrene were purchased from 
Sigma-Aldrich located in MO, USA. Essential chemicals 
like sodium hydroxide (NaOH), triethylamine, hydrochloric 
acid (HCl), thiourea, sodium phosphate dibasic dodecahy-
drate  (Na2HPO4‧12H2O), N,N-dimethyl-formamide (DMF), 
and phosphoric acid  (H3PO4) were acquired from Sinop-
harm Group Chemical Reagent Co., Ltd. based in Shanghai, 
China. Fused-silica capillary columns (50 μm i.d. × 365 μm 
o.d.) without any treatment were supplied by Ruifeng Chro-
matographic Devices located in Hebei, China.

Instrumentation

The solutions were delivered into the capillary columns 
using a mechanical syringe pump sourced from Shenchen 
Precision Pump Company in Baoding, China. CEC experi-
ments were conducted utilizing a Beckman Coulter CE sys-
tem (P/ACE MDQ). The pH levels of the running buffer 
were monitored using a Mettler Toledo FE28-CN pH meter 
from Shanghai, China. SEM images of the capillary columns 
were captured using a Zeiss Sigma 300 microscope from 
Oberkochen, Germany. Pure water was obtained through 
a CANSHI CM-RO-C2 ultrapure water system located in 
Ningbo, China. Fourier transform infrared (FT-IR) spectra 
were recorded using a Thermo NICOLET iS 10 FT-IR spec-
trometer based in Waltham, MA, USA.

Fabrication of standard and sample solutions

All solutions containing alkylbenzenes, chlorobenzenes, 
parabens, and PAHs were prepared in methanol (MeOH) 
at a concentration of 3.0  mg/mL. Phosphate buffers at 
a concentration of 10 mM were prepared by dissolving 
 Na2HPO4‧12H2O in ultrapure water. The pH values of the 
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phosphate buffer were adjusted within the range of 5.0 to 9.0 
using either phosphoric acid or sodium hydroxide (NaOH). 
Mobile phases were created by mixing ACN with the phos-
phate buffer in specific proportions. The sample solutions 
for injection were prepared by combining standard solutions 
with running buffer. Both the prepared sample and standard 
solutions were refrigerated at 4 ℃ prior to usage.

Fabrication of CD‑MON modified capillary column

The process of fabricating the CD-MON modified capil-
lary column is depicted in Fig. 1. Initially, the untreated 
fused-silica capillary columns underwent a series of rinsing 
steps: exposure to 1.0 M NaOH for 1 h, followed by rinsing 
with ultrapure water for 30 min, treatment with 1.0 M HCl 
for 1 h, another rinse with ultrapure water for 30 min, and 
finally a rinse with MeOH for 30 min, in sequence. Subse-
quently, the capillary column was dried using a nitrogen 
stream for 1 h. Next, the pretreated capillary column was 
filled with a solution of IPTMS/DMF (1%, v/v). The column 
ends were sealed, and it was immersed in a water bath at 
60 ℃ for 12 h. After this, the capillary column underwent 
thorough flushing with methanol for 1 h followed by drying 
with a nitrogen stream for another hour. The column was 
then modified using (3-iodopropyl)trimethoxysilane to intro-
duce iodine sites for the coupling with alkynyl monomers. 
The CD-MON synthesis solution was prepared based on a 
previous study with modifications [34]. Specifically, I-β-CD 
(9.52 mg), DEB (3.31 mg), Pd(PPh3)2Cl2 (1.05 mg), and CuI 
(0.32 mg) were combined in 1 mL of triethylamine/DMF 
(1/1, v/v) solution. The mixture was sonicated and subse-
quently injected into the iodine-modified capillary column 
as described above. After sealing both ends of the capillary, 
it was placed in an 80 °C water bath for 24 h. Following the 

reaction, the capillary column was flushed with MeOH for 
1 h. Finally, the prepared column was dried using a nitrogen 
stream to obtain the CD-MON modified capillary column.

Formulas

The calculated formulas are shown in Supporting 
information.

Sample preparation

Individual PAHs, namely naphthalene, fluoranthene, and 
phenanthrene, were dissolved in methanol to prepare the 
sample solutions. Prior to usage, the samples were further 
diluted to a specific concentration using a 10 mM phos-
phate buffer solution. The actual sample used in the study 
was collected from Qingshan Lake in Nanchang, China. To 
eliminate larger particulate impurities, the lake water sample 
underwent three rounds of centrifugation at 10,000 r/min, 
and the resulting supernatant was retained. Subsequently, 
the supernatant was subjected to filtration using a 0.22-μm 
nylon membrane, repeated three times. Finally, the prepared 
PAH sample solutions were added to the treated lake water 
sample for subsequent analysis.

Results and discussion

Characterization of the CD‑MON modified capillary 
column

To confirm the successful modification of CD-MON within 
the capillary’s inner surface, a scanning electron micros-
copy (SEM) experiment was conducted. The SEM image of 

Fig. 1  Schematic procedure for the preparation of the CD-MON modified capillary column via the monomer-mediated method
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the synthesized CD-MON exhibited a sheet-like structure, 
consistent with previous findings (Fig. S1) [34]. Figure 2A 
displays the SEM images of the inner wall of both the fabri-
cated capillary column and the bare column. The bare col-
umn’s inner surface was observed to be remarkably smooth. 
Conversely, the CD-MON modified capillary column exhib-
ited a noticeable morphological change, as evidenced by the 
presence of a dense and uniform CD-MON coating layer. 
Further characterization was carried out using Fourier trans-
form infrared (FT-IR) spectroscopy on the as-synthesized 
CD-MON, CD-MON modified capillary column, and bare 
column. The FT-IR spectrum of the as-synthesized CD-
MON (Fig. S2) demonstrated absorption peaks consistent 
with previous reports [34]. Notably, the CD-MON modified 
column displayed a distinctive peak at 826  cm−1, attributed 
to the bending vibration of = C-H in the CD-MON (Fig. S3). 
These characterization outcomes provide substantial evi-
dence supporting the successful modification of CD-MON 
within the capillary column’s inner wall.

Electroosmotic flow test experiment

In capillary electrochromatography (CEC) experiments, 
electroosmotic flow (EOF) plays a vital role in driving ana-
lytes and the mobile phase through the column. Figure S4 
illustrates the experimental outcomes. On the CD-MON 
modified column, an anodic EOF mobility was observed, 
which increased gradually as the pH value ranged from 5 to 
9. This occurrence was primarily due to the improved disso-
ciation exposed silanol groups on the capillary’s inner wall.

Retention behavior

Prior research has established that CD-MON has strong 
hydrophobic interactions and π-π interactions with target 
analytes [34]. Therefore, it is probable that the CD-MON 
stationary phase will exhibit conventional reversed-phase 

retention behavior. To verify this, the retention behavior of 
the CD-MON modified column was evaluated. The elution 
order of the alkylbenzenes examined corresponded to their 
log P values for oil–water partitioning. Additionally, the 
retention factors (k) of the four analytes increased as the ace-
tonitrile concentration decreased from 50 to 30% (Fig. S5). 
Elution capacity was observed to improve as the acetonitrile 
ratio increased, thus supporting the conventional reversed-
phase retention behavior of the CD-MON modified column.

Mass loading ability

The adoption of OT-CEC may be limited by a relatively 
low phase ratio and column capacity, as mentioned earlier. 
Hence, the column loading capacity is a critical parameter 
for evaluating the newly prepared OT-CEC capillary col-
umn. The capacity is determined by analyzing the impact of 
sample loading on the column efficiency. To verify the load-
ing capacity of the CD-MON modified capillary column, 
methylbenzene was injected sequentially into the prepared 
capillary at varying concentrations (0.15 to 0.90 mg/mL). 
The half-height peak widths  (W1/2) of the analytes are plot-
ted in Fig. S6. Employing the method detailed in previous 
studies [9], the maximum column capacity of the CD-MON 
modified capillary column was calculated to be 197.9 pmol.

OT‑CEC separation performance

The CD-MON modified column’s OT-CEC separation 
capacity was assessed. Initially, four alkylbenzenes (meth-
ylbenzene, ethylbenzene, n-propylbenzene, n-butylbenzene) 
and three halo-benzenes (chlorobenzene, 1,2-dichloroben-
zene, 1,2,4-trichlorobenzene) were employed to validate the 
separation efficiency. The results are shown in Fig. 3A and 
B. Optimal CEC separation conditions resulted in baseline 
separation of the tested compounds on the CD-MON modi-
fied capillary, with excellent column efficiency and peak 

Fig. 2  SEM images of inner surfaces of bare capillary (A, 10,000 ×) and CD-MON modified column (B, 5000 ×)
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shape. Chlorobenzene and methylbenzene exhibited col-
umn efficiencies greater than 150,000 plates/m and 100,000 
plates/m, respectively. The elution order corresponded 
to log P values, with the separation of these neutral ana-
lytes by the CD-MON modified column primarily relying 
on hydrophobic interaction with the CD-MON stationary 
phase. Furthermore, the CEC separation of three parabens 
(methylparaben, ethylparaben, and propylparaben) was con-
ducted, yielding an excellent resolution of the three analytes 
on the CD-MON modified column (Fig. 4). Additionally, 
the self-made CEC column was utilized to separate three 

polycyclic aromatic hydrocarbons, including naphthalene, 
phenanthrene, and fluoranthene, resulting in good separa-
tion performance (Fig. 5). The elution order was related to 
the PAH molecular structures. The peak sequences of three 
PAHs were consistent with the increase of the number of 
aromatic benzene rings. Namely, the hydrophobic interac-
tions and π-π interactions possessed a significant role in the 
separation selectivity for PAHs.

The outstanding separation capability of the CD-MON 
modified column for the compounds under investigation can 
be attributed to the following factors. First is the stationary 
phase of CD-MON with abundant micro- and mesoporous 

Fig. 3  A Separation behavior of alkylbenzenes on the CD-MON 
modified column. Experimental conditions: mobile phase, 50% ACN 
in pH 9.0 10  mM phosphate buffer; applied voltage, 20  kV; injec-
tion, 15  mbar × 5  s; detection wavelength, 214  nm. Peaks: 1, meth-
ylbenzene; 2, ethylbenzene; 3, n-propylbenzene; 4, n-butylbenzene. 

B Separation behavior of chlorobenzenes on the CD-MON modi-
fied column. Experimental conditions: mobile phase, 50% ACN in 
pH 9.0 10  mM phosphate buffer; applied voltage, 20  kV; injection, 
10  mbar × 5  s; detection wavelength, 214  nm. Peaks: 1, chloroben-
zene; 2, 1,2-dichlorobenzene; 3, 1,2,4-trichlorobenzene

Fig. 4  Separation behavior of parabens on the CD-MON modi-
fied column. Experimental conditions: mobile phase, 30% ACN in 
pH 8.0 10  mM phosphate buffer; applied voltage, 21  kV; injection, 
10 mbar × 5  s; detection wavelength, 210 nm. Peaks: 1, methylpara-
ben; 2, ethylparaben; 3, propylparaben

Fig. 5  Separation behavior of PAHs on the CD-MON modified 
column. Experimental conditions: mobile phase, 50% ACN in pH 
9.0 10  mM phosphate buffer; applied voltage, 21  kV; injection, 
50 mbar × 5 s; detection wavelength, 210 nm. Peaks: 1, naphthalene; 
2, phenanthrene; 3, fluoranthene
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structures, which offer a multitude of interaction sites that 
enhance the mass transfer of analytes and improve resolu-
tion. Secondly, the CD-MON-based stationary phase, rich 
in benzene rings, facilitates robust hydrophobic interactions 
and π-π interactions with the analytes being tested. Addi-
tionally, β-CD could form stable inclusion complex with 
analyte molecules, and confirmed the host–guest inclusion 
mechanism might be the other main driving force for ana-
lyte separation. The obtained separation outcomes affirm the 
CD-MON modified column’s prospective utility in chroma-
tographic separation of hydrophobic analytes.

Reproducibility and stability

Table 1 presents the RSD values for the retention times 
of methylbenzene, ethylbenzene, n-propylbenzene, and 
n-butylbenzene, which were used to assess the reproduc-
ibility and stability of the custom-made OT-CEC column. 
The RSD values for intra-day (n = 3), inter-day (n = 3), and 
across three parallel columns exhibited a range of 0.94 to 
4.99%. Additionally, the prepared CD-MON modified cap-
illary exhibited remarkable resolution for methylbenzene, 
ethylbenzene, n-propylbenzene, and n-butylbenzene even 
after 90 consecutive injections. Figure S7 visually demon-
strates the consistent retention time peak shapes of the four 
alkylbenzenes. These results affirm the high stability and 
reproducibility of the custom-made OT-CEC column when 
operated under CEC conditions.

Real sample analysis

PAHs, which primarily result from incomplete combustion 
of anthropogenic or natural energy sources, are recognized 
as global priority pollutants due to their mutagenic and 

carcinogenic properties, posing significant public health con-
cerns. Therefore, it is crucial to develop a cost-effective and 
straightforward analytical method to quantify PAH concen-
trations in environmental samples. In this investigation, we 
successfully employed a custom-made CD-MON modified 
column for the determination of PAH concentrations in lake 
water samples. The detailed sample preparation procedure can 
be found in the “Sample preparation” Section, while the corre-
sponding results are presented in Table 2. The linear ranges for 
naphthalene, phenanthrene, and fluoranthene were 5–125 μg/
mL. The limits of detection (LODs) for naphthalene, phen-
anthrene, and fluoranthene were 0.250 μg/mL, 0.290 μg/mL, 
and 0.058 μg/mL, respectively. The limits of quantification 
(LOQs) for naphthalene, phenanthrene, and fluoranthene were 
0.862 μg/mL, 0.967 μg/mL, and 0.200 μg/mL, respectively. 
To validate the accuracy of the proposed method, lake water 
samples were spiked with low, medium, and high concentra-
tions of the three PAHs and analyzed using the developed 
approach. The corresponding spiked recoveries are provided 
in Table S1, demonstrating recoveries ranging from 99.7 to 
103.6% for naphthalene, 99.5 to 107.9% for phenanthrene, and 
93.2 to 104.3% for fluoranthene. The relative standard devia-
tions (RSDs) of the recovery ranged from 0.63 to 6.24%. These 
findings confirm the applicability of the suggested approach 
to effectively separate and quantify PAHs in complex water 
environments.

Comparison with other material‑based OT‑CEC 
columns

To date, extensive research has been conducted on porous 
polymers, COFs, and MOFs-based stationary phases for OT-
CEC separations. In order to evaluate the performance of the 
CD-MON modified column, a comparison was made with 
previously proposed OT-CEC columns in terms of analytes, 
column efficiency, loading capacity, and LODs. The corre-
sponding results can be found in Table S2. The CD-MON 
modified column exhibited a column efficiency that was com-
parable to that of the previously reported columns. However, 
in terms of loading capacity, the prepared column surpassed 
all other materials-based OT-CEC columns. In addition, the 
analytical advantages for PAHs using this novel column were 
compared with other columns. As shown in Table S3, com-
pared with other reported columns, the CD-MON modified 
column offered better column efficiency for retained PAHs. 
Moreover, the prepared column was successfully used for the 

Table 1  Repeatability of the CD-MON modified capillary column

Analytes Retention time (RSDs%)

Intra-day (n = 3) Inter-day (n = 3) Column-
to-column 
(n = 3)

Methylbenzene 1.05 4.87 4.99
Ethylbenzene 1.02 4.69 4.86
n-Propylbenzene 1.05 4.44 4.42
n-Butylbenzene 0.94 4.11 4.18

Table 2  The linear equation, 
correlation coefficient (R2), 
limit of detection, and limit of 
quantitation of naphthalene, 
phenanthrene, and fluoranthene

Analytes Linearity (μg/mL) Linear equation R2 LODs (μg/mL) LOQs (μg/mL)

Naphthalene 5–125 Y = 2.6219X-0.1531 0.9985 0.259 0.862
Phenanthrene 5–125 Y = 4.8397X + 353.06 0.9903 0.290 0.967
Fluoranthene 5–125 Y = 27.862X + 57.582 0.9921 0.058 0.200
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determination of PAH concentrations in actual samples. Wide 
linear range, low LODs, and good repeatability were obtained 
according to this method. The monomer-mediated method 
proposed in this study simplified the preparation processes 
of CD-MON-based stationary phases while maintaining their 
effectiveness. These unique properties indicate the reliable 
applicability of the self-made CD-MON modified column in 
chromatography separation, thus advancing the field.

Conclusion

In this investigation, we proposed a novel stationary phase 
utilizing CD-MON for OT-CEC separation, prepared 
through a monomer-mediated method. The successful 
growth of CD-MON on the inner capillary wall was con-
firmed by SEM and FT-IR characterization results. This uni-
form CD-MON stationary phase demonstrated exceptional 
super hydrophobicity, a large specific surface area, and high 
stability, leading to a significantly increased loading capacity 
compared to other materials-based OT-CEC columns. Fur-
thermore, the developed column was capable of effectively 
detecting and separating PAHs in water environments. The 
self-prepared OT column displayed satisfactory repeatabil-
ity and stability, and low LODs. These results highlight the 
substantial potential of CD-MON-based stationary phases in 
the realm of chromatography separation science.
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