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Abstract
Structural details of oligosaccharides, or glycans, often carry biological relevance, which is why they are typically eluci-
dated using tandem mass spectrometry. Common approaches to distinguish isomers rely on diagnostic glycan fragments for 
annotating topologies or linkages. Diagnostic fragments are often only known informally among practitioners or stem from 
individual studies, with unclear validity or generalizability, causing annotation heterogeneity and hampering new analysts. 
Drawing on a curated set of 237,000 O-glycomics spectra, we here present a rule-based machine learning workflow to uncover 
quantifiably valid and generalizable diagnostic fragments. This results in fragmentation rules to robustly distinguish com-
mon O-glycan isomers for reduced glycans in negative ion mode. We envision this resource to improve glycan annotation 
accuracy and concomitantly make annotations more transparent and homogeneous across analysts.
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Introduction

Glycans decorate proteins and lipids and are present in all 
biological taxa [1]. Molecules interacting with glycans, 
such as lectins, are frequently sensitive to the three-dimen-
sional conformation of a glycan [2], largely dictated by its 

constituent monosaccharides and the linkages joining them 
together. Small changes in linkage or hydroxyl group orien-
tation can lead to different 3D structures with significant bio-
logical effects as consequences, for instance by differentially 
stabilizing a protein depending on the sialic acid linkage [3] 
or yielding qualitative differences in lectin binding depend-
ing on the exact glycan sequence [4]. This makes detailed 
characterization of glycan sequences in glycomics data cru-
cial for uncovering the roles of specific isomers in particular 
biological systems. While many methods can be used for this 
purpose, we will focus our attention here on the most com-
mon approach: tandem mass spectrometry, usually preceded 
by liquid chromatography to separate isomeric structures.

Diagnostic fragments—only, or at least preferentially, 
occurring in one isomer—comprise a substantial part of cur-
rent and preferred annotation strategies, due to their ease of 
use compared to alternative strategies such as exoglycosi-
dase digestion. Examples here include diagnostic fragments 
to distinguish sialic acid linkage in N-glycans [5] or for the 
distinction of Lewis A and X structures [6]. Despite this, 
the usage of diagnostic fragments is neither standardized 
nor formalized, creating a lack of transparency and an entry 
barrier for analysts. No central databases or resources exist 
to catalog or compare such diagnostic fragments. Further, 
this lack of formalization also means that no quantitative 
confidence value can be attached to an individual human 
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annotation, withholding necessary context and hampering 
transparency.

Several comprehensive studies to identify diagnostic 
fragmentation have been carried out before [5–8]. Typi-
cally, isomer-specific rules are devised or evaluated based 
on spectra obtained in a single experiment, often one carried 
out for the express purpose of finding these fragments and 
collected by the same person(s) that then analyzes it to that 
effect [6–8]. In rare cases, these rules are then validated on 
different experimental set-ups [5]. Yet, often, little informa-
tion exists about whether, or to which extent, commonly 
used diagnostic ions are generalizable to different set-ups. 
Further, the quantitative efficacy of most rules is typically 
unknown, as well as the efficacy of combining multiple rules 
derived from disparate experiments, making them essentially 
soft rules, in which the (prominent) presence of an indi-
cated fragment is associated with an undetermined annota-
tion confidence.

Given the prevalent use of single/double fragment pres-
ences to determine structural details, evaluating and quan-
tifying the performance of such criteria could not only 
improve annotation accuracy but also attach a confidence 
level to each annotation, allowing for a proper evaluation of 
attached biological findings. Here, we will focus on O-gly-
cans as a test case. O-Glycans are fantastically diverse in the 
context of mucin glycosylation [9] and very much depend-
ent on diagnostic fragments in their annotation, due to a 
less rigid biosynthesis than N-glycans. Recent comparisons 
across different analysts in the area of O-glycoproteomics 
have highlighted substantial heterogeneity [10] and it is to 
be expected that a similar situation arises in O-glycomics, 
especially for new analysts, due to the lack of resources and 
challenging nature of the problem, as less firm biosynthetic 
assumptions can be made compared to N-glycans. Although 
automated O-glycan annotation approaches have been pro-
posed to aid the determination of isomeric structures [11], 
the exact decisions made by such approaches are not clearly 
interpretable, potentially affecting transparency.

For the related area of lectin-glycan binding specificities, 
an approach combining rule-based machine learning with 
expert curation has resulted in widely used and robust guide-
lines for a hitherto scattered field [4]. Thus, here we present 
a new workflow using interpretable machine learning on a 
large, curated set of > 237,000 O-glycomics spectra to derive 
an actionable set of rules used to identify common O-glycan 
topologies and structural isomers from tandem mass spec-
trometry data of reduced glycans in negative ion mode. 
We then couple the identification of diagnostic peaks with 
our automated fragment annotation method CandyCrumbs 
[11], to obtain human-understandable fragmentation events 
that can be used for annotation. Importantly, these rules are 
assessed across a wide array of experimental set-ups and 
analysts, resulting in (i) quantifiable rule performance, (ii) 

rules that are designed to work in combination with each 
other, and (iii) annotation confidence values of isomers iden-
tified with these rules.

Throughout this work, we also compare where our rules 
confirm or deviate from existing diagnostic fragments from 
the academic literature. We show that most O-glycan iso-
mers can be confidently separated with a small number of 
diagnostic features, including ratios of fragment peaks, and 
even identify fragmentation patterns that are generalizably 
indicative of the same structural feature across many differ-
ent glycans. We envision that this work will improve O-gly-
comics annotation accuracy, transparency, homogeneity, and 
accessibility, leading to new biological discoveries of the 
role of fine-structural details in glycans.

Materials and methods

Dataset construction

The herein used dataset of glycan tandem mass spectra was 
extended from a previously curated dataset [11]. Briefly, MS 
raw files were retrieved from, predominantly, GlycoPOST 
[12] and converted into mzML format, and MS2 spectra were 
extracted into a tabular format. We then filtered our data-
set to include only MS2 spectra of O-glycans (containing a 
reducing end GalNAc or Fuc, as well as O-glycan peeling 
products), measured in negative ion mode, and only includ-
ing structures which had undergone reductive β-elimination. 
All annotations by experts in this dataset were assumed to 
be true. The final dataset consisted of 237,931 spectra and 
1647 unique glycans across 121 unique datasets (comprising 
1442 glycomics raw files).

Data processing

Spectra were normalized by expressing their intensity as a 
percentage of the highest peak in the spectrum, in accordance 
with common practice, to facilitate direct usage of intensity 
threshold in obtained rules. Spectra were then binned by sum-
ming their intensities in m/z windows spanning 0.5 Da. Keep-
ing track of the m/z difference between bin edge and peak 
allowed us to reconstruct the exact m/z later in the process 
[11]. Finally, we also formed relevant ratios between all bins 
of at least a mean value of 0.01 (i.e., 1%), as potent interaction 
features. Both normalized bins and ratios were available as 
features to the model trained to distinguish isomers.

Decision trees based on Shannon entropy

In this work, we build one decision tree–based model per 
mass group (± 0.5 Da around the theoretical mass of a com-
position) that uses the input spectra to predict the isomers 
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from the group. Following the divide-and-conquer idea, we 
do not train one decision tree for the whole problem set-
ting; instead, we first classify the topology, if applicable, and 
then build separate decision trees for each topology. In early 
experiments, we found the performance of this approach to 
be superior over fitting single trees per mass group. Addi-
tionally, growing smaller trees of depths two to three was 
often sufficient to achieve excellent prediction performance 
between isomers, ensuring the practical applicability of 
derived rules.

Decision trees follow the idea of splitting the set of sam-
ples into two parts at each node, maximizing the purity of 
the partition. This means each node in a tree formulates a 
classification problem for the subset of samples resulting 
from the last splitting. The problem is solved by selecting the 
feature and the splitting value that best solves it. Different 
ways exist to measure how well a classification problem is 
solved. We use the Information Gain; a popular alternative 
is the Gini-Impurity. The Information Gain of a decision is 
computed as the difference in the Shannon entropy of the 
node(s) above and below a split.

Figure 1A depicts how to compute the Shannon entropy 
H as the sum over the classes xi ∈ X, with p(x) being the pro-
portion of class x in the respective node. In this way, we can 
measure how pure a node is, as the presence of a few domi-
nant classes (high p(x)) will lead to a low H. More evenly 
distributed class proportions result in high values for H. H 
can then be used to calculate the information gain IG of a 
split A, where A represents the splitting value of a feature, as 
described above. After splitting the samples based on A, the 
best feature and splitting value are selected by maximizing 
the information gain where H(X|A) is the weighted sum over 
the child nodes. Figure 1B visualizes that this scheme can be 
applied recursively until a stopping criterion is reached [13].

Each tree was trained using scikit-learn v1.4.2, followed 
by processing using glycowork v1.3 [14]. The available data 
per classification task was split into 70% training, 20% vali-
dation, and 10% test data. We used DataSAIL [15] for split-
ting to combine a similarity measure based on GlycoPOST 
ID and filename with stratification, to ensure each class was 
present in each of the splits. The trees were trained with 
default parameters of scikit-learn and only optimized towards 
their depth with the validation set. All code is available on 
GitHub (https://​github.​com/​Bojar​Lab/​Fragm​entFa​ctory).

Calculating confidence and coverage

Confidence is defined here as the likelihood of a correct 
annotation when following the rule(s) and was calculated 
by strictly applying a rule to all relevant spectra for a group 
of isomers and dividing the number of correct annotations 
by the number of spectra. Coverage is defined as how many 
spectra of an isomer A follow the proposed rule(s). Coverage 

was calculated by strictly applying a rule to all relevant spec-
tra and dividing the number of correct isomer A annotations 
by the total number of isomer A spectra.

Deriving rules from trees

For each tree (both isomer and topology trees), we chose 
the best decision path per isomer as the source for derived 
annotation rules. Here, “best” was determined by a score 
comprising the product of confidence and coverage in a leaf 
node for that isomer, evaluated on the independent test data 
(not used in any way for building the tree). Then, bins used 
for splitting within that decision path were mapped back to 
their exact m/z values, followed by their annotation as can-
didate fragments via CandyCrumbs [11], which were then 
visualized via GlycoDraw [16]. This resulted in a set of frag-
ments, with corresponding decision thresholds, that could be 
used as annotation rules.

Sample preparation of additional MSn analyses

The sample containing HexNAc?1-?Galβ1-3(Neu5Acα2-6)
GalNAc used to produce MS3 of the m/z 800 fragment and 
MS4 of the m/z 597 fragment was prepared from porcine 
gastric mucin according to the method reported in Bech-
tella et  al. (2024) [17]. The sample containing Galβ1-
3(Neu5Acα2-6)GalNAc used to produce MS3 of the m/z 
597 fragment was prepared in gilthead seabream mucin as 
reported in Thomsson et al. (2024) [18].

Glycans were resuspended in water (15 µL) and injected 
(2 μL) onto a liquid chromatography-electrospray ionization 
tandem mass spectrometry (LC-ESI/MS). The HPLC was 
a Vanquish Neo (Thermo Scientific). The oligosaccharides 
were separated on a column (10 cm × 250 µm) packed in-
house with 5-µm porous graphite particles (PGC, Hypercarb, 
Thermo-Hypersil, Runcorn, UK) and a flow rate of 6 μL/
min. The oligosaccharides were eluted with the following 
gradient: 5–20 min 1–25% B, wash 21–31 min 99% B, then 
equilibration between 32 and 52 min with 1% B. Buffer A 
was 10 mM ammonium bicarbonate (ABC) and buffer B was 
10 mM ABC in 80% acetonitrile.

The samples were analyzed in negative ion mode on 
an Orbitrap mass spectrometer (Fusion, Thermo Elec-
tron, San José, CA). Compressed air was used as nebu-
lizer gas. The heated capillary was kept at 325 °C. Full 
scan (MS1) was set to m/z 670–680 (sea bream (SB) sam-
ple) or m/z 877–880 (PGM sample), and the resolution 
was 60,000. Two microscans were performed, maximum 
injection time was 118 ms, and AGC target was set to 
800,000 (sea bream sample) or 400,000 (PGM sample). 
Selected CID MSn scans using the precursor ion list 
function were performed as follows for the SB sample 
(MS2 → MS3, m/z 675.245 → 597.2) and the PGM sample 

https://github.com/BojarLab/FragmentFactory
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(MS2 → MS3 → MS4, m/z 878.33 → 800.2 → 597.2). AGC 
target was set to 30,000, with normalized collision energy 
of 35%, isolation window of 2 units, activation q = 0.25, 
and activation time 30 ms.

Data availability

All relevant data, including their data provenance with 
accession IDs, can be found on Zenodo under the https://​

A

B

C

https://doi.org/10.5281/zenodo.12177170
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doi.​org/​10.​5281/​zenodo.​12177​170 [19]. Acquired mass 
spectrometry data are available at GlycoPOST, under the 
ID GPST000457.

Code availability

All relevant code for this work can be found at https://​github.​
com/​Bojar​Lab/​Fragm​entFa​ctory.

Results

Rule‑based machine learning yields widely usable 
diagnostic fragments

A systematic approach to identify generalizable diagnostic 
fragments requires, at least, two things: (i) a large set of 
MS2 spectra from different experimental set-ups and dif-
ferent analysts, and (ii) an algorithm producing effective, 
but human-interpretable, rules to determine the correct 
isomer based on the MS2 spectrum. For our previous work 
[11], we have curated a large set of annotated MS2 spectra, 
which we have updated for this work with a special focus 
on O-glycomics data from reduced glycans in negative ion 
mode. Within these parameters, this dataset can be viewed as 
representative for a great variety of analysts and their respec-
tive set-ups. We then engaged in a rigorous data splitting 
procedure using DataSAIL [15] (see “Materials and meth-
ods”), to ensure that we only evaluated identified rules on 
experiments that differed from the ones used to generate the 
rules. This was important to (i) ensure the generalizability of 
obtained annotation rules and (ii) gain accurate performance 
metrics (confidence and coverage) for each set of rules.

With this, we could train machine learning models to pre-
dict the annotated isomer for a spectrum, given its fragment 
ions (Fig. S1). To achieve a set of annotation rules that was 
both performant and small, we trained a decision tree–based 
model for each group of isomers that minimized Shannon 

entropy (Fig. 1A), where each best split was considered one 
annotation rule (Fig. 1B). Importantly, for each isomer, this 
provided us with confidence and coverage values, where 
confidence indicated the proportion of true positives when 
using those rules and coverage indicated how many spectra 
of that isomer fell under those rules.

In general, this allowed us to construct sets of rules for 
many common O-glycan isomers where, in most cases, one 
or two rules were sufficient to achieve excellent confidence 
and coverage. One example can be seen in the model dis-
tinguishing the core 3 from the core 5 structure, where a 
single rule (the ratio between m/z 365.1 and m/z 317.1) was 
enough to effectively disambiguate between the two isomers 
(Fig. 1C). A value of above 1.5 here indicated the core 5 
structure, allowing for easy application of this rule in prac-
tice. While there are no commonly used/accepted diagnostic 
fragments to distinguish these two isomers, past research 
comparing core 3 and core 5 structures in seabream mucin 
[18] supports our use of m/z 365, yet we here show that this 
can be improved by combining it with the m/z 317 fragment 
into a ratio, highlighting the potential value of this approach.

Of course, some isomeric differences, such as for the 
structure group Hex1HexNAc1dHex1 (m/z 530), are very 
robust and can be almost considered to be “solved.” In this 
case, the prominent presence of a HexNAc1dHex1 Z-ion 
(m/z 350.1) typically indicates an O-Fuc isomer (most often 
Galβ1-4GlcNAcβ1-3Fuc), in contrast to the standard O-Gal-
NAc type isomer (Fucα1-2Galβ1-3GalNAc), in which this 
Z-ion would be topologically impossible. We were thus reas-
sured to see that our new machine learning–based approach 
recovered these well-known effects and indeed chose 
m/z 350.1 as the best feature to distinguish these features 
(Fig. S2), resulting in 100% confidence and coverage at the 
best intensity splitting threshold. We then further aimed to 
distinguish type 1 and type 2 LacNAc isomers of this O-Fuc 
isomer and present m/z 488.2 as a potential new diagnostic 
fragment (Fig. S2), which indicates Galβ1-4GlcNAcβ1-
3Fuc when present prominently and Galβ1-3GlcNAcβ1-
3Fuc by its relative absence (given that the isomer Galβ1-
?GlcNAcβ1-3Fuc has been already chosen due to m/z 350.1).

Distinguishing topology and linkage differencesvia 
a divide‑and‑conquer approach

Many O-glycan structure groups comprise both topologi-
cally different isomers, as well as those differing in a single 
linkage, presenting a multitude of challenges to annotators. 
A common example of such mass groups can be found in the, 
still relatively modest, composition of Hex1HexNAc2dHex1 
(m/z 733), which can form Lewis antigens, blood group 
epitopes, as well as three different core structures.

Here, we would like to showcase our divide-and-conquer 
approach of combining topology-level with linkage-level 

Fig. 1   Rule-based machine learning to uncover diagnostic fragments. 
A Definition of Entropy as a measure of sample uncertainty, as well 
as the Information Gain as the reduction in sample uncertainty after 
a given decision. B Schema of decision tree construction indicat-
ing the greedy optimization of information gain at each node until 
the maximum depth is reached. C Machine learning–derived rule 
for distinguishing core 3 and core 5 O-glycans (HexNAc2, m/z 425). 
The best decision tree for isomers of m/z 425 is shown, with the deci-
sion threshold representing values of the ratio between the two frag-
ment ions. Confidence indicates the likelihood of a correct annotation 
when following the rule(s), whereas coverage designates how many 
spectra of that isomer follow the rule(s). The number of test spectra 
(not used in training the model and stemming from different experi-
ments) for each isomer is provided in all decision trees as well. All 
fragments in this work are written in Domon-Costello nomenclature 
[20] and are visualized via GlycoDraw [16], adhering to the Symbol 
Nomenclature For Glycans (SNFG)

◂
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models to obtain effective annotation rules (Fig. 2). A frag-
ment containing the core 3 structure (m/z 359) was suffi-
cient to separate Lewis-type structures from everything else. 
Then, we could separate core 1 isomers of m/z 733 via the 
presence of a Y ion containing the core 1 epitope itself (m/z 
384.2). This was then followed by the separation of blood 
group core 2 and core 3 structures via m/z 510.2, the promi-
nent presence of which as a B-ion indicated the linear core 
3 structures. Finally, a ratio of this B-ion with an A-type 
cross-ring fragment on the GlcNAc residue (m/z 409.1) was 
sufficient to separate type 1 and type 2 LacNAc isomers of 
this structure (i.e., Fucα1-2Galβ1-3GlcNAcβ1-3GalNAc vs 
Fucα1-2Galβ1-4GlcNAcβ1-3GalNAc).

We were excited to see that this obtained decision scheme 
exhibited excellent confidence and coverage for all identi-
fied isomers. Specifically, the presented rules covered well 
over 80% of all spectra that contained the annotated iso-
mers, making them extremely robust and applicable in most 
experimental settings. Combined with an annotation confi-
dence of, in most cases, 80–90%, we envision these rules to 
raise annotation quality. We caution that, in this case, we did 
not identify satisfactory diagnostic features to distinguish 
Lewis A and Lewis X on the Lewis-type core 3 structure. 
The disambiguation of Lewis structures in reduced glycans 
presents a challenging problem in general [8, 21], which 
is compounded by the relative rarity of Lewis-type core 3 
structures in our dataset. As discussed later, we also do want 
to point out that, for other mass groups such as m/z 895 
(Hex2HexNAc2dHex1), our models are, in fact, capable of 
identifying robust indicators for Lewis A and X, respectively 
(Fig. S11).

A guide to annotate common O‑glycan isomers

Having demonstrated the capabilities of both our rule-based 
machine learning approach in general, as well as its exten-
sion via the divide-and-conquer approach, we then moved 
on to extend this potent new approach to common sets of 
O-glycan isomers. We here present a comprehensive set of 
quantitatively identified and characterized annotation rules 
for common O-glycan isomers (Fig. 3). We note that we only 
included structures in this analysis that have known and rel-
evant isomers (e.g., no rules were constructed for sialyl-Tn 
antigen annotation, due to the lack of alternative isomers).

Sulfated structures can be especially difficult to correctly 
annotate, which is why we are enthusiastic that in some 
cases, such as Hex1HexNAc1S1 (m/z 464; Fig. S3), our mod-
els could even identify diagnostic ratios to distinguish sulfate 
positioning on the galactose (Gal3S vs Gal6S) with satisfac-
tory performance (> 70% confidence and coverage). This 
was then extended in Hex1HexNAc2S1 (m/z 667; Fig. S6), 
in which we identified the ratio between m/z 444.1 and m/z 
487.1 as most performant to distinguish core 2 and core 3 
isomers of this composition. Other relevant examples that 
include new insights into diagnostic fragmentation behavior 
include Hex1HexNAc2dHex1S1 (m/z 813), a common sul-
fated structure group that can form either Lewis structures or 
an H-type 3 blood group epitope. Next to these topological 
distinctions, the sulfate moiety can be found on either the 
GlcNAc or the Gal residue, further complicating annotation. 
We find that a ratio of the sulfo-Lewis moiety (m/z 590.1) 
and the sulfated core 6 substructure (m/z 505.1) was suffi-
cient to separate the scenarios of sulfated Gal and GlcNAc, 
respectively, which then was further refined via another ratio 
to separate Lewis and blood group structures (Fig. S8).

Overall, we note that many of the best models to distin-
guish isomers used ratios of fragment ion intensities as anno-
tation features. We thus conclude, in accordance with much 
of the academic literature on this topic, that ratios are power-
ful diagnostic features and are optimistic that more complex 
combinations of fragment intensities, balanced with ease of 
use by humans, will allow for even more confident annota-
tions. We also would like to point out that the formation of 
ratios is (i) more robust to systematic shifts in intensities and 
(ii) mitigates some of the compositional nature of relative 
intensities, increasing generalizability across datasets [22].

Derived rules can generalize beyond individual 
structures

In general, when seeking to distinguish two specific gly-
can motifs or isomers, the simplest approach would be to 
utilize “topologically exclusive” fragments, i.e., fragment 
masses that are only possible in a single glycan topology. 
Such fragments might be specific to a topology or glycan 
substructure, producing a high confidence value, but they are 
not guaranteed to occur in every experimental set-up, e.g., 
due to preferred alternative fragmentation pathways, yield-
ing low coverage values. To take one example, the mass of 
a Neu5Ac-HexNAc fragment (m/z 513.2) is exclusive to the 
topologies containing core GalNAc sialylation. This frag-
ment has been previously described [6] as diagnostic of this 
type of sialylation. Yet, when tested across a more diverse 
set of experiments, we found it to be a rather low-coverage 
rule to indicate a Neu5Ac-GalNAc core motif (Fig. S9B). 
Specifically, the presence of m/z 513.2 resulted in an 86% 
confidence of Neu5Ac-GalNAc annotation, yet this rule 

Fig. 2   Distinguishing topologies and isomers with a divide-
and-conquer approach. For the isomer group at m/z 733 
(Hex1HexNAc2dHex1), we used our decision tree–based approach to 
find rules distinguishing topologies and, finally, isomers. The com-
bined decision tree with all rules is shown. Rules are visualized via 
the SNFG-depiction of Domon-Costello fragments and their corre-
sponding threshold values for decision-making. The number of inde-
pendent test spectra, as well as the therein achieved confidence and 
coverage, is shown for each isomer in its respective leaf node

◂
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only covered 57% of Neu5Ac-GalNAc containing spectra, 
meaning that a large fraction of Neu5Ac-GalNAc containing 
spectra could not be classified with such a rule.

We posit that fragments such as m/z 513.2 are especially 
preferred because they are intuitive, as they are causally 
related to the topology/isomer that is to be annotated. Yet, as 
we have shown throughout this work, annotated MS2 spec-
tra contain many fragments that may not have such a clean 
explanation, making them less preferred for annotation, but 
that still offer excellent annotation quality. As a result of this, 
it is possible that there are many useful fragment ions not 
currently in use because their structure is either unknown 
or not intuitively thought to be connected to the isomeric 
difference. Our data-driven approach is designed to coun-
teract precisely that, and we identified two such fragments 
that commonly occur in decision trees of sialylated struc-
tures. The fragment masses, at M-78 and M-94 for Neu5Ac/
Neu5Gc, respectively, are seen in high abundance across a 
wide array of published MS2 spectra. Even when mentioned, 
these fragments have not been fully characterized and are 
either labeled simply as M-C2H4O2-H2O or, most commonly, 
not labeled at all.

We found that this unexplained mass loss was effective 
in distinguishing reducing end GalNAc sialylation from 
branch Gal sialylation in both Neu5Ac- and Neu5Gc-con-
taining structures (Fig. 4A, B), though we do caution that, 
in an O-glycan context, Sia-HexNAc/Sia-Hex is conflated 
with α2-6 vs α2-3 linkage of the sialic acid. We can further 
specify this phenomenon by examining α2-6 vs α2-3 linked 
Sia-HexNAc motifs in milk oligosaccharides with reduc-
ing end glucose [21]. Encouragingly, both linkage types of 
non-reducing end Sia-HexNAc showed very low or no abun-
dance of the M-78 fragment masses, indicating reducing end 
HexNAc residues are involved in this loss.

With the example of low-coverage by m/z 513.2 
(Fig. S9B), we show that M-C2H4O2 (m/z 818.2) exhibited 
both higher coverage and higher confidence than the often-
used m/z 513.2 fragment (Fig. S9C). In another work [23], 
this fragmentation pattern is also seen in branched sialylated 
trisaccharides (both Neu5Ac and Neu5Gc), as well as in 
larger molecules produced by extending these structures. 
Interestingly, Kdn-containing structures did also produce m/z 
597 fragments, representing a loss of 36 Da (M-H2O-H2O), 

suggesting the losses at M-78 and M-94 to affect the C5 
extension of Neu5Ac and Neu5Gc, as this moiety presents 
the only molecular difference. The distinguishing fragment 
masses in Neu5Ac and Neu5Gc differed by 16 Da, further 
indicating the loss to occur in the N-acetyl/N-glycolyl group 
of the sialic acids, due to the additional oxygen atom in 
Neu5Gc (Fig. 4A, B).

We thus propose that the specific fragmentation of 
M-78/M-94 here presents the loss of the acetyl/glycolyl 
group (M-C2H2O), paired with two water losses. We note 
that the order of acetyl loss and then water losses was also 
proposed in recent work on elucidating sialic acid fragmen-
tation in glycoproteomics data [24]. These water losses 
could, for instance, occur via a lactonization of the carboxyl 
group of C1Neu5Ac with the hydroxyl group of C4GalNAc. 
Importantly, C4GalNAc is axial in GalNAc, bringing the 
hydroxyl group into proximity of C1Neu5Ac, which would 
not be possible in the case of GlcNAc, with an equatorial 
C4. Using glycan 3D structure information from GlycoShape 
[25], we could also show that the rotational flexibility of the 
hydroxyl group on C4GalNAc in this context was higher than 
that of the one on C4Gal (Fig. S12), potentially explaining the 
diagnostic behavior of this fragmentation pattern. Another 
water loss, for instance via 1,7-lactonization, would then 
result in the observed M-C2H2O-H2O-H2O in the case of 
Neu5Ac-containing structures. This pattern also extended 
to larger structures and generalized to multiple topologies, 
regardless of the terminal structure on the non-sialic acid 
branch (Fig. 4C, D). We also note that the utility of this rule 
encompassed structures with an additional terminal fucose, 
which also yielded a high relative abundance of M-78 ions 
after fragmentation [23, 26].

To confirm that the losses occurred in the sialic acid moi-
ety and not somewhere else in the glycan, we acquired an 
MS3 spectrum of this diagnostic fragment ion at m/z 597 
(M-78; Fig. 4E). Abundant peaks at the masses represent-
ing Z1β-C2H6O3 and Y1β-C2H6O3 indicated that none of the 
indicated losses occurred on the galactose residue in the 
Hex1HexNAc1Neu5Ac1 isomer. Further, a substantial abun-
dance at m/z 212.1 represented the commonly seen B1α frag-
ment at m/z 290.1, with a further loss of C2H6O3. Finally, 
the presence of unmodified Y1α and Z1α, corresponding to 
sialic acid loss, supports the finding that the fragmentation 
events of the -C2H6O3 loss occur only within the sialic acid. 
To ensure the sialic acid fragmentation was not specific 
to this specific trisaccharide, we acquired a separate MS3 
spectrum of the same phenomenon in an extended structure, 
Hex1HexNAc2Neu5Ac1 at m/z 800 (M-78; Fig. 4F). The 
most abundant peak, at m/z 597, represented the exact same 
fragment ion we originally found in Hex1HexNAc1Neu5Ac1, 
which was confirmed by MS4 (Fig. S13). There, we identi-
fied both simple sialic acid losses at their canonical masses 
(Z1β and Y1β), along with the modified losses of Galβ1-3 

Fig. 3   A useful guide to O-glycan isomer annotation. For each isomer 
for which we could identify performant (> 60% confidence/coverage) 
as well as interpretable annotation rules here, we catalog the respec-
tive rules in a simplified manner. For the exact thresholds regarding 
intensity (individual fragments) or ratios, we refer to the respective 
supplementary figures (Fig.  1C, Fig.  2, Fig.  4A–D, Figs.  S2–11), 
which list the exact models with all thresholds. Next to annotation 
rules, we here also depict the confidence (Conf.) and coverage (Cov.), 
assessed on an independent test set of experimental spectra, that 
result when annotating an isomer based on these rules
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arm (Y1α-C2H6O3 and Z1α-C2H6O3), confirming a similar 
fragmentation pattern across different structures sharing this 
motif. While such a triple loss event would not commonly 
be viewed as the most parsimonious annotation explanation, 
we here show that it is extremely potent (high confidence), 
common (high coverage), and generalizable (different struc-
tural contexts), underscoring the importance of a data-driven 
approach to identifying diagnostic fragments in glycomics 
annotation.

Discussion

Here, we presented a comprehensive resource of quantifi-
ably performant and human-actionable rules for O-glycan 
isomer annotation based on interpretable machine learning. 
One of the main strengths of this work is that our annota-
tion rules have been derived from a dataset composed of 
many experimental set-ups and analysts, who used different 
equipment (i.e., mass analyzers, collision energy, collision 
gas, etc.), and whose samples were present in different bio-
logical contexts, with different coeluting solutes and dif-
ferent solvents. Since these rules were then also validated 
and tested on such a diverse dataset, we can be confident 
that they present a more robust/performant foundation for 
annotation. We emphasize that our focus on coverage, typi-
cally the most neglected metric in identifying diagnostic 
fragments, ensures the generalizability and utility of our 
presented annotation rules. In principle, this process could 
then even be synergistically extended further, such as with 
retention time libraries for isomers [27], if a specific liquid 
chromatography context is constant for an analyst.

We are also optimistic about the promise of the herein 
presented workflow for further applications. In princi-
ple, the exact same workflow can be applied to the iden-
tification of similar diagnostic fragments or features for 
N-glycans, glycosphingolipids, or milk oligosaccharides. 
At least for some of those, the curated full dataset [11] 
could even be used as a data source, providing a clear 
and actionable implementation path. Similarly, due to the 
flexibility of our algorithms and CandyCrumbs [11], even 

data collected in, e.g., positive ion mode can be analyzed 
with this workflow. In general, we stress the importance of 
both annotation quality (influencing rule confidence) and 
data diversity, with regard to both annotators and instru-
ments (influencing rule coverage). As with any machine 
learning approach, generalizing to unseen types of data 
can be challenging, so we advise caution in using our rules 
if a given set-up is not represented among, for instance, 
GlycoPOST data.

We are especially enthusiastic about future work identify-
ing further generalizable diagnostic fragments for biologi-
cally relevant motifs, similar to our efforts with Sia-HexNAc 
here. One example here can be found with Lewis structures, 
such as Lewis A and X, which currently are often only dis-
tinguished by separately analyzing non-reduced glycans 
[21], due to the reliance on reducing end cross-ring frag-
mentation as diagnostic fragments.

We caution that the herein identified rules for isomer 
annotation are restricted to negative ion mode and, likely, 
reduced glycans. As mentioned above, these are not restric-
tions of the workflow per se but rather restrictions of the 
scope that we set out for this article and, hence, stem from 
the used dataset. A limitation partly arising from the work-
flow is the possibility of additional isomers that were not 
considered in this analysis. A classic example could be the 
analysis of non-mammalian glycans [28], which may exhibit 
different isomers than the ones considered here, which then 
invalidates the use of some of the herein presented rules. 
We thus would like to state that the rules identified here 
assume that the isomers in a given tree are the only isomers 
that are present in major abundances in a given sample. We 
also advise special caution if values for ratios or individual 
fragments are very close to the cut-off values provided by 
the rules, as error rates are expected to decrease with the 
distance to these cut-off values.

It is important to keep in mind that human annotations, 
which have been used to derive the rules here, are imperfect, 
which likely means that rule with 100% coverage/confidence 
should be theoretically unobtainable, on average. Still, for 
our workflow to remain valid, only the majority of the input 
assignments need to be correct, with erroneous assignments 
being considered as noise during the derivation of rules. 
Hence, we would expect that a rigorous application of high-
performance rules to existing GlycoPOST data could even 
improve the average annotation quality and correct some 
structural assignments, which could be catalogued in a com-
panion database, similar to how PDB-REDO refines the 
structural information of glycoproteins from the PDB [29].

As stated above, the preferred fragmentation pathway 
(ignoring collision energy as a modulator) is a function of 
glycan 3D structure, which then allows for the existence of 
diagnostic fragments to distinguish isomers in the first place. 
Hence, analyzing the 3D structure of isomers via molecular 

Fig. 4   A generalizable diagnostic fragment for Sia-HexNAc annota-
tion. A, B Discriminatory performance of classifying Neu5Acα2-
3Galβ1-3GalNAc and Galβ1-3(Neu5Acα2-6)GalNAc with the 
M-78 (C2H6O3) fragment (A) and Neu5Gcα2-3Galβ1-3GalNAc and 
Galβ1-3(Neu5Gcα2-6)GalNAc with the M-94 (C2H6O4) fragment 
(B). C, D Discriminatory performance of distinguishing topologies 
of Neu5Ac1Hex1HexNAc2 with and without a sialylated reducing 
GalNAc with the M-78 (C2H6O3) fragment (C) and distinguishing 
topologies of Neu5Gc1Hex1HexNAc2 with and without a sialylated 
reducing GalNAc with the M-94 (C2H6O4) fragment (D). E, F MS.3 
spectrum of the M-78 (-C2H6O3) fragment produced by Galβ1-
3(Neu5Acα2-6)GalNAc in sea bream mucin (E) and HexNAc?1-
?Galβ1-3(Neu5Acα2-6)GalNAc in porcine gastric mucin (F)
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dynamics simulation could provide mechanistic explanations 
for diagnostic fragmentation, such as we have shown in pre-
vious work for distinguishing HexNAc2Neu5Ac1/HexNAc-
2Neu5Gc1 isomers [11]. We envision that understanding 
these processes mechanistically then holds the potential of 
identifying more general diagnostic fragments that general-
ize across sequences. We are convinced there still is a need 
for such fragments, especially when their performance is 
quantified such as here, which provides (i) a standardized 
set of annotation rules that (ii) attaches a confidence value 
to annotations and (iii) overall improves the quality of anno-
tation, leading to a more robust foundation for engaging in 
biological exploration of O-glycomics data.
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