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Abstract
In this study, a ratiometric fluorescent sensor CdTe QDs@ZIF-8 with butterfly spectra is successfully constructed by in situ 
encapsulating mercaptopropionic acid-modified CdTe quantum dots in zeolitic imidazolate framework-8 (ZIF-8) with a 
simple strategy, and used for the detection of tetracycline in fluorescence/smartphone colorimetry dual-mode. ZIF-8 not only 
reduces the agglomeration of the quantum dots but also surprisingly generates a new green fluorescence signal at 524 nm 
while the red fluorescence of the CdTe quantum dots at 650 nm quenches when tetracycline is added. The two opposing 
fluorescence signals create a butterfly-shaped fluorescence spectrum, allowing the sensor to detect tetracycline over a linear 
range of 0–70 μM with the detection limit (LOD) of 0.0155 μM by using a ratiometric fluorescence technique. What is more, 
based on the obvious color change of the fluorescent sensor gradually from red to green under UV light, a highly stable point-
of-care testing sensor has been developed for on-site detection of tetracycline through color recognition by smartphones, 
which can be used for real-time detection of this antibiotic in the range of 0–1000 μM with the LOD of 0.0249 μM. This 
work provides a simple and efficient method for the on-site detection of tetracycline.

Keywords Metal–organic frameworks · Quantum dots · Tetracycline · Point-of-care test · Ratiometric fluorescent sensors · 
Visual inspection

Introduction

Tetracycline (TC) is a broad-spectrum antibiotic that is 
widely used as a growth promoter in animal feed, and there-
fore, it has a high probability of being present in food of 
animal origin [1–4]. In addition, TC can accumulate in the 
food chain through bioconcentration, but the digestive sys-
tems of humans and animals are unable to metabolize TC 
with complex molecular structures, which leads to water 
contamination and ecosystem balance disruption, and poses 
a serious threat to human health [5–8]. In the standard set 
by the Ministry of Agriculture of the People’s Republic of 
China, the maximum residue limit (MRL) for tetracycline 

is 3384 ng  L−1 in water and 200 μg  kg−1 in animal foods 
[9]. In the European Union, the addition of tetracycline to 
feed has been banned since 2017 and the MRL in food of 
animal origin is set at 100 μg  kg−1 [10, 11]. Therefore, the 
development of a highly sensitive and low-cost method for 
the detection of TC antibiotics is crucial.

Currently, the main methods for the detection of tetra-
cycline are high-performance liquid chromatography [12, 
13], colorimetric methods [14], and electrochemical analysis 
[15]. Although these methods are sensitive and accurate, 
they require complex sample pretreatment and time-consum-
ing operation, which limits their application in the on-site 
detection of TC. In the rapidly evolving field of point-of-care 
testing (POCT), fluorescent assays offer the advantages of 
high sensitivity, real-time detection, low cost, and simplicity 
of operation to meet the need for rapid detection of TC in 
resource-limited settings [16–22]. Moreover, the construc-
tion of ratiometric fluorescence platforms with dual-emis-
sion properties can broaden the range of color variations, 
rather than just color brightness, for easier visual detection, 
which is important for the implementation of POCT [23–28].
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In recent years, combining the unique photophysi-
cal properties of the aggregation-induced emission (AIE) 
structures into metal–organic frameworks (MOFs) systems 
has been considered as an available method to obtain fluo-
rescent composites with enhanced AIE properties [29–35]. 
For example, Guo et al. encapsulated Au NCs in MOFs for 
the detection of mercury ions and captopril. The tethering 
effects of MOFs can restrict the motion of Au NCs, which 
triggers AIE effect, resulting in a significant enhancement of 
the fluorescence of Au NCs [36]. Zhu et al. developed a fluo-
rescent enzyme-linked immunosorbent assay (FELISA) for 
bisphenol S in beverages by encapsulating copper nanoclus-
ters (Cu NCs) with AIE property into ZIF-8. The integration 
of AIE building blocks into the porous ZIF-8 showed signifi-
cant advantages in improving the analytical performance of 
FELISA [37]. However, few studies have been carried out to 
utilize the tethering effect of MOF to trigger the AIE effect 
for detection purpose.

Based on the above considerations, we in situ encapsu-
lated mercaptopropionic acid-modified CdTe quantum dots 
in the zeolite imidazolium ester backbone ZIF-8 by a simple 
one-pot method as a core component for target recognition 
and signal transduction. Quantum dots (QDs) are a new type 
of nanomaterials, among which typical CdTe quantum dots 
(CdTe QDs) are characterized by stable optical properties, 
large Stokes shifts, tunable emission wavelengths, and nar-
row emission spectra [38–44]. By using the “Bottle around 
ship” strategy, ZIF-8 grows around CdTe QDs, which allows 
more quantum dots to be embedded in the MOF, prevents 

the leakage of quantum dots, solves the problem of quantum 
dot agglomeration more effectively, and greatly improves 
the stability of the quantum dots [45]. When TC was added, 
a new green fluorescence at 524 nm was generated while 
the red fluorescence at 650 nm was quenched in the CdTe 
QDs@ZIF-8, resulting in a butterfly-shaped fluorescence 
emission, which led to a secondary amplification of the sig-
nal and achieved a more sensitive detection of tetracycline. 
The constructed ratiometric fluorescence sensor (I524/I650) 
had a built-in self-calibration function that avoids interfer-
ences from factors unrelated to the analysis, resulting in 
higher sensitivity and more visible visual detection during 
quantitative analysis. A continuous change in color from 
bright red to green was also observed, which was easy to 
be distinguished with the naked eye. As a result, a sensitive 
visual inspection platform in conjunction with a smartphone 
was designed. Overall, the strategy provides a robust solu-
tion for monitoring tetracycline with good stability, port-
ability, and sensitivity (Scheme 1).

Experimental section

Materials

All chemicals used are analytical and without further purifi-
cation. Tetracycline (TC), chlortetracycline (CTC), and oxy-
tetracycline (OTC) were purchased from Shanghai Mack-
lin Biochemical Technology Co., Ltd (China). Cadmium 

Scheme 1  Synthesis of CdTe QDs@ZIF-8 and fluorescence/smartphone colorimetric detection
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chloride hydrate  (CdCl2⋅2.5H2O), Zn(NO3)2⋅6  H2O, NaOH, 
sodium borohydride  (NaBH4), and tellurium powder were 
obtained from Shanghai Zhongqin Chemical Reagent Co., 
Ltd (China). The amino acids required including alanine 
(Ala, 98%, AR), tryptophan (Try, 98%, AR), isoleucine 
(Ile, 99%, AR), cysteine (Cys, 98%, AR), tyrosine (Tyr, 
98%, AR), phenylalanine (Ph, 98%, AR), arginine (Arg, 
98%, AR), methionine (Met, 99%, AR), and proline (Pro, 
99%, AR) were purchased from Shanghai Aladdin Chemis-
try Co., Ltd (China). Methanol, 3-mercaptopropionic acid 
(MPA), anhydrous ethanol, and methanol were purchased 
from Chengdu Forest Science & Technology Development 
Co., Ltd (China). Animal feed was purchased from the local 
market.

Synthesis of CdTe QDs

CdTe QDs were synthesized by a slightly modified refer-
ence method [46]. Firstly, NaHTe was prepared. 0.0638 g 
of tellurium powder and 0.1 g of  NaBH4 were first added 
to a Shrek flask, and the reaction was carried out by adding 
10 mL of distilled water under a nitrogen atmosphere in an 
ice bath followed by vigorous stirring for 8 h. The black 
powder gradually disappeared and the solution changed to 
lilac. 0.2284 g of  CdCl2⋅2.5  H2O and 210 µL MPA were 
mixed in a three-necked flask, and then, 125 mL of distilled 
water was added and pH was adjusted to 9 with 1 M NaOH. 
When NaHTe solution (the supernatant) was added under 
nitrogen atmosphere, the solution rapidly changed from 
colorless to orange. The mixture solution was stirred at room 
temperature for 20 min and then refluxed at 100 ℃ for 48 h 
to obtain red QDs.

Synthesis of CdTe QDs@ZIF‑8

The composite was prepared by referring to the literature 
method [47]. Typically, 1.50 g of Zn(NO3)2⋅6H2O was dis-
solved in 60 mL of methanol, and then, 10 mL of CdTe QDs 
was added and stirred well to obtain solution A. 3.30 g of 
2-methylimidazole was dissolved in 60 mL of methanol to 
obtain solution B. The solution B was poured into solution 
A and stirred at room temperature for 4 h. The product was 
washed with methanol and dried in a vacuum oven at 50 °C 
overnight. The obtained product was named as CdTe Qds@
ZIF-8. ZIF-8 was synthesized by the same procedure except 
without adding CdTe QDs.

Characterization

The materials were characterized by Fourier transform infra-
red (FTIR) spectroscopy using an FTS-3000 FTIR spectrom-
eter (Digilab, USA). Powder X-ray diffraction (PXRD) pat-
terns were obtained by a D8 Advance X-ray diffractometer 

(BRUKER, Germany). The morphology was analyzed on 
a Zeiss ULTRRA Plus (DENKO, Japan) scanning electron 
microscope (SEM). Transmission electron microscopy 
(TEM) images were acquired on a transmission electron 
microscope (FEI TecnaiG2-F20, USA). Adsorption and des-
orption isotherms were measured by an Autosorb  N2 adsorp-
tion–desorption analysis system (Quantachrome, Autosorb 
1, USA). The surface chemical composition of the materials 
was measured by X-ray photoelectron spectroscopy (XPS, 
ThermoFisher Scientific, USA). The UV–Vis spectra of the 
compounds were determined by a T6 New Century Spectro-
photometer (Beijing, China) at 190–1100 nm.

Fluorescence experiments

The excitation and emission spectra of the materials were 
measured at room temperature using a fluorescence Max-4 
spectrophotometer from HORIBA, USA. The excitation and 
emission slit widths were 3 nm (90° orientation detection). 
One milligram of CdTe QDs@ZIF-8 was dispersed in 5 mL 
of  H2O and fluorescence detection was performed for dif-
ferent concentrations of TC (0–70 µM). The fluorescence 
spectra of the samples were measured under excitation wave-
length at 355 nm.

Real sample analysis

Two different feeds were weighed for 1 g each, and each 
sample was added 10 mL of ethanol and ultrasonically 
extracted and the supernatant was filtered for detection.

Results and discussion

Characterizations of ZIF‑8 and CdTe QDs@ZIF‑8

The phase compositions and crystallinity of ZIF-8 and CdTe 
QDs@ZIF-8 composites were analyzed by X-ray diffrac-
tion spectroscopy. As shown in Fig. 1a, the characteristic 
diffraction peaks of ZIF-8 are in good agreement with the 
simulation of ZIF-8 (CCDC: 823083) [48]. The positions 
and intensities of the diffraction peaks observed in CdTe 
QDs@ZIF-8 are consistent with those of the ZIF-8 diffrac-
tion peaks, which suggests that the introduction of the QDs 
does not affect the crystal configuration of ZIF-8. It is proved 
that ZIF-8 is a good carrier of QDs.

Formation of ZIF-8, CdTe QDs, and CdTe QDs@ZIF-8 
was proved by IR spectroscopy (Fig. 1b). The peaks at 
1563 and 1425  cm−1 in CdTe QDs spectrum were attrib-
uted to the stretching vibrations of C = O in the MPA [41]. 
In IR spectra of ZIF-8 and CdTe QDs@ZIF-8, the peak at 
420  cm−1 was attributed to Zn-N stretching vibration; the 
peaks at 1306  cm−1, 1144  cm−1, and 994  cm−1 corresponded 



 Y. Hui et al.

to the in-plane bending vibration of the imidazole ring; and 
the peak at 1585  cm−1 was assigned to the C = N stretch-
ing vibration while the bands located at 2928  cm−1 and 
3134  cm−1 resulted from aromatic and aliphatic C-H stretch-
ing vibrations [33, 49]. The above results once again proved 
that quantum dots have been successfully introduced into 
ZIF-8 without changing the structure of the framework.

XPS analyses of ZIF-8 and CdTe QDs@ZIF-8 were car-
ried out too. As shown in Fig. 1c, it could be seen that the 
prepared CdTe QDs@ZIF-8 not only contained the ele-
ments of zinc, carbon, nitrogen, and oxygen in ZIF-8 but 
also showed the presence of the elements of Cd, Te, and 
S [50]. In the Cd 3d spectrum (Fig. 1d), the double peaks 
centered at 411.9 and 405.1 eV were attributed to Cd  3d3/2 
and Cd  3d5/2, respectively [51]. The Te 3d spectra (Fig. 1e) 
showed Te  3d3/2 and Te  3d5/2 spin-orbital doublets at 583.3 
and 573.6 eV attributed to  Te2−, respectively, indicating for-
mation of CdTe QDs. In addition, some peaks with higher 
binding energies were also observed, implying the presence 
of Te–O bond and the formation of tellurium oxide [50]. The 
Te 3d peak was found to be weak, probably due to the small 
amount of CdTe QDs encapsulated in ZIF-8. Additionally, 
approximately at 160 eV, a peak with doublet structure aris-
ing from S 2p was observed (Fig. 1f), corresponding to S 
 2p3/2 (159.1 eV) and S  2p1/2 (163.1 eV), respectively, which 
suggested the presence of Cd-SR bond [51]. These experi-
mental results not only verified the successful synthesis of 
CdTe QDs but also further confirmed the formation of CdTe 
QDs@ZIF-8 composites.

The specific surface area and porosity of ZIF-8 and CdTe 
QDs@ZIF-8 were analyzed by  N2 adsorption–desorption 
isotherms (Figure S1). Both ZIF-8 and CdTe QDs@ZIF-8 
exhibited typical type I isotherms, indicating that the struc-
tures were microporous [52]. After encapsulation of CdTe 
QDs, the specific surface area decreased from 1229.01 
to 1133.85  m2/g, but the pore size did not change still at 
10.01 Å. This demonstrated that the ZIF-8 grew around the 
CdTe QDs.

The morphologies of ZIF-8 and CdTe QDs@ZIF-8 
were characterized by SEM and TEM. Figure 2a–f show 
that ZIF-8 possessed a rhombic dodecahedron structure of 
approximately uniform size, and its structure did not change 
significantly after encapsulating CdTe QDs. From the TEM 
images of CdTe QDs, it could be seen that the average diam-
eter of CdTe QDs was about 2.63 nm (Fig. 2g–i), which 
was larger than the average pore size of ZIF-8 (~ 1.01 nm). 
Obviously, these quantum dots could not be directly 
inserted into pores of the MOFs, instead, the encapsulation 
was achieved by in situ growth of ZIF-8 around the CdTe 
QDs [45, 53]. On the other hand, the TEM image of CdTe 
QDs@ZIF-8 displayed lots of little black dots (CdTe QDs) 
in ZIF-8 matrix, which meant that the CdTe QDs had been 
successfully encapsulated in ZIF-8. Further evidence for 
the QDs encapsulation was also provided by EDX testing. 
The elemental mapping of CdTe QDs@ZIF-8 revealed that 
seven elements, namely, C, N, O, S, Zn, Te, and Cd, were 
uniformly distributed in the CdTe QDs@ZIF-8 (Fig. 2l). 
Simultaneously, the EDX spectrum of CdTe QDs@ZIF-8 
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(Figure S2) also clearly showed coexistence of C, N, O, S, 
Zn, Te, and Cd elements (Cu element comes from the copper 
grid). The above results strongly confirmed the successful 
synthesis of CdTe QDs@ZIF-8.

Sensing performance of the ratiometric 
fluorescence sensor with butterfly spectra

Luminescence properties of ZIF-8 and CdTe QDs@
ZIF-8 powders were compared under UV light and it 
was observed that ZIF-8 powder emitted blue fluores-
cence while CdTe QDs@ZIF-8 emitted red f luores-
cence (Figure S3). This proved the prepared composite 

had excellent f luorescent property and also provided 
a possibility for the development of a fluorescent sen-
sor. To assess the sensing performance of the prepared 
CdTe Qds@ZIF-8, its luminescence characteristics were 
investigated in detail at room temperature. Compared 
with CdTe QDs without ZIF-8 protection (Fig. 3a), it 
could be seen that the fluorescence of CdTe QDs was 
well preserved except for a slight redshift after they were 
encapsulated in ZIF-8. The redshift is mainly due to the 
specific interaction between CdTe QDs and ZIF-8 during 
the formation of the composite [24]. Figure 3b exhibits 
that the maximum excitation wavelength of CdTe QDs@
ZIF-8 was 355 nm.

Fig. 2  a–c SEM images of 
ZIF-8 at different magnifica-
tions. d–f SEM images of CdTe 
QDs@ZIF-8 at different mag-
nifications. g–i TEM images of 
CdTe QDs at different magni-
fications. j–k TEM images of 
CdTe QDs@ZIF-8 at different 
magnifications. l EDX mapping 
of CdTe QDs@ZIF-8
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Figure 3c shows that when TC was added, a new fluores-
cence peak appeared at 524 nm whereas the fluorescence of 
CdTe QDs@ZIF-8 at 650 nm was significantly quenched 
at the same excitation wavelength. At the same time, the 
fluorescence intensity ratio I524/I650 at 524 nm and 650 nm 
increased significantly with the increase of the TC concen-
tration. This result indicated that CdTe QDs@ZIF-8 could 
be used as a ratiometric fluorescence sensor for quantitative 
analysis of TC.

Then, the response sensitivity of CdTe QDs@ZIF-8 to 
TC was explored. As shown in Fig. 4a, with TC concen-
tration increasing, the fluorescence intensity at 524 nm 

gradually enhanced whereas the fluorescence intensity at 
650 nm accordingly decreased, so that the fluorescence 
emission spectrum showed a butterfly-shaped change. The 
CIE chromaticity diagram coordinates (Figure S4) were 
shifted from the original red region (0.3168, 0.5059) to 
the green region (0.5869, 0.3127). The linear relationship 
between the fluorescence intensity ratio I524/I650 of CdTe 
QDs@ZIF-8 and TC concentration was tested under 355-
nm excitation (Fig. 4b), and it was found that the ratio 
showed a good linear response with TC concentration in 
the range of 0–70 μM with a linear regression equation I524
/I650 = 0.0376 + 0.0505C(TC) (R2 = 0.9942). The limit of 
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detection (LOD) was calculated to be 0.0155 μM accord-
ing to the standard definition of IUPAC (LOD = 3Sb/K), 
where K is the slope of the fitted line and Sb is the stand-
ard deviation of 20 blank solutions. In addition, the 
method has a better linear range and wider detection limit 
compared to existing methods for the detection of TC 
(Table S1). As a result, the prepared CdTe QDs@ZIF-8 
show high performance for TC detection.

As shown in Figure S5a, the TC-induced luminescence at 
524 nm rapidly enhanced and simultaneously the lumines-
cence at 650 nm rapidly decreased with the response time 
and the intensity ratio reached maximum and maintained 
stable after 7 min. The results indicated that the sensor pos-
sessed a rapid response toward TC detection, which can sat-
isfy the requirement of rapid quantification of antibiotics in 
real samples. In addition, the sensor had excellent acid–base 
resistance and the intensity ratio almost kept unchanged in 
the pH 4–10 range (Figure S5b). The improved stability 
was attributed to the protection of the ZIF-8 shell against 
the aggregation and oxidation of CdTe QDs, which further 
confirmed the effectiveness of this ratiometric luminescence 
assay for the detection of TC in real samples.

Common interfering substances in animal feed and other 
kinds of tetracycline antibiotics were selected to further 
evaluate the selectivity of the sensor for TC detection. As 
shown in Fig. 4c, oxytetracycline (OTC) and chlorotetra-
cycline (CTC) can trigger the response of the CdTe QDs@
ZIF-8 sensor, but they were not as sensitive as TC, while 
the signals caused by other interfering molecules are almost 
negligible. Thus, it was demonstrated that the sensor had 
a satisfactory selectivity for TC detection. In addition, the 
anti-interference property of the sensor was further meas-
ured, and it can be seen that the fluorescence of CdTe QDs@
ZIF-8 was hardly affected even though the concentration of 
interfering molecules was ten times that of TC (Fig. 4d). 
These results indicated that our material had an excellent 
anti-interference performance and can be used for the detec-
tion of TC in real samples.

Sensing mechanism of the ratiometric fluorescent 
sensor with butterfly spectra

As shown in Fig. 5a–d, the unique structure of tetra-
cycline enables it to bind ZIF-8 specifically through 
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hydrogen bonding, electrostatic, π-π stacking, and coor-
dination interactions, which gives the ZIF composite 
good adsorption properties to strongly enrich tetracycline, 
triggering the aggregation-induced emission (AIE) effect 
leading to the formation of luminophores. At the same 
time, the interaction of TC with  Zn2+ in QDs@ZIF-8 
enlarges the rigid planar area and the conjugated π-system 
inside the TC.

To investigate the fluorescence quenching mechanism 
of CdTe QDs@ZIF-8 at 650 nm by TC, the XRD spectra 
of the samples before and after TC treatment were first 
compared and analyzed (Fig. 5e). The results showed that 
the XRD spectra of CdTe QDs@ZIF-8 did not change 
significantly after the addition of TC, which indicated 
that the material was not damaged. The UV absorption 
spectrum of TC was then tested. As seen from Fig. 5f, UV 
absorption spectrum of TC overlapped considerably with 
the fluorescence excitation spectrum of the composite, 
which triggered the inner filter effect (IFE), leading to the 
occurrence of fluorescence quenching. Next, the fluores-
cence lifetime of CdTe QDs@ZIF-8 was investigated in 
the presence and absence of TC. As seen in Fig. 5g, the 
fluorescence lifetime remained constant before and after 
TC addition, indicating that static quenching dominates 
the detection process. That is to say, fluorescence decay 
of the QDs is an IFE-caused static quenching process.

Detection of TC in real samples

The usefulness of the sensor in the analysis of real samples 
was verified by spiking recovery experiments in two dif-
ferent animal feeds (Table 1). The recoveries of TC ranged 
from 99.3 to 103.9% with RSDs of 1.12 to 3.28%. This indi-
cated that the constructed CdTe QDs@ZIF-8 ratiometric 
fluorescence sensor has a strong potential for application 
in real samples.

Visual detection of TC

A POCT platform for TC was developed by taking advan-
tage of the excellent distinguishability and high stability 
of the ratiometric fluorescent sensor CdTe QDs@ZIF-8 
(Fig. 6a). After the reaction of CdTe QDs@ZIF-8 with dif-
ferent concentrations of TC, a clear change in color from 
red, orange, and yellow gradually to green can be observed 
under UV light with 365-nm excitation. Photographs were 
taken by the smartphone iPhone 15 Pro and RGB values 
were extracted from the photograph using color scanning 
software. The ratio of the G value to the R-value (G/R) 
was used as the readout signal for TC detection. As seen 
from Fig. 6b, there were good linear relationships between 
G/R and TC concentration at both ends. In the low con-
centration range of 0 ~ 15 μM, the linear fitting equation 

Table 1  Detection of TC in real 
samples

Samples Background 
(µM)

Added (µM) Found (µM) Recovery (%) RSD (n = 3) (%)

Animal feed 1 0 10 10.26 102.5 3.28
0 20 20.15 100.7 1.14
0 40 39.73 99.3 3.31

Animal feed 2 0 10 10.30 102.9 1.12
0 20 20.73 103.6 2.77
0 40 41.59 103.9 3.05

Fig. 6  a Schematic diagram of 
the CdTe QDs@ZIF-8 fluores-
cent sensor with smartphone 
readout for POCT of TC. b 
The ratio of G to R-value (G/R) 
versus TC concentration
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was G/R1 =  − 0.0245 + 0.0519C(TC) (R2 = 0.9957). In 
the range of 15 ~ 1000 μM, the linear fitting equation was 
G/R2 = 0.7132 + 0.0007C(TC) (R2 = 0.9782). The LOD was 
calculated as 0.0249 μM based on 3Sσ/K. The results showed 
that the ratiometric fluorescence sensor could be used for the 
visual detection of TC.

Conclusion

In summary, a composite material CdTe QDs@ZIF-8 was 
successfully prepared by a facile method, which can be used 
for dual-mode detection of tetracycline by fluorescence/
smartphone colorimetry. TC was combined with ZIF-8 
based on its strong adsorption ability to produce strong 
green fluorescence. Simultaneously, the red fluorescence of 
the CdTe QDs was strongly quenched by TC-triggered inner 
filter effect. These results led to a butterfly-shaped emis-
sion spectrum and resulting secondary signal amplification, 
which achieved a sensitive ratiometric fluorescence detec-
tion of tetracycline. Meanwhile, based on the obvious color 
change from red to green, a visual TC detection platform 
was successfully developed with satisfactory results. The 
constructed sensor had good practicality and great potential 
in food safety and environmental monitoring.
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