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Abstract
Being a widely occurring protein post-translational modification, N-glycosylation features unique multi-dimensional struc-
tures including sequence and linkage isomers. There have been successful bioinformatics efforts in N-glycan structure 
identification using N-glycoproteomics data; however, symmetric “mirror” branch isomers and linkage isomers are largely 
unresolved. Here, we report deep structure-level N-glycan identification using feature-induced structure diagnosis (FISD) 
integrated with a deep learning model. A neural network model is integrated to conduct the identification of featured N-glycan 
motifs and boosts the process of structure diagnosis and distinction for linkage isomers. By adopting publicly available 
N-glycoproteomics datasets of five mouse tissues (17,136 intact N-glycopeptide spectrum matches) and a consideration of 
23 motif features, a deep learning model integrated with a convolutional autoencoder and a multilayer perceptron was trained 
to be capable of predicting N-glycan featured motifs in the MS/MS spectra with previously identified compositions. In the 
test of the trained model, a prediction accuracy of 0.8 and AUC value of 0.95 were achieved; 5701 previously unresolved 
N-glycan structures were assigned by matched structure-diagnostic ions; and by using an explainable learning algorithm, 
two new fragmentation features of m/z = 674.25 and m/z = 835.28 were found to be significant to three N-glycan structure 
motifs with fucose, NeuAc, and NeuGc, proving the capability of FISD to discover new features in the MS/MS spectra.
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Introduction

Protein N-glycosylation functions as a significant post-trans-
lational modification and plays important roles in many bio-
logical processes [1–3] and pathology processes such as can-
cers [4–6]. N-Glycoproteomics using liquid chromatography 
coupled with tandem mass spectrometry (LC–MS/MS) has 
remarkably facilitated the analysis of N-glycoproteins in the 
fields of disease diagnosis, therapy, and prognosis [7, 8]. The 
structures of the N-glycan moiety on the N-glycoproteins 
bring non-negligible impact on the functions [9], indicating 
the need of structure-level analysis of the N-glycans.

Because of the high heterogeneity and structural diver-
sity of the N-glycans [10], precise identification of N-glycan 
structures from MS/MS spectra is challenging. In mono-
saccharide identification, many tools (such as Byonic [11], 
Mascot [12], GlycoPeptideSearch [13], GPQuest [14], Gly-
coPAT [15], pGlyco3 [16], MSFragger-Glyco [17]) have 
been developed. Feature patterns of N-glycan sequence 
and motifs (such as fucosylated core and branch, bisecting 
GlcNAc, sialic acid terminal) can be observed in tandem 
MS spectra, and structure identification is thus possible 
[18–21]. In this regard, StrucGP [22] is capable of identify-
ing precise N-glycan structures using a de novo strategy; 
PEAKS GlycanFinder [23] achieved similar performance 
using a deep learning model-assisted sequencing method; 
and GPSeeker [24] established a strategy utilizing the theo-
retical unique fragments (named structure-diagnostic ions) 
of A/B/C/X/Y/Z types computed among all sequence iso-
mers of the same monosaccharide composition. However, 
symmetric “mirror” branch isomers and linkage isomers are 
largely un-resolved.
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Here, we report deep structure-level N-glycan identifi-
cation using feature-induced structure diagnosis (FISD) 
integrated with a deep learning model. A neural network 
model is integrated to conduct the identification of featured 
N-glycan motifs and boosts the process of structure diagno-
sis as well as the distinction of linkage isomers. By adopting 
publicly available N-glycoproteomics datasets of five mouse 
tissues (17,136 intact N-glycopeptide spectrum matches) and 
a consideration of 23 motif features, a deep learning model 
integrated with a convolutional autoencoder (CAE) and a 
multilayer perceptron (MLP) was trained to be capable of 
predicting N-glycan featured motifs in the MS/MS spec-
tra with previously identified compositions. In the test of 
the trained model, a prediction accuracy of 0.8 and AUC 
value of 0.95 were achieved; 5701 previously un-resolved 
N-glycan structures were assigned by matched structure-
diagnostic ions; and by using explainable learning algo-
rithm, two new fragmentation features of m/z = 674.25 and 
m/z = 835.28 were found to be significant to three N-glycan 
structure motifs with fucose, NeuAc, and NeuGc, proving 
the capability of FISD to discover new features in the MS/
MS spectra.

Methods

Data acquisition and processing  The N-glycoproteomics 
raw datasets of the five mouse tissues were downloaded 
from the PRIDE Archive [25] and Proteome Xchange [26] 
using accession numbers of PXD005411, PXD005412, 
PXD005413, PXD005553, and PXD005555 [27]. The 
N-glycoproteomics raw datasets of the four standard N-gly-
coproteins and the StrucGP identification results of these 
standard N-glycoproteins together with the aforementioned 
five mouse tissues were downloaded using the acces-
sion number of PXD025859 [22] covering the treatments 
of Untreated, De-sialylated, Cut HexNAc, Cut Gal Cut 
HexNAc, and Cut Fucose. All the raw datasets were con-
verted to the.mzML format using ProteoWizard MSConvert 
(version 3.0.21335-35327b7) [28, 29] with the parameters 
of mzML output format, 64-bit binary encoding precision, 
Vendor Peak Picking Filter at MS levels 1 ~ 2, and the default 
Title Maker Filter.

Acquisition of the intact N‑glycopeptide identification 
results  The mouse proteome fasta database (17,202 entries) 
was downloaded from Uniprot with the UniProtKB acces-
sion of UP000000589 and reviewed filtration. All raw data 
from the five mouse tissues were searched using pGlco3 
(version 3.1) and MSFragger-Glyco (FragPipe v21.1). The 
parameters adopted for pGlyco3 are the following: the file 
type was set to raw, the fragmentation method was set to 
HCD, trypsin was used as the enzyme and max missing 

cleavage was set to 2, carbamidomethyl on C was set as fixed 
peptide modification and oxidation on M was set as dynamic 
modification, max variable modification on peptides was set 
to 3, peptide length was set from 6 to 50, peptide mass range 
was set from 400 to 5000, the glycan database was set to 
“pGlyco-N-Mouse-Large.gdb” with “N-Glycan” set as gly-
can type, the precursor tolerance was set to 10 ppm and the 
fragment tolerance was set to 20 ppm, the other parameters 
were kept as default. The parameters for FragPipe were the 
same as pGlyco3 except the following settings: “glyco-N-
HCD” was set as the workflow, the mouse proteome data-
base was set with added 50% decoys using the Database 
module, the PTM-Shepherd was activated and set to “Glyco 
Search,” the other parameters were kept as default.

Acquisition of the sulfated intact N‑glycopeptide identifi‑
cation results using GlycReSoft  The GlycReSoft tool was 
downloaded in 0.4.22 version. The peptide backbones were 
extracted from the GPSMs used in the model training and 
testing, and were compiled into a fasta file in which each 
peptide was deposited as a single protein (824 peptides, 
Supplementary Material S1). All glycan compositions 
from the intersection of pGlyco3 mouse N-glycan data-
base, MSFragger-Glyco, and our glycan structure definition 
rules were adapted by adding 1 ~ 3 sulfates iteratively for 
each composition (also restricted that the number of sulfate 
should not be more than HexNAc, 4272 glycan composi-
tions, Supplementary Material S1). For building the gly-
copeptide search space, carbamidomethyl on C was set as 
constant peptide modification and oxidation on M was set 
as variant modification. No enzyme was chosen because the 
fasta file already presented cleaved peptide sequences. Other 
parameters for building the glycopeptide search space were 
set as default. All 25 mouse five tissue mzML data files 
were added to the workspace using preset configurations of 
“LC–MS/MS Glycoproteomics,” leaving other parameters 
to remain default. The glycopeptide search parameters were 
set to default except a 500 Batch Size and a 500 Minimum 
Search Mass. Other key default parameters included 10 ppm 
MS1 Error Tolerance and 20 ppm MS2 Error Tolerance. The 
search results were filtered before being used in the estima-
tion process with: q-value < 0.05, is_best_match = True and 
possesses the highest ms2_score in the MS2 scan.

Definition of the putative N‑glycan branches  In FISD, 
all branch structures were derived from pre-defined 18 
base branch structures, which in the text format [30] were 
constructed from the combinatorial structures of branch, 
sequence, linkage and N-glycan types in the glycan struc-
tures. The glycan structure code formatting is illustrated in 
Supplementary Fig. S1. For example, the LacNAc structure 
“GlcNAc-� 4–1-Gal” was encoded as “Y41L” with the link-
age numbers remained; “T” code was specified for NeuGc; 
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a question mark “?” was specified as an uncertain linkage 
number and the � 2,3 and � 2,6 linkages of the terminal sialic 
acid residues were coded together as “?2S.” Among the 18 
base branch structures (Table 1), 12 were determined using 
the mouse N-glycan branches provided by StrucGP in the 
study of low HCD spectra, and six came from consideration 
of the existing biosynthesis-based summaries [31–35]. All 
possible branch structures, annotated as the same “source” 
(Supplementary Table  S1), were generated by detach-
ing one monosaccharide residue a time from each of the 
base branches. For the intact N-glycan structure, the types 
of complex and hybrid were taken into consideration. For 
complex N-glycans, a max of four antennae was stipulated 
with the fixed “locations” of � 1,2 and � 1,4 on the � 1,3 
mannose residue of the N-glycan core, together with � 1,2 
and � 1,6 on the � 1,6 core mannose residue. Then, all the 
generated branches were iteratively connected to the fixed 
four “locations” to construct the intact N-glycan structure 
following the following specificities. If two branches were 
connected to the same core mannose residue, they should 
be from the same group (i.e., from the same base branch); 
if there was only one branch connected to the � 1,3 or � 1,6 
core mannose residue, the branch should always be deter-
mined as � 1,2 linkage; for the core structures, fucosylation 
and bisecting GlcNAc were also adopted into the exhaustive 
combination. For hybrid N-glycans, a max of four mannose 
residue was limited on the � 1,6 core mannose residue.

Definition of the N‑glycan motif features  Thirty N-glycan 
motif features were defined based on the base branches and 
core structures (Table 2). According to the structure rules, 
a single intact N-glycan structure might contain more than 
one defined motif features. A 30-dimension vector was uti-
lized to represent the presences of the defined features in a 
single N-glycan. Each dimension stood for a fixed defined 
feature and the values 0 (or “False”) and 1 (or “True”) rep-
resent absence and presence of the feature, respectively. All 
the 30-dimension feature vectors were calculated for each 
of the possible intact N-glycan structure (Supplementary 
Table S1). After the evaluation of the intact N-glycopeptide 
spectrum matches (GPSMs) from the training set, seven fea-
tures were removed because of insignificant presence and 23 
features were kept for further test evaluation.

Construction of the deep learning neural network model 
for the prediction of defined motif feature structures  The 
first set of GPSMs for training and testing the model was 
extracted from the common ones (same peptide sequences, 
modifications, and glycan compositions) simultaneously 
reported by pGlyco3, MSFragger-Glyco (FragPipe), and 
StrucGP in the five mouse tissues. The true labels for the 
training set, that is, the confirmed total 30 motif features 
regarded as the true positive references of each GPSM in 
the training set, were calculated using the reported N-glycan 
structures from StrucGP, leaving no true positive references 
for the motif features related to the six base branches that 
exceeded the collections of StrucGP. In order to obtained 

Table 1   Base branches and corresponding derived branch structures defined in the N-glycan structure rules, the text coding format follows the 
previous work [30], where a question mark “?” stands for an uncertain linkage number and the code “T” stands for NeuGc

Group Base branch structure Derived branch structure

1 Y /
2 Y41L Y
3 Y(31F)41L Y41L; Y31F; Y
4 Y(31F)41L?2S Y41L?2S; Y(31F)41L; Y41L; Y31F; Y
5 Y(31F)41L?2T Y41L?2T; Y(31F)41L; Y41L; Y31F; Y
6 Y(31F)41L?1F Y41L?1F; Y(31F)41L; Y41L; Y31F; Y
7 Y(31F)41L31L Y41L31L; Y(31F)41L; Y41L; Y31F; Y
8 Y(31F)41V Y41V; Y31F; Y
9 Y41V?2S Y41V; Y
10 Y(62S)41L?2S Y41L?2S; Y(62S)41L; Y41L; Y
11 Y(62T)41L?2S Y41L?2S; Y(62T)41L; Y41L; Y
12 Y(62T)41L?2T Y41L?2T; Y(62T)41L; Y41L; Y
13 Y(62S)41L32S82S Y41L32S82S; Y(62S)41L?2S; Y41L?2S; Y41L; Y
14 Y41L31Y Y41L; Y
15 Y41L31Y(31F)41L Y41L31Y41L; Y41L31Y31F; Y41L31Y; Y41L; Y
16 Y41L31Y(31F)41L?2S Y41L31Y41L?2S; Y41L31Y(31F)41L; Y41L31Y41L; Y41L31Y31F; Y41L31Y; Y41L; Y
17 Y41L31Y(31F)41L?2T Y41L31Y41L?2T; Y41L31Y(31F)41L; Y41L31Y41L; Y41L31Y31F; Y41L31Y; Y41L; Y
18 Y41L31Y(31F)41L?1F Y41L31Y41L?1F; Y41L31Y(31F)41L; Y41L31Y41L; Y41L31Y31F; Y41L31Y; Y41L; Y
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true labels for all motif features, further selection was car-
ried out from the GPSMs that co-reported by pGlyco3 and 
MSFragger-Glyco in five mouse tissues as supplements to 
the training set. The GPSMs were selected by matching 
the fragments in a manually defined ion list (Supplemen-
tary Table S2a) created using the in silico fragmented ions 
within the type of B/C and ions produced by two times of 
fragmentation named as type BY/BZ/CY. Oxonium ions 
with m/z = 274.0927 for motif feature structures contain-
ing NeuAc and m/z = 290.0876 for NeuGc were also taken 
into account. If all the fragments in the list were matched, 
the corresponding motif feature was determined as truly 
presented in the spectrum and the GPSM could be finally 
selected as a supplement. The second set of GPSMs was 
from the results reported by StrucGP in the four standard 
glycoproteins. The third set of GPSMs was from GPSMs 
common to pGlyco3 and MSFragger-Glyco but not StrucGP 
in the five mouse tissues, where structures (other than those 

of StrucGP) with any of the defined motif features were also 
generated and included.

All GPSMs with the corresponding peptide backbones and 
monosaccharide compositions were embedded into a high-
dimensional matrix before inputted to the CAE layers of the 
neural network model. For each GPSM, a fragment m/z list 
was computed by merging all theoretical fragments of all 
N-glycan structures with the same monosaccharide compo-
sition. Both the canonical fragments of B/Y/C/Z and inter-
nal fragments of BY/BZ/CY/YY/YZ/ZZ are included for 
consideration. As for charge states, + 1 and + 2 for Y/Z/YY/
YZ/ZZ ions, + 1 for B/C/BY/BZ/CY ions, and + 2 for ions 
with m/z larger than 900 were calculated. All experimental 
isotopic peaks were then assigned to the merged fragment 
m/z list, glycan-related signals were collected, the intensity 
of each fragment peak was normalized to the summed inten-
sity of the Y1 ion and the precursor ion in the MS2 spectrum 

Table 2   Defined N-glycan motif features

Name Abbreviation Structure Removed Index

Core Fucosylation CrFuc Y(61F) N 1/1
Bisecting GlcNAc Bisect Y41M(41Y) N 2/2
Branch Fucosylation BrcFuc Y(31F) N 3/3
Terminal Sialylation NeuAc TmSiaAc Y41L?2S N 4/4
Terminal Sialylation NeuAc Fucosylated TmSiaAcF Y(31F)41L?2S N 5/5
Terminal Sialylation NeuGc TmSiaGc Y41L?2T N 6/6
Terminal Sialylation NeuGc Fucosylated TmSiaGcF Y(31F)41L?2T N 7/7
Terminal Fucosylation TmFuc Y41L?1F N 8/8
Terminal Fucosylation Fucosylated TmFucF Y(31F)41L?1F N 9/9
Terminal Digalactose TmDiGal Y41L31L Y 10/-
Terminal Digalactose Fucosylated TmDiGalF Y(31F)41L31L Y 11/-
N,N′-Diacetyllactosamine LacDiNAc Y41V N 12/10
N,N′-Diacetyllactosamine Fucosylated LacDiNAcF Y(31F)41V N 13/11
Terminal Sialylation LacDiNAc TmSiaDN Y41V?2S N 14/12
Branch Sialylated NeuAc BrcSiaAc Y(62S)41L N 15/13
Terminal Sialylation NeuAc with Branch Sialylated NeuAc TmSiaAbrcAc Y(62S)41L?2S N 16/14
Branch Sialylated NeuGc BrcSiaGc Y(62T)41L N 17/15
Terminal Sialylation NeuGc with Branch Sialylated NeuAc TmSiaAcBrcGc Y(62S)41L?2T Y 18/-
Terminal Sialylation NeuGc with Branch Sialylated NeuGc TmSiaGcBrcGc Y(62T)41L?2T N 19/16
Terminal DiNeuAc TmDiSiaAc Y41L32S82S N 20/17
Terminal DiNeuAc with Branch Sialylated NeuAc TmDiSiaAcBrcAc Y(62S)41L32S82S N 21/18
Extended LacNAc ExLacNAc Y41L31Y41L N 22/19
Extended LacNAc Fucosylated ExLacNAcF Y41L31Y(31F)41L N 23/20
Terminal Sialylation NeuAc with Extended LacNAc TmSiaAcExLN Y41L31Y41L?2S N 24/21
Terminal Sialylation NeuAc with Extended LacNAc Fucosylated TmSiaAcExLNF Y41L31Y(31F)41L?2S Y 25/-
Terminal Sialylation NeuGc with Extended LacNAc TmSiaGcExLN Y41L31Y41L?2T N 26/22
Terminal Sialylation NeuGc with Extended LacNAc Fucosylated TmSiaGcExLNF Y41L31Y(31F)41L?2T Y 27/-
Terminal Fucosylation with Extended LacNAc TmFucExLN Y41L31Y41L?1F Y 28/-
Terminal Fucosylation with Extended LacNAc Fucosylated TmFucExLNF Y41L31Y(31F)41L?1F Y 29/-
Hybrid Category Hybrid Y41M61M61M N 30/23
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with charges 1 and 2, and finally, the normalized intensities 
were embedded to the input matrix at the specified location 
based on the target motif feature, ion type, and monosac-
charide composition of the matched fragment.

Oxonium ions were also considered as an individual frag-
ment ion type in the input matrix. The matrix was shaped 
as dimensions of 30 × 5 × 6 ×6 × 5 × 4× 4, where the first 
dimensional “30” represents the first 30 defined motif fea-
tures; the second dimensional “5” represents the fragmen-
tation types of oxonium, B/C, BY/BZ/CY, Y/Z, and Y/Z/
YY/YZ/ZZ, respectively; and the remaining five dimensions 
sequentially represent the difference values of HexNAc, Hex, 
Fuc, NeuAc, and NeuGc at the monosaccharide composition 
level between the composition of matched fragments and 
target featured motif. The difference value started from − 2 
to 3, 3, 2, 1, 1 respectively. For example, a B fragment 
HexNAc(1)Hex(2)Fuc(1) matched against the motif feature 
TmSiaAc (abbreviation referred to Table 2) with index of 4 
and composition of HexNAc(1)Hex(1)NeuAc(1) would be 
placed to location (4, 2, 3, 4, 4, 2, 3) with the composition 
difference calculated as HexNAc(0)Hex(1)Fuc(1)NeuAc(-1)
NeuGc(0). For each defined motif feature, if it was not con-
tained in the N-glycans generated from the identified compo-
sition, it would be blocked and excluded from the embedding 
step, while all contained features would iteratively become 
the target feature to conduct spectrum embedding. It is 
worth stressing that this “ignorance” only takes place in the 
embedding step, aiming at preventing the embedding step 
from introducing illogical data to the model (for example, 
inputting NeuAc-relevant data from a spectrum that in fact 
contains no NeuAc). On the other hand, however, it would 
certainly introduce false negatives to the model prediction 
results due to the identified composition might be a false 
positive. In the prediction and validation steps, all motif fea-
tures will be predicted regardless of the identified composi-
tion and the theoretically blocked features, indicating that we 
adopted a feature-unblocked model predictive method. The 
fragment list generating method and data embedding method 
made full use of the precise candidate N-glycan structures, 
and the original features were kept as many as possible to 
transfer the spectrum data into fragment correlations stored 
in the spatial structure of the input matrix.

The CAE model was trained and responsible for reduc-
ing the dimensionality of the embedded matrix data and 
decoding the convoluted data to retrieval the input data. The 
model consisted of several 3D convolution layers and used 
ReLu as activation function with a drop-out layer to real-
ize regularization handling. A weighed mean squared error 
(MSE) loss was designed as the loss function for training 
model and function as the 0.2 total MSE combined with a 
0.8 MSE between all non-zero values so that it would lower 
the impact of large proportions of zero values in the input 
matrix (source code provided as supplemental information). 

The inputted 30 × 5 × 6 × 6 × 5 × 4 × 4 matrix was convo-
luted to a 128-dimension vector through the CAE model and 
can be decoded to rebuild the input data.

The MLP model was trained using the encoded 
128-dimension vector and true labels of defined motif fea-
tures to perform prediction of the 23 features. The model 
consisted of several fully connected layers (FC) and used 
ReLu as activation function with a drop-out layer to realize 
regularization handling. The last output FC layer was set to 
23 dimensions and a weighted binary cross-entropy (BCE) 
loss was designed as the loss function for model training. 
The weight values were calculated based on the presence 
proportions of each of the 23 motif features (source code 
available at GitHub repository https://​github.​com/​QinSD-​
TJU-​Chem-​BAMS/​FISD-​Core-​Scrip​ts-​and-​Datas​ets, Sup-
plementary Material S2). Before MLP training, a random 
over-sampling strategy was adopted to balance the true label 
distributions of the motif features, in which the least six 
presented features were targeted and GPSMs that contained 
any of these six features were collected and copied to reach 
the proportion of 20% in the total GPSMs. Each copy intro-
duced a random change of less than 2% to all the copying 
values in encoded GPSM data to avoid overfitting. In the 
dataset splitting step, an iterative stratification algorithm was 
utilized to keep all the true labels equally distributed in both 
the training set and test set.

Evaluating the performance of the deep learning model on 
the prediction of defined N‑glycan motif features  The model 
was evaluated using a K-fold method on the training split 
dataset and tested on the test split dataset from the GPSMs 
of the five mouse tissues. For each GPSM, the predictive 
probabilities of each single defined N-glycan motif feature 
were produced by the model. The presence of all the 23 
features was finally determined using the output 23 prob-
abilities and all candidate feature vectors deduced from the 
N-glycan structure rules based on the identified composition 
of the GPSM. Features that remained 0 or “False” in all can-
didate feature vectors were removed from this GPSM. Then, 
for each candidate feature vector, the remaining features 
were compared between the predicted probability and can-
didate label to calculate the customized BCE value (Eq. 1),

where N is the number of remaining features, yi is the 0 
or 1 value of feature i in the candidate feature vector, and 
Pi is the predictive probability of feature i . The candidate 
feature vector with the lowest BCE value was determined 
as the final matched feature vector. The accuracies and F1 
scores at the single feature level were calculated using the 
predicted 0 or 1 label value of the predicted feature vector. 
At the total feature level, or equally for the entire feature 

(1)BCE = −
1

N

∑N

i
[yiln

(

Pi

)

+ (1 − yi)ln(1 − Pi)]

https://github.com/QinSD-TJU-Chem-BAMS/FISD-Core-Scripts-and-Datasets
https://github.com/QinSD-TJU-Chem-BAMS/FISD-Core-Scripts-and-Datasets
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vector, the binary tag was defined by whether the sum of the 
label values of features remained from the aforementioned 
selection was larger than the remaining feature count. Then, 
the predictive probability of the entire feature vector was 
calculated by the average value of the predictive probability 
of the positive label around all remaining features. The ROC 
curve data and AUC values of the model performance on the 
test split dataset were calculated using the defined binary 
label and the calculated probability of the entire feature vec-
tor in each GPSM. There were two criteria for estimating the 
accuracy and F1 score at the total dataset level. The final 
trained model was evaluated on the GPSMs from the four 
standard glycoproteins and the same algorithm was used to 
calculate the ROC curve data and AUC value.

Evaluation of the FISD strategy  The structure diagnosis 
step was proceeded by computing all candidate N-glycan 
structures based on the given feature vector and identified 
composition. Then, theoretical fragments of each candidate 
were calculated using the precise glycan structure consid-
ering the ion type of A/X/B/Y/C/Z, where the A/X type 
fragments could be calculated only when given the detailed 
linkage numbers between monosaccharide residues. Then, 
the structure-diagnostic ions for each candidate, that is, the 
unique fragments of a specific glycan structure that have 
different mass from all the other fragments generated by its 
isomers, were determined by checking whether the ion for-
mula was shared by other candidates. Finally, all candidate 
N-glycans were assigned in the MS/MS spectrum by match-
ing their structure-diagnostic ions, generating results of sin-
gle or multiple glycans with matched structure-diagnostic 
ions. Certainly, there were glycans possessing no theoreti-
cal structure-diagnostic ions or glycans with no matched 
structure-diagnostic ions. The former condition was han-
dled that all those glycans were kept as plausible identifica-
tions waiting for a better motif feature grouping strategy or 
other methods to conduct distinguishment and validation. 
The latter condition was marked as a failure match. For the 
branch location isomers, there were almost no B/Y/C/Z type 
fragments that could be unique to the other isomers, empha-
sizing the importance of A/X type fragments in structure 
diagnosis step for they would theoretically change when the 
location or linkage number of the branch structure change.

When a spectrum was assigned to have more than one 
N-glycan with matched structure-diagnostic ions, a diagno-
sis score was calculated for each N-glycan (Eq. 2),

where n is the number of matched structure-diagnostic ion 
regardless of the charge states, N  is the number of theo-
retical structure-diagnostic ions, and Ai is the abundance 

(2)score = ln(
n

N
+ 1)

∑n

i
Ai

or intensity of the ion i matched MS/MS peak. The final 
selected N-glycans as the structure-level identification result 
were determined using an iterative algorithm to figure out 
the top ranked N-glycan group whose average score was 
required to be at least three times as the highest score out 
of the top ranked group. Moreover, filtered N-glycans with 
matched structure-diagnostic ions were still kept in the out-
put results for further study inspiration.

Explainable learning of the neural network model  The CAE 
model was trained to decode the convoluted vector data to 
the input dimensions, reducing the neural network embed-
ded data to the data with practical significance. The same 
weighted MSE loss function as used in training the CAE 
model was applied to evaluate the loss in the decoding pro-
cess. The method of Shapley additive explanations (SHAP) 
was used in the MLP model to quantify the contributions of 
each of the input 128 dimensions from upper CAE layers. 
Three infrequently presented N-glycan motif features were 
selected as target features to perform explainable learning on 
the GPSMs from the test split dataset of mouse five tissues 
and four standard glycoproteins with the presence of target 
features in true labels. Then, the SHAP values were calcu-
lated for each target feature acquiring the contribution level 
of the 128-dimension encoded vectors of each GPSM. Then, 
a fixed interference of a 100 times expansion was added to 
the top 4 prominent contributed vector dimensions filtered 
by the SHAP values. The interfered vector and original vec-
tor were both decoded to the embedded matrix format by 
the CAE model. The two decoded matrices were compared 
and the values with 5 times expanded or 0.2 times narrowed 
would be considered as activated elements and the corre-
sponding matrix spatial locations were extracted to reduce 
to monosaccharide compositions and fragment types. By 
collecting the activated values in the decoded embedded 
matrices in all target GPSMs against the target features, the 
significances of fragments reduced from activated locations 
in the decoded matrices were evaluated using the presence 
frequencies and manual check of the fragment types and 
monosaccharide compositions.

Results

Development of the FISD strategy for the deep struc‑
ture‑level identification of N‑glycans on intact N‑glycopep‑
tides  A series of pre-determined N-glycan structure rules 
(Table 1) and a list of pre-defined N-glycan motif features 
(Table 2) is needed and applied to FISD. Detailed glycan 
structure code formatting followed our previous work [30] 
and is displayed in Supplementary Fig. S1. FISD consists of 
a feature-induced step and a structure diagnosis step (Fig. 1). 
The inputs are intact N-glycopeptide MS/MS spectra with 
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identified peptide backbones and glycan compositions from 
other tools or software. The feature-induced step was first 
proceeded, where a trained deep learning neural network 
model integrating a CAE and a MLP was adapted and 
applied to predict and identify the existence of the N-glycan 
motif features from the spectra. The identified motif features 
were then transferred to the glycan structure rules to gener-
ate all candidate structural isomers of which the number was 
much smaller than those computed from merely the given 
compositions, prominently increasing the numbers of the 
theoretical structure-diagnostic ions for each isomer and thus 
enabling the structure diagnosis step at such deep level. For 
the structure diagnosis step, all generated candidate struc-
tures were evaluated for the possession of theoretical struc-
ture-diagnostic ions and were annotated in the corresponding 
MS/MS spectra to finally confirm the structure, resulting 
in either single, multiple, or theoretically indistinguishable 
structural identifications in a single MS/MS spectrum.

The customized N-glycan structure rules took branch loca-
tion isoforms and carbon linkage numbers into considera-
tion, making it cover an ultra-deep isomer diversity. Moreo-
ver, the linkage numbers such as the � 1,4 linkage presented 
in the traditional LacNAc (GlcNAc-� 4–1-Gal) branch facili-
tated the diverse in silico fragmentation of A/X type ions, 
which also enhanced the depth of theoretical unique frag-
ments. The rules and pre-determined branch structures were 
filtered and deduced from existing summaries and confirmed 
studies [1, 22, 31–36], including all the 17 mouse N-glycan 
branches confirmed from the low-energy HCD experiments 

by StrucGP [22]. As a result, a total of 32 branch struc-
tures derived from 18 base branches attached with 30 motif 
features were adopted (Table 2), exhaustively constructing 
217,896 N-glycans of complex and hybrid types majorly 
targeting the mouse species and mammals (Supplementary 
Table S1, also deposited in Supplementary Material S2), as 
well as covering 1424 mouse N-glycan compositions out of 
1600 compositions of complex and hybrid type provided by 
pGlyco [27] and simultaneously used by the MSFragger-
Glyco (FragPipe) [17].

The pre-defined N-glycan motif features were designed 
to fit for the structure rules under the criteria of represent-
ing adequately featured N-glycan motifs that simultaneously 
group the isomers and are potentially capable of generating 
distinct fragments or fragmentation patterns with detectable 
regularity. Each N-glycan structure might contain more than 
one motif feature and could be grouped into specific feature 
group based on its contained feature motifs. The number of 
the features was finally reduced from 30 to 23 for the over-
imbalanced distributions in the training spectra datasets.

In the feature-induced step, a deep learning neural net-
work model was designed for predicting the motif features 
contained in the N-glycan at the GPSM level. By submit-
ting the MS/MS spectrum data with the corresponding pep-
tide backbone and monosaccharide composition results by 
N-glycoproteomics identification tools, the model would 
embed the spectrum data into a high-dimensional matrix 
based on the pre-identified composition and sent it to the 
input layer of the convolutional neural network. After the 
CAE and MLP layers processed, a 23-dimension vector was 

Fig. 1   The workflow of the FISD strategy
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outputted as the prediction probabilities of all 23 pre-defined 
features. The final prediction of the features was generated 
by referring to the structure rules to find the best match of 
all features.

With the identified motif features of the N-glycan and 
structure rules, all possible intact glycan structures were 
constructed with a much smaller number of isomers than 
those generated from just a given identified composition, 
leading to a considerable proportion of isomers that could 
theoretically produce unique fragments as structure-diag-
nostic ions. Finally, the structure diagnosis step was pro-
ceeded by matching theoretical structure-diagnostic ions in 
the experimental MS/MS spectrum to conclude the precise 
N-glycan structure. The result could be either a single match, 
multiple matches, or plausible structures without theoretical 
structure-diagnostic ions.

Moreover, the CAE and MLP models were capable of 
explainable learning, which offered the calculated contribu-
tions and importance of each input spectrum signal to the 
predicted N-glycan motif features, suggesting that the FISD 
strategy was able to discover new signal patterns presented 
in the experimental spectra that closely related to the struc-
ture feature and broaden the usage of indirect fragments or 
fragmentation patterns in the identification procedure.

Training and estimation of the deep learning model for 
predicting the motif features of N‑glycans  The N-glyco-
proteomics MS/MS spectra datasets for training and test-
ing the model were acquired from mouse five tissues [27] 
with co-identified intact N-glycopeptide spectrum matches 
(GPSMs) reported by pGlyco3 [16], MSFragger-Glyco 
(FragPipe), and StrucGP. The spectra of four standard gly-
coproteins acquired by the StrucGP developer team [22] 
were also used to conduct extra model validation. A total 
of 17,136 GPSMs from all the five replicate LC–MS/MS 
experiments of the five mouse tissues (brain, heart, kidney, 
liver, and lung, total 25 raw files, Supplementary Table S2b) 
were selected as training and testing datasets, covering all 
defined motif features with most of which reported to have 
the same identifications of peptide sequences, modifications, 
and glycan compositions across pGlyco3, MSFragger-Glyco, 
and StrucGP, while a small number of the GPSMs were not 
reported by StrucGP due to their assignments to the fea-
tured N-glycan branches which exceeded the branch col-
lections used by StrucGP. The true labels of the N-glycan 
motif features of each GPSM were deduced from the iden-
tified intact N-glycan structure in StrucGP results, while 
a small number without StrucGP support were confirmed 
using the fragment list (Supplementary Table S2a), regard-
less of the model-driven feature prediction. This labeling 
method would obviously introduce false positive labels to 
the training data due to the inevitable false positive structure 
identification presented by StrucGP. Therefore, using motif 

features (small partial glycan structures) as label rather than 
the intact glycan structure would to a large extent ensure the 
correction of feature motif labels and exclude the impact of 
reported incorrect intact glycan structure, making full use of 
the existing high-performance tools. Still and all, few false 
positive labels were inevitably introduced and it remained 
as a known issue. As a result, a total of 2943 GPSMs from 
the four standard glycoproteins reported from StrucGP [22] 
were also adopted as testing data, including samples with 
different treatments (Supplementary Table S2c).

The model was first trained on 80% of the GPSMs from 
the five mouse tissues using a five-fold K-fold estimation 
strategy. The motif feature labels were considered to be 
symmetrically split and the remaining 20% of the GPSMs 
were used as a test set. A random over-sampling method 
was adapted to further balance the label distributions of 
the features with minor proportions. At the single feature 
level, the model achieved ultra-high accuracies at about 
0.95 ~ 0.99 and F1 scores > 0.85 for most of the motif fea-
tures in both K-fold circulations and predictions on the 20% 
test set (Fig. 2a), revealing a high performance of the deep 
learning model in predicting single motif feature. The pre-
diction accuracy of all pre-defined motif features together 
in a single spectrum was estimated in two different crite-
ria. Criterion 1 is identical to presented true features, which 
required that all 23 features should be correctly predicted 
in a single spectrum; and criterion 2 covers all presented 
true features, allowing extra positive prediction of features 
that true labels do not provide but reject any of the missing 
prediction of features that are positively provided by true 
labels. The compiled predictive probability of all features 
was calculated using a structure rules-based method. As a 
result, an average of 0.81 criterion 1 accuracy accompanied 
with an average F1 score of 0.77 and an average of 0.87 
criterion 2 accuracy with an average F1 score of 0.83 were 
reached around the five circulations of K-fold estimation. A 
0.80 accuracy of criterion 1 with an F1 score of 0.76 and a 
0.87 accuracy of criterion 2 with an F1 score of 0.84 were 
acquired in the 20% test set. The receiver operating charac-
teristic (ROC) curve was also calculated (Fig. 2b) to further 
evaluate the model performance. The area under the ROC 
curve value was 0.95 on the test set for calculation using the 
compiled predictive probabilities at the level of all features.

The final model was trained on all the GPSMs from the 
five mouse tissues and was evaluated on the GPSMs from 
the four standard glycoproteins. An accuracy of 0.66 with 
an F1 score of 0.63 on criterion 1 and an accuracy of 0.85 
with 0.81 F1 score on criterion 2 were acquired, showing 
divergences from part of the feature prediction. The ROC 
curve is also calculated in Fig. 2b with an AUC value of 
0.84, revealing a considerable performance on the majority 
of the motif feature prediction.
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Considering the inevitable false positive glycan com-
position identifications from the adopted existing tools, 
especially the mass substitutions caused by sulfate (e.g., 
one sulfate and two HexNAc have equivalent mass to 
three Hex), we adopted GlycReSoft tool [37, 38], which 
was capable of identifying sulfated N-glycopeptides in 
LC–MS/MS data, to estimate this false positive in the 
train/test split GPSMs as well as the subsequent structure 
diagnosis step. The original search results of the mouse 
five tissues are deposited in Supplementary Material S1. 
The false positive criterion was determined as a GPMS 
with the same peptide backbone but different glycan com-
position reported in GlycReSoft. As a result, 49 out of 
13,792 GPSMs (0.36%) in the train set split and 8 out of 
3703 in the test set split (0.22%) were detected as sulfated 
mass substitution false positives (Supplementary Fig. S2a 
and Supplementary Table S3) with a few GPSMs detected 
as totally different glycopeptides. The total accuracy of the 
neural network model for predicting feature motifs reduced 
from 0.8022 to 0.8011 (different GP identification)/0.8018 
(only glycan mass substitution), F1 score from 0.7635 
to 0.7621/0.7628, and ROC-AUC value from 0.9517 to 
0.9462/0.9473, when considering the false positives. In the 
structure diagnosis step, the false positives took the similar 
proportions within a low rate (0.097 ~ 0.47%, Supplemen-
tary Fig. S2b). The results exhibited a low impact but still 
these false positives remained inevitable and became a 
tough drawback of the FISD strategy, leaving a key factor 
that influences the model performance.

Evaluation of the structure diagnosis step  The perfor-
mance of the structure diagnosis strategy based on the 

identified motif features without the participation of the 
deep learning model was first evaluated on the GPSMs 
from the four standard glycoproteins by taking the motif 
features contained in the reported N-glycan structures 
of each spectrum as true labels. All candidate N-glycan 
structures were generated using the structure definition 
rules, and then, their corresponding theoretical struc-
ture-diagnostic ions were computed and annotated in 
MS/MS spectra to obtain the final structure identifica-
tion. The identified N-glycan structures were compared 
to the structures reported by StrucGP (Fig. 3a left, Sup-
plementary Table S4a) and would result in three condi-
tions: (1) the structure diagnosis strategy reported results 
covered the StrucGP results; (2) different reports but the 
structure identified by StrucGP was computed to have no 
theoretical structure-diagnostic ions; (3) entirely different 
reports. The comparison result exhibited that about 2/3 of 
the reported glycan matches were identical or theoreti-
cally not conflicted, but there were still a large proportion 
that the structure diagnosis strategy diverged. Consider-
ing that the structure diagnosis step was distinguishing 
a deeper level N-glycan isomers, the reported structures 
with annotated structure-diagnostic ions still remained 
competitive as shown in several spectrum annotation 
results (Fig. 4a) and more annotated spectra are presented 
in Supplementary Fig. S3. Comparison results that exhib-
ited the outperformance of FISD strategy are also dis-
played in Supplementary Figs. S4–S6, including feature 
motif distinguishment and structure diagnosis annotations. 
Moreover, there were parts of the GPSMs identified to 
contain multiple N-glycan structures, proving it capable 
of assigning isomers in a single MS/MS spectrum.

Fig. 2   Evaluation of the model performance: a the accuracies and F1 scores of all 23 motif features at the single feature level in the K-fold circu-
lation; b the ROC curves of the model evaluated on the test split dataset and four standard glycoproteins
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Evaluation of the entire protocol of the FISD strategy  The 
trained model on the 80% GPSMs from the five mouse tis-
sues was temporarily used for the feature-induced step to 
conduct a comparison identification on the GPSMs of the 
test set. The predicted motif features and reported N-glycan 
structures were compared to those reported by StrucGP 
in the test set (Fig. 3b, Supplementary Table S4b). The 
result suggested that it gained stronger divergence due to 
the approximate 0.8 accuracy of motif feature prediction 
at the total feature level. Differentially identified motif 
features would lead to distinguishment of differentially 
grouped candidate N-glycan isomers. However, consid-
ering the depth of the isomerism, the FISD strategy still 
provided remarkable feature identifications with evident 
spectrum signals (Fig. 4b). There were also some of the 
GPSMs predicted to be containing more than one N-glycan 
structure at the single spectrum level, indicating that the 
FISD strategy was able to accomplish multiple N-glycan 
structure assignment at an ultra-deep level.

The trained model on the total GPSMs from the five 
mouse tissues was adopted as the final model for the feature-
induced step. The FISD protocol was evaluated on a total 
of 9689 GPSMs from the five mouse tissues with identi-
cal peptide backbone and monosaccharide composition 
identified by both pGlyco3 and MSFragger-Glyco but not 
StrucGP (Supplementary Table S4c). The results showed 
that a total of 5344 MS/MS spectra were identified with 
singly assigned N-glycan structures while 357 spectra were 
identified with multiply assigned structures at an ultra-deep 
isomeric distinguishment level with matched structure-diag-
nostic ions (Fig. 5a), revealing new N-glycan structures that 
were not previously reported; and the FISD strategy was 
qualified for identifying new N-glycan structures at a deep 
distinguishment level within more generalized conditions.

Utilization of explainable learning to discover new frag‑
mentation regularities and new significant patterns related 
to featured N‑glycan motifs in MS/MS spectra  The MLP 

Fig. 3   Comparison of the N-glycan structure reported by structure 
diagnosis step with the existing results, where the “Uncertain” label 
stands for the spectrum in which structures reported by StrucGP were 
evaluated to have no theoretical structure-diagnostic ions: (a left) the 
comparison result on the dataset of four standard glycoproteins with-
out the participation of the deep learning model; (a right) the overall 
statistics of the structure assignment conducted by the structure diag-
nosis step on the GPSMs from four standard glycoproteins, where the 

label “Single” stood for the GPSMs finally assigned to one N-glycan 
structure, the label “Multiple” stood for the GPSMs assigned to more 
than one structure, the “Theo. undistinguishable” label indicated 
GPSMs with all candidate N-glycans producing no theoretical struc-
ture-diagnostic ions; (b left) the comparison result on the dataset of 
the test split set of the predicted feature vectors using the deep learn-
ing model; (b right) overall statistics of the structure assignment on 
the test split dataset
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model was capable of explainable learning producing the 
contributions and significances of the input data to the 
predicted probabilities of N-glycan motif features. With 
the assistance of decoding processes in the CAE model 
and manual checking, a total of three infrequently iden-
tified motif features including fucosylated LacNAc with 
NeuAc (abbreviated as TmSiaAcF), NeuGc (TmSiaGcF), 
and fucose as terminal monosaccharide (TmFucF) were 
targeted for discovery of new featured fragmentation pat-
terns in the 9689 GPSMs containing corresponding iden-
tified motif features which were used for assigning new 
N-glycan structures from the five mouse tissues (Fig. 5b, 

Supplementary Table  S5). The fragment composed of 
HexNAc(1)Hex(2)Fuc(1)-H2O with m/z = 674.25 was 
marked as significant to the TmSiaAcF and TmFucF 
motifs, while fragment composed of HexNAc(1)Hex(2)
NeuGc(1)-H2O with m/z = 835.28 was marked significant 
to TmSiaGcF. Both fragments were not yet taken into con-
sideration as the marker signals for these three motif fea-
tures, suggesting the usage of explainable methods in the 
feature-induced step of the FISD strategy was capable of 
discovering new features or significantly marked fragmen-
tation patterns and reporting new potential marker signals 
for N-glycan structures.

Fig. 4   Annotation of the 
identified N-glycan structures in 
single MS/MS spectra. a Using 
only structure diagnosis strategy 
without the prediction of motif 
features. The feature vector was 
calculated from the structure 
reported by StrucGP and paired 
“mirror” structures were identi-
fied respectively by StrucGP 
and the structure diagnosis step. 
The latter provided with key 
matching of structure-diagnostic 
ion 04X(1,1,3) to support the 
deeper level identification. b 
Intact FISD, including deep 
learning prediction of the 
feature vector, was applied to 
the test split dataset from the 
five mouse tissues. Note that 
the predicted features (contain-
ing a LacDiNAc feature) were 
different from the true labels 
(containing a Bisect feature), 
revealing the competitive pre-
dictive results in the diverged 
reports. The nomenclature of 
the fragment ions was adapted 
from our previous work [30], 
with the 3 numbers listed in the 
bracket respectively standing 
for the branch depth, branch 
index in the branch depth, and 
the monosaccharide index in 
the branch. The “right-most” 
antenna is defined as the one-
depth branch
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Discussion

The FISD strategy accomplished the identification of N-gly-
can structures at an ultra-deep level considering the branch 
location isomers and an extreme large amount of branch 
structure combinations in the N-glycan structure rules. By 
introducing the motif feature-induced strategy, our previ-
ously reported structure diagnosis method could finally 
be adapted to large N-glycan systems. The deep learning 
method for predicting motif features also performed well at 
the single feature level with F1 scores of most features > 0.85 
and reached considerable accuracy of about 0.8 at the total 
feature level in a single MS/MS spectrum. Incorrect identi-
fied compositions reported by existing tools would introduce 
false positives to the model prediction. Though it was proved 
to exhibit a low impact under our experiment conditions in 
both the proportion rates and accuracies, it still remained 
an inevitable and non-negligible drawback. More fragment 
types were taken into consideration by this model especially 
the internal fragments of BY/BZ/CY/YY/YZ/ZZ types, 
broadening the theoretical patterns used in the N-glycan 
identification. Fragment correlations and abundance signals 
were also embedded into the neural network, boosting the 
utilization of indirect and hidden patterns in the MS/MS 
spectra; and the remarkable generalization ability of the neu-
ral network is to further promote the identification. Although 
several results reported by the FISD strategy diverged from 
existing reports both at the motif features and intact N-gly-
can structures, our results provided competitive proofs in the 
experimental MS/MS spectra to further support our identifi-
cations of features and intact structures, suggesting a deeper 

structure-level vision of the intact N-glycopeptide spectra. 
Finally, in the application of the strategy to the GPSMs 
from the five mouse tissues without previously reported 
N-glycan structures, 5701 spectra were assigned to specific 
deep-level structures, making an outstanding supplement of 
deep N-glycan structure identification to the dataset. By uti-
lizing an explainable learning algorithm, the FISD strategy 
obtained the ability of discovering new fragmentation pat-
terns and new significant ions related to featured N-glycan 
motifs by excavating the prominently contributed elements 
in the neural network.

There are still limits and drawbacks in the current FISD 
strategy. (1) The neural network model is under inade-
quate optimization. More confidently N-glycan structure-
level characterized GPSMs are needed to train the model 
to “learn” more about each N-glycan feature. Also, many 
hyperparameters still remain to be optimized. (2) There is 
a lack of methodology for verifying these deep structure-
level glycan identifications in a large-scale glycoproteom-
ics context regardless of MS/MS spectrum interpretation. 
Potential strategies such as conducting accompanied gly-
comic investigation and using deep learning-based gly-
can structure identification tool (e.g., CandyCrunch [39]) 
might be feasible. Also checking the reported structures 
with glycan-mediated interactions or biological functions 
resources (e.g., works of Daniel Bojar et al. [40]). However, 
these two strategies still rely on spectrum interpretation or 
lack hard evidences for detailed glycan structures. (3) The 
performance of the integrated neural network model relies 
deeply on the quality of the GPSMs reported by existing 
tools. Any false positive glycan composition identification 

Fig. 5   Applications of the FISD 
strategy: a the identification sta-
tistics on the GPSMs from the 
mouse five tissues co-reported 
by pGlyco3 and MSFragger-
Glyco, in which no specific 
N-glycan structure was previ-
ously assigned; b the marked 
significant fragment patterns 
reported by the explainable 
learning on the trained CAE 
and MLP model, which were 
potentially stable features for 
the three infrequent motifs
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especially mass substitutions will introduce false labels to 
the training data, causing inevitable false positive that inher-
ited from the existing tools. Moreover, the feature-blocking 
method we adopt in the embedding step also suffers from 
these introduced false positives. Though we have conducted 
estimation to show its experimentally low impact, it still 
remains as an inevitable issue in the model performance and 
accuracy control. (4) The strategy lacks a method to evaluate 
the glycan-level FDR at the deep level such as evaluating 
branch location isomers. Though the glycan-level FDR has 
been controlled by the tools that provide with the identified 
glycan composition, the FISD strategy still needs to make 
full use of the structure-diagnostic ions to estimate a deeper 
level FDR and search for new features at the deep level as 
the prediction model does.
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