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Abstract
Feature detection plays a crucial role in non-target screening (NTS), requiring careful selection of algorithm parameters to 
minimize false positive (FP) features. In this study, a stochastic approach was employed to optimize the parameter settings 
of feature detection algorithms used in processing high-resolution mass spectrometry data. This approach was demonstrated 
using four open-source algorithms (OpenMS, SAFD, XCMS, and KPIC2) within the patRoon software platform for process-
ing extracts from drinking water samples spiked with 46 per- and polyfluoroalkyl substances (PFAS). The designed method 
is based on a stochastic strategy involving random sampling from variable space and the use of Pearson correlation to assess 
the impact of each parameter on the number of detected suspect analytes. Using our approach, the optimized parameters 
led to improvement in the algorithm performance by increasing suspect hits in case of SAFD and XCMS, and reducing the 
total number of detected features (i.e., minimizing FP) for OpenMS. These improvements were further validated on three 
different drinking water samples as test dataset. The optimized parameters resulted in a lower false discovery rate (FDR%) 
compared to the default parameters, effectively increasing the detection of true positive features. This work also highlights 
the necessity of algorithm parameter optimization prior to starting the NTS to reduce the complexity of such datasets.
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Introduction

An immense number of chemicals are produced globally 
and the inevitable release of synthetic chemicals to the envi-
ronment increases the likelihood for negative impacts on 
human health and ecosystems [1, 2]. Conventional monitor-
ing methods (target analysis) only cover a small part of the 
chemicals in use, which is a major impediment to evaluat-
ing chemical exposure and risks. Nowadays, suspect and 
non-target screening (NTS) employing high-resolution mass 
spectrometry (HRMS) are increasingly being used to assess 

the presence of a wider range of compounds in the environ-
ment [3]. The HRMS instruments, coupled with liquid and 
gas chromatography, allow for the untargeted detection of 
thousands of compounds that are compatible with the extrac-
tion, separation, and ionization methods involved [4–6].

In recent years, NTS of chemicals in the environment 
using HRMS has grown rapidly in the research community 
[7–12]. NTS is a bottom-up approach and considers all sig-
nals detected in full-scan HRMS without prior information 
[13]. However, applying NTS requires an automated pro-
cess for screening all the experimental data since it is time-
consuming to go through the data manually. Automation 
may give the illusion of reproducibility across users and data 
analysis workflows. However in reality, current approaches, 
each with different strengths and weaknesses, have been 
shown to deliver different results on identical datasets due to 
differences in underlying algorithms and parameter selection 
therein [14]. Harmonization is therefore required to enable 
comparison between different studies.

A typical NTS data processing workflow consists of 
several steps (Fig. 1). Firstly, so-called features need to be 
extracted from the HRMS data. A feature is defined as a 
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collection of data that holds a unique combination of a mass-
to-charge ratio (m/z), peak area intensity, and retention time 
[15–17]. The next step is the alignment-and-grouping of the 
features in the samples and sample replicates where correc-
tion for chromatographical differences and the combining of 
features across replicate samples that are considered equiva-
lent are performed respectively. Then the feature groups are 
filtered by subtraction of blank peaks and noise. Finally, the 
last step is annotation to elucidate chemical identities where 
formulas and chemical structures are generated based on 
the collected data [5, 16–18]. Suspect screening can be per-
formed to reduce the complexity and difficulty of NTS using 
a suspect list that holds the exact masses of known chemicals 
to screen against collected features for similarity.

NTS can be performed using various closed- and open-
source software tools. Closed-source commercial software 
tools use concealed algorithms and can implement the full 
NTS workflow for example DataAnalysis (Bruker), UNIFI 
(Waters), and Compound Discover (Thermo). Closed source 
software is normally applicable only to a vendor-specific 
data format, resulting in difficulties in data sharing and 
reproducibility. In contrast, many open-source software 
tools enable data sharing and implementation of reproduc-
ible workflows. Examples of such open-source software are 
OpenMS [19], XCMS [20], KPIC2 [21], SAFD [22], and 
MZmine [23], many of which are implemented in the open-
source platform patRoon for environmental mass spectrom-
etry–based NTS [16]. However, these algorithms, independ-
ent from their source, must be optimized for a given analysis 
to maximize the true positive rate while maintaining low rate 
of false positives [24, 25]. Employing differing algorithms or 
using the same algorithm with different settings may gener-
ate different results for the same data [26–30].

Feature detection is a crucial step in the NTS workflow 
and can increase uncertainty due to the generation of numer-
ous false positive (FP) features, which arise from noise, 

artifacts, or mathematical effects rather than from actual 
chemicals [30]. The purpose of the feature detection step is 
to identify all signals caused by true features, while avoid-
ing the detection of false features (e.g., noise and/or back-
ground signal), which is the common challenge for feature 
detection algorithms [12]. These algorithms often employ 
complex approaches using characteristic defined shape prop-
erties, such as smoothed second-derivatives, local maxima 
and minima, or wavelet models [23, 28, 31]. They typically 
considered both the time and mass domains, assuming a 
Gaussian-like distribution, and use both centroided and 
profile data.

However, the capabilities of existing algorithms are lim-
ited when it comes to identifying features with low inten-
sity, non-Gaussian peak shapes, or those with poor baseline 
resolution [27, 32]. Additionally, most available algorithms 
require users to fine-tune a number of nonintuitive or “black 
box” input parameters, which limits their use to experts and 
can have unpredictable consequences for data quality [17, 
32, 33]. Proper optimization of these algorithms is essen-
tial to achieve optimal performance in each step of peak 
detection and to reduce the detection rate of FP features, 
particularly when applied to complex environmental sam-
ples in NTS.

This study aims to design and evaluate an optimization 
method for feature detection algorithm parameters, which 
can be also applied to feature alignment-and-grouping algo-
rithm. This work was performed with patRoon, an R-based 
open-source software platform for performing NTS work-
flows [16, 17]. Four different open-source algorithms: 
OpenMS [19], XCMS [20], KPIC2 [21], and SAFD [22], 
available within the patRoon platform, were used to evaluate 
the designed method and compare the optimized and default 
parameters for the outcome of each algorithm. A closed-
source algorithm (DataAnalysis, Bruker Daltonics) was 
included as a comparison with the open-source algorithms. 

Fig. 1  Scheme of a typical non-target screening (NTS) workflow. 
From left to right: (1) data acquisition and data pretreatment; (2) 
chromatographic peak detection; (3) feature alignment-and-grouping 
process, where features across samples are corrected for chromatog-

raphy shifts and are combined across samples that are considered as 
equivalent respectively; (4) rule-based filtering and prioritization of 
feature groups; (5) formula generation and compound annotation of 
the filtered feature groups
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Our approach is applied to drinking water samples spiked 
a total of 46 per- and polyfluoroalkyl substances (PFAS) in 
order to optimize the feature finding and feature alignment-
and-grouping algorithms. While our strategy focuses on 
maximizing the detection of the true-positive features (sus-
pect hits) through optimizing the algorithm performance, it 
also considers the need to balance this with the minimization 
of false positives to avoid introducing extra complexities to 
the NTS workflow.

Method and material

Chemicals and standards

Native of 46 PFAS standards (Table S1) were purchased 
from Wellington Laboratories (Campro Scientific, The 
Netherlands), with the exception of N-deuteriomethylper-
fluoro-1-n-octanesulfonamidoacetic acid-d3 (N-MeFOSAA-
d3, > 99%) and N-ethylperfluoro-1-n-octanesulfonami-
doacetic acid-d5 (N-EtFOSAA-d5, > 99%) which were 
purchased from Chiron (Trondheim, Norway); trifluoro-
acetic acid (TFA, > 99%) and perfluoropropanoic acid 
(PFPrA, > 97%) were purchased from Sigma-Aldrich, The 
Netherlands; perfluoroethane sulfonic acid (PFEtS, > 98%) 
was purchased for Kanto Chemical, Japan; and N-methylper-
fluorobutanesulfonamide (MeFBSA, > 97%) was purchased 
from Apollo Scientific. Milli-Q water was used throughout 
the experiments. LC–MS grade methanol and acetonitrile 
were acquired from Biosolve Chimie (Valkenswaard, The 
Netherlands). Ammonium acetate (≥ 99%) and glacial ace-
tic acid (≥ 99%) were both purchased from Sigma-Aldrich, 
and ammonia solution (25%, analytical reagent grade) was 
acquired from Fisher.

Sample preparation

Triplicate drinking water samples from Amsterdam (The 
Netherlands) were collected in 1-L HDPE bottles. The 
water samples were extracted then spiked with PFAS stand-
ards, and employed as the training dataset. Three different 
drinking water samples spiked with PFAS standard before 
extraction were extracted on different days to generate the 
test dataset.

The drinking water samples were extracted using solid 
phase extraction (SPE) as described elsewhere [34]. Briefly, 
the pH of all samples was adjusted to pH = 4 using acetic 
acid, then SPE was performed using Waters  Oasis® WAX 
SPE cartridges (3 mL, 60 mg, 30 μm). The SPE cartridges 
were preconditioned by passing a series of 3  mL 0.1% 
ammonium hydroxide in methanol, 3 mL of methanol, and 
then 3 mL of Milli-Q water. After loading the samples, 

the cartridges were washed with 3 mL ammonium acetate 
buffer solution (pH = 4). The cartridges were dried under 
high-purity nitrogen flow for 15 min. Next, the cartridges 
were eluted using 3 mL of 0.1% ammonium hydroxide in 
methanol. During elution, the extracts were filtered using 
 FilterBio® polypropylene (13 mm, 0.22 μm) syringe filters. 
The extracts were evaporated under a gentle stream of high-
purity nitrogen to 75 µL, and then 175 µL of 0.05% acetic 
acid in water was added. The extracts were spiked with PFAS 
standards (5 µL, 0.2 ng/µL; in case of training set), then vor-
texed and centrifuged (5 min, 4000 RPM), after which they 
were transferred to LC vials for instrumental analysis.

Milli-Q water was extracted together with drinking water 
samples in triplicate as extraction blank.

Sample analysis

All samples including blanks were analyzed by liquid chro-
matography (LC) coupled with HRMS. Aliquots of 10 μL 
were injected into Acquity UPLC CSH C18 column (130 Å, 
2.1 × 150 mm, 1.7 μm). The mobile phase flow rate was set 
to 0.2 mL/min and the column temperature was set to 50 °C. 
The mobile phase consisted of 0.05% acetic acid in water 
(A) and 0.05% acetic acid in acetonitrile (B), and gradient 
elution was as described in Sadia et al. [35]. For HRMS, 
a MaXis 4 G high-resolution q-TOF-HRMS (Bruker, Lei-
derdorp, The Netherlands) with resolving power of 50,000 
at m/z 300, and equipped with an ion-booster electrospray 
ionization (IB-ESI) source was employed. The mass spec-
tra were recorded in negative mode with a mass range of 
50–1500 m/z and a sampling rate of 5 Hz. To guarantee the 
required mass accuracy, internal mass calibration was car-
ried out automatically for each analysis by infusing a 50 µM 
sodium acetate solution in a water–methanol mixture (1:1, 
v:v), with a loop injection of 20 μL at the beginning of the 
analysis (0.1–0.5 min).

Studied algorithms

To assess our optimization approach, we employed five 
different algorithms, four of which are open-source and 
open-access. The used algorithms consisted of the SAFD, 
XCMS, OpenMS, KPIC2, and the DataAnalysis by Bruker. 
These algorithms represent a wide variety of feature detec-
tion strategies as well as underlying assumptions as briefly 
described below. Additionally, all algorithms were inter-
faced via patRoon.

SAFD

SAFD, an open-source algorithm, is a self-adjusting algo-
rithm due to the fact that most of the parameters used in this 
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algorithm are only the first guess and they get adjusted for 
each feature [31]. SAFD fits a pseudo-3D Gaussian function 
to the top 50% of the feature. This was also the only tested/
investigated algorithm that is able to perform feature detec-
tion of both centroided and profile data via Cent2Prof algo-
rithm [22], which predicts the mass peak width using the 
height, retention factor, and the m/z values. SAFD does not 
distinguish between potential adducts, isotopes, and/or in-
source fragments and thus detects them as separate features.

XCMS

XCMS [20] is an open-source algorithm, which combines 
the regions of interest (ROI) detection in the mass domain 
and the centWave algorithm (CWA) for feature detection in 
the time domain [36, 37]. This combination has been one of 
the most commonly used approaches for the feature detec-
tion of LC-HRMS data [37, 38].

OpenMS

OpenMS [19] is an open-source software platform for pro-
cessing of LC-HRMS data. OpenMS includes different algo-
rithms for each step that takes place during NTS assays. One 
of such steps is feature detection, where a combination of 
feature detection and isotope detection is used for a robust 
and reliable feature detection. This algorithm first gener-
ates m/z traces based on the observed/measured mass error. 
Then these traces are fit with the FeatureFinderMetabo algo-
rithm for the detection of the chromatographic peaks in the 
time domain. During the last step, only the features that fit 
the expected isotopic distribution are recorded as true fea-
tures, while the others are considered as noise [39, 40]. The 
OpenMS algorithm has an isotope filtering step incorporated 
in its feature detection procedure, which is not included in 
other algorithms.

KPIC2

KPIC2 [21] is another open-source/access algorithm per-
forming feature detection on centroided data. The feature 
detection method is based on pure ion chromatogram (PIC), 
by extracting the “pure ions” from the background noise, 
through tracking ions scan to scan and connecting data points 
with similar m/z values. This algorithm, similarly to the pre-
vious ones, generates RIO m/z traces in the mass domain and 
uses CWA to detect the features in the time domain. The main 
differentiating part of this algorithm is the use of k-means 
clustering to generate the ROIs rather than using the mass 
tolerances set by the user (e.g., XCMS and OpenMS).

Bruker DataAnalysis

Bruker DataAnalysis 4.4 (Bruker Daltonics) is a proprietary 
algorithm present in the Bruker software suite [41]. It can be 
used within the patRoon platform if the proprietary software 
is already installed and activated on the computer of interest. 
Bruker DataAnalysis uses the “Find Molecular Features” 
(FMF) algorithm for feature detection. This algorithm also 
operates using extracted ion chromatograms via centroided 
data. However, due to the nature of closed-source software, 
a detailed overview of how the algorithm operates cannot be 
provided. While automatic parameter control via patRoon 
for this algorithm is not feasible, manual adjustments can be 
made for each run individually using DataAnalysis.

Experimental design and optimization

Parameter optimization

For the parameter optimization (Fig.  2, Table  S2), we 
employed a stochastic strategy where, for each parameter, 
a range was defined based on a combination of extending 

Fig. 2  A schematic diagram of the optimization design used for optimizing feature detection algorithms



A stochastic approach for parameter optimization of feature detection algorithms for non‑target…

the range of the default parameter and expert judgment. 
This ensured that the chosen ranges were both data-driven 
and informed by practical experience. Next, we randomly 
sampled a set of values from this range for each parameter 
and used these values for an iteration of feature detection 
followed by performing suspect screening (“Suspect screen-
ing” section). This process was repeated between 150 and 
500 times depending on the algorithms’ computational 
intensity. In the next step, we evaluated the relationship 
between the number of detected suspects (which correspond 
to the true feature) vs each parameter. The parameters that 
showed a significant positive or negative linear correlation 
(i.e., r >|0.5| and p < 0.05) with the number of detected sus-
pect analytes were considered for further optimization. For 
example, a parameter with an r value of − 0.6 indicated that 
a decrease in the parameter results in higher suspect hit rate 
and thus is a parameter to be optimized.

For the parameters that did not show any correlation 
with the number of suspect hits, the middle of the range 
was considered as the optimized value (Fig. 2). However, 
we acknowledge that this approach may overlook potential 
non-linear relationships. Non-linear optimization methods 
could be explored in future work to better account for such 
relationships.

It should be noted that this approach follows a Bayesian 
principal with an uninformative prior, implying that all 
values in the parameter space have the same probability 
of being the optimized value [42]. After the first sampling 
step, the prior probability distribution is updated based on 
observed correlation results. Specifically, parameters with 
strong correlations (either positive or negative) with the 
number of suspect hits help in identifying a narrower range 
of parameter values that are more likely to be optimal. 
This updated probability distribution, which now gives 
higher weights to these narrowed ranges, guides the sub-
sequent sampling steps. This approach has the advantage 
of not having any initial assumptions while it suffers from 
the fact the optimization process may be computationally 
expensive. A list of parameters used for optimization for 
each algorithm is reported in Table S2 and the R script for 
parameter optimization found in the SI.

To compare our strategy with another existing algo-
rithm for parameter optimization, we used the Isotopo-
logue Parameter Optimization (IPO) algorithm [43], inte-
grated within patRoon. The IPO automatically performs an 
evaluation of the sets of parameter values for an algorithm 
and selects the most optimized value by using natural, sta-
ble 13C isotopic peaks to calculate a peak picking score. 
A detailed overview of this method and the results can 
be seen in SI. It should be noted that IPO did not gener-
ate reasonable parameters. This limitation may stem from 
IPO’s dependence on specific sample characteristics; it 

was originally designed for metabolomic samples rather 
than environmental samples. Consequently, its results were 
not considered in our analysis.

Evaluation of algorithm performance

We tested two strategies to evaluate the algorithm optimiza-
tion: false discovery rate (FDR) and suspect screening. These 
approaches were selected to accurately assess the quality of 
our optimization approach by defining the true positive feature 
using different methods. The FDR was employed to measure 
the effectiveness of the optimization procedure on structur-
ally unknown features, while the suspect screening was used 
to evaluate the effectiveness of the optimization procedure on 
the known features that were previously spiked in the samples.

False discovery rate (FDR) The FDR defines the number 
of cases wrongly identified as a true feature. The main dif-
ference between false positive rate (FPR) and FDR is the 
fact that for FPR the number of true negatives is necessary, 
which is not possible for HRMS data to extract without 
manual inspection of each feature. For the FDR, we used 
the equation below where FP is the number of false positives 
and TP is the number of true positives.

For the TPs, we made the assumption that features 
detected by multiple algorithms are more likely to be true 
peaks. Consequently, the features detected by only one algo-
rithm were assumed FPs [32, 44]. This approach, overly sim-
plistic method for defining the TPs and FPs and avoiding 
manual investigating of all data, has been used in various 
studies due to lack of alternatives [32, 44].

Suspect screening To assess the effectiveness of our opti-
mization strategy, we compared the number of detected 
suspects using default and optimized algorithm parameter 
settings. A suspect list of the 46 spiked PFAS standards was 
generated to screen for the TP features. This list included 
chemical identifiers (SMILES and InChiKeys), molecular 
formula, monoisotopic mass, adduct, the expected retention 
time, and at least one fragment for each suspect (Table S1).

For screening, the generated data at the MS1 level was 
screened against our suspect list using a m/z and retention 
tolerance of 5 mDa and 0.2 min, respectively. To confirm the 
detected suspect analytes, their MS2 signals were checked for 
the presence of potential fragments associated with our suspect 
analytes. The presence of at least one fragment was required to 
confirm the presence of a suspect analyte in our sample. This 
approach has been demonstrated as a robust strategy for sus-
pect screening in complex environmental samples [9, 45, 46].

FDR% = FP ∕ (FP + TP)
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Alignment algorithm optimization

The OpenMS feature alignment algorithm [47] was selected 
for features alignment-and-grouping, due to its high perfor-
mance. After optimizing the feature detection algorithms, 
the parameters of the alignment algorithm (Table S3) were 
subsequently optimized using the same approach described 
in the “Parameter optimization” section and Fig. 2, with 350 
simulation runs.

All computations were performed on an 8-core, 16-thread 
CPU  (Intel® Core™ i7 10700) based PC with 32 GB of 
RAM, running  Microsoft®  Windows® 10 Education (64-
bit).  RStudio® 2021.09.0 Build 351 was used to run patRoon 
2.0.1 on this PC. Julia 1.7.2. was installed to be able to run 
SAFD.

In the context of this study, the term “number of features” 
refers to the number of all generated features derived from 
the analysis of both the water and blank samples. The concept 
of “feature groups” represents the number of feature group 
sets resulting from the alignment and grouping of features 
across all samples. The “filtered feature groups” referred to 
the feature group sets obtained after applying filtering cri-
teria, as outlined in Table S4. The “suspect hits” referred to 
the number of suspects that were confirmed by exact mass, 
retention time, and the presence of a single fragment ion.

Results and discussion

We performed feature detection on three drinking water 
extracts spiked with 46 PFAS standards as a training set, 
using five different algorithms. Parameter optimization 
(Table  S5) was feasible for all open-source algorithms 
(SAFD, XCMS, OpenMS, KPIC2), while it was not pos-
sible for the remaining closed-source algorithm (Bruker 
DataAnalysis) due to its proprietary nature. We employed 
a combination of FDR and suspect screening to evaluate 

the applicability of our optimization approach. The training 
set was used for the parameter optimization, while the test 
set was employed for the final evaluation of the optimized 
parameters’ applicability to different samples.

Feature detection algorithm parameters 
optimization

Under default parameter settings, the KPIC2 algorithm 
detected the largest number of features with around 150 k 
features, followed by XCMS and OpenMS with 19 k fea-
tures each (Table 1). SAFD detected the smallest number 
of detected features, around 4 k. The filtering step led to 
a substantial reduction (average of 97%) in the number of 
feature groups for the optimized and default parameter set-
tings. This reduction indicates that many detected features 
may have been noise or signals removed during blank sub-
traction (approximately 8% of feature groups were removed 
by blank subtraction).

For both the optimized and default parameters, detection 
rates of suspect analytes ranged from 14 positive hits for the 
Bruker software to 35 for OpenMS. After filtering, the detec-
tion ranged from 6 positive hits for Bruker to 31 for OpenMS 
(Table 1), representing a loss of 10% for suspect hit features for 
all algorithms except Bruker, which experienced a 57% loss. 
This loss was due to applied filtering criteria (Table S4) such as 
intensity threshold and blank subtraction. After optimization, 
OpenMS showed a substantial reduction of − 59% in features, 
from 18 to 7 K (Table 1). This optimization might have led to 
optimizing the filtering process and decreased in the detection 
of noise compared to the default settings, leading to a decline 
in both feature groups (− 54%) and suspect hits (− 9%).

Variations between default and optimized settings for 
XCMS and OpenMS were mainly caused by the signal-
to-noise ratio (SNR) setting, while the other parameters 
had minimal influence on this variation (Figure S2, S3). 
Increasing SNR from 3 to 6 for OpenMS decreased features 

Table 1  The number of features, feature groups, filtered groups, and suspect hits and the execution time for the studied algorithms using the 
default and optimized parameters

SAFD OpenMS XCMS3 KIPAC2 Bruker 
DataAnal-
ysis

Default Optimized 
(compared to 
default%)

Default Optimized 
(compared to 
default%)

Default Optimized 
(compared to 
default%)

Default Default

Features 4391 17,218 (292%) 18,314 7465 (− 59%) 19,652 21,859 (11%) 151,108 17,781
Before filtering Feature groups 1917 9417 (391%) 9097 4140 (− 54%) 10,131 12,519 (24%) 112,652 10,174

Suspect hits 11 22 (100%) 35 32 (− 9%) 34 34 (0%) 30 14
After filtering Feature groups 152 191 (26%) 169 116 (− 31%) 321 277 (− 14%) 277 181

Suspect hits 11 20 (82%) 31 28 (− 10%) 28 32 (14%) 26 6
Execution time (min) 22.8 91.8 (303%) 1.7 0.9 (− 47%) 1.23 1.005 (− 18%) 154.8 2.2
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by − 59%, while decreasing SNR from 10 to 6 for XCMS 
increased features by + 11%, and that substantially influenced 
the number of feature groups (Table 1). SNR as a widely used 
technique in pre-preparation of the data file for the feature 
detection mainly removes the noise that potentially comes 
from instrument fluctuations [12]. However, SNR is fast and 
easy to perform, but it is unstable (very sensitive) and ignores 
the peak shape. Similarly, Dietrich et al. found that the inten-
sity threshold and SNR are the parameters that significantly 
influence obtaining the false positive features [48].

During the initial optimization test for SAFD, only the 
SNR parameters showed a correlation (Figure S1). There 
was no difference between the default and the optimized set-
ting for this parameter at the end of optimization. The rise in 
suspect hits and detected features in SAFD (Table 1, Fig. 4) 
was attributed to the increase in the number of iterations 
(maxNumbIter) (i.e., the number of performing all the steps 
in the algorithm for feature detection) from 1000 to 5000. 
This increases the TP features (e.g., suspect hits), but it gen-
erates more FP features (e.g., noise) that majority filtered by 
the filtering step (Table 1). Consequently, this resulted in 
longer execution time for feature detection, as indicated in 
Table 1. The increased iterations led to a higher number of 
detected features, subsequently elevating both TP features 
(e.g., suspect hits) and FP features.

The optimization approach did not sufficiently improve 
KIPC2 parameter settings due to a lack of correlation 
between parameter values and suspect hits (Figure S4). 
Bruker DataAnalysis, tested alongside open-source algo-
rithms, was not possible to programmatically change due 
to the closed-source nature of the Bruker algorithm. Bruker 
DataAnalysis yielded the lowest suspect hits (6) among all 
algorithms tested after filtering (Table 1). This unexpected 
performance was particularly surprising given the expecta-
tion of good performance with data generated from Bruker 
instruments, which were used in this study. Moreover, Data-
Analysis is an older software, and the newer Bruker software 
“MetaboScape” might offer improved performance. How-
ever, the use of default parameters resulted in suboptimal 
performance, emphasizing the need for manual optimization 
if feasible before its application. Hemmer et al. observed 
that the closed-source algorithm had been shown to generate 
a low number of true positive features as compared to the 
open-source algorithm [49].

OpenMS and XCMS demonstrated rapid execution, 
approximately 1 min, due to their use of mass traces for 
feature detection [20, 50, 51]. Conversely, KPIC2, employ-
ing k-means clustering for m/z value to find similarity, took 
154.8 min, hindered by its incomplete use of ion intensity 
information [21]. This resulted in more low-intensity peaks 
and false positives, extending execution time. SAFD, using 
profile data, required 91 min, longer than OpenMS and 
XCMS, as it uses all data points in features, demanding more 

computational resources. Additionally, the HRMS data pro-
vided as centroid version and the need to convert centroided 
data to profile data increased execution time.

Evaluation of algorithm performance

False discovery rate (FDR)

FDR calculations were based on both feature groups and 
filtered feature groups, employing three scenarios to define 
TP: first, the overlapping features between four algorithms 
(Fig. 3), second, the overlapping features between three 
algorithms (see Venn diagram Figure S9, S11 in the SI), 
and third, the overlapping features between two algorithms 
(see Venn diagram Figure S10, S12 in the SI).

After applying the filtering step in the case of optimized 
and default parameters, a decrease in the FDR was observed 
for all algorithms across all scenarios, except SAFD in the 
case of default parameters (Table 2). This reduction indi-
cates the presence of a large number of FP feature groups 
generated from noise that was partially filtered out using the 
filtering criteria (Table S4).

In an ideal scenario, the algorithm’s performance should 
yield an FDR of 0%. However, this is not realistic for feature 
detection algorithms (Table 2), attributed to the high num-
ber of noise generated (FP) features. In the first and second 
scenarios, the optimized parameter settings led to an average 
12% decrease in FDR% for all algorithms, except SAFD. 
This reduction in FDR% can be attributed to a decrease in 
the FP or increase in TP detection achieved through opti-
mized parameter settings, this aligning with our approach 
of optimizing algorithms’ parameters to maximize suspect 
hits as TP features.

Conversely, in the case of SAFD, an increase in FDR% 
was observed after parameter settings optimization. This 
increase can be linked to a higher number of iterations, 
resulting in an increase in feature groups from 1917 with 
default parameters to 9417 with optimized parameters. This 
increase in iterations led to a higher count of FP, and this 
increased the chance of detecting both true peak and lesser 
quality peak (false peak) and getting a higher FDR after 
optimization.

In the third scenario, a different pattern was observed, 
with a high variation of FDR% ranging from 12 to 99% 
across all algorithms. While most cases showed a reduction 
in FDR% using optimized parameter settings, few cases get 
an increase in FDR%. This variation can be attributed to the 
TP assumption, wherein the overlap of two algorithms may 
not encompass all the TP features, and potentially leading to 
biased conclusions using the FDR approach.

To validate our TP assumption, we randomly sampled 
features from feature groups and filtered feature groups from 
both overlapped and non-overlapped regions. The sample 
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size was chosen to be more representative, at 10–20% of the 
overlapped region, to be 100 features for unfiltered feature 
groups and 10 features for filtered feature groups. Under the 
first scenario, our TP assumption held true, with all sampled 
overlapped filtered and non-filtered feature groups confirmed 
as true peaks (only 4 features out of 100 confirmed as noise), 
validating our initial hypothesis. Non-overlapped feature 
groups were identified as noise signals in feature groups, 
while filtered feature groups showed true peaks for an aver-
age of 50% sampled feature groups (Table S7).

In the second scenario, an average of 1% of sampled 
feature groups were confirmed as noise in the overlapped 
region in the filtered and non-filtered feature groups. The 
non-overlapped region in feature groups revealed an aver-
age of 4% sampled feature groups, while the filtered feature 
groups showed more true peaks in the non-overlapped region 
(Table S7). However, the third scenario yielded different 
results, with more noise signals detected in the overlapped 
region and a higher number of true peaks in the non-over-
lapped region compared to other scenarios. This discrepancy 
may explain the variation of FDR% (Table 2).

It is important to note that these scenarios do not confirm 
that all non-overlapped features were noise, as observed in 
the manual inspection of the sampling set in filtered feature 
groups, where true peaks were observed in all scenarios 

(refer to Table S7). Rather, it suggests that overlapped fea-
ture groups are more likely to be true peaks, as confirmed 
using the first and second scenarios. By increasing the num-
ber of overlapped algorithms, there is a greater chance of 
capturing more TP within this overlapped region. Employing 
optimized parameter settings for all algorithms increased the 
overlapped regains, representing an increase in TP features, 
as shown in case of first and second scenarios, except in 
one case (Venn diagrams in Fig. 3 and the SI). On the other 
hand, using the consensus of data from multiple algorithms 
is considered a useful approach to priorities the overlapped 
features as a true feature to be subsequently used in the NTS.

Suspect screening

The parameter optimization consistently improved the detec-
tion frequencies of the suspect analytes across all algorithms, 
except for OpenMS (Fig. 4, Table 1). The algorithm which 
is the most impacted by the optimization was SAFD with 
doubling the number of the suspect hits after optimization.

Through an examination of frequent detection patterns 
for individual PFAS in the suspect list (Fig. 4), notewor-
thy observations arise. It can be seen that certain features 
were detected inconsistently across triplicate samples (e.g., 
FOSA), while others were exclusively detected using the 

Fig. 3  Venn diagram showing overlapping feature groups generated by the studied algorithms (OpenMS, SAFD, KPIC, and XCMS) using the 
default (DF) and optimized (OP) parameter settings. KPIC was not optimized so only default parameter was used in both cases
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default algorithm and not in the optimized version (e.g., 
3,6-OPFHpA, FBSA). On the contrary, several suspects 
showed detectability across all algorithms employed (e.g., 
PFEESA, PFBS, 4_2FTS), whereas other suspects were 
not detected across all algorithms (e.g., 4_2FTS, 8_2FTS, 
ADONA), or were not detected by any algorithms (e.g., 
4_2FTA, 8_2FTA, PF4OPeA).

To explain the lack of congruences in feature detection 
between different algorithms and between default and opti-
mized parameter settings, further manual investigations 
of the peak shape and intensity signals using proprietary 
software (DataAnalysis) were performed. In some cases, 
low peak intensity (1 ×  103), almost near to the noise sig-
nal, which made it challenging for the algorithm to dis-
tinguish between the signal and background instrumental 
noise, resulting in non-detection by the studied algorithm 
(e.g., 4_2FTA, PF4OPeA, PFPrA, TFA). In other cases, the 
features were with low intensity  (103) and detected by the 
employed algorithm. Still, features were filtered out in the 
filtering step (e.g., 3.6-OPFHpA, N-EtFOSA, PFBA), due 
to filtering criteria (Table S4).

Conversely, two suspects (6_2FTA, 8_2FTA) were not 
detected despite their high intensities  (104) and well-defined 
Gaussian shapes. This lack of detection could be attributed 
to the uniquely narrow peaks exhibited by these suspects 
(as shown in Fig. 5). The narrow peaks provide fewer data 
points for the algorithms to extract from the mass domain, 
making it more challenging for the algorithms to identify 
them as proper chromatographic peaks after extracting the 
m/z values from the raw data (see the peak chromatogram 
in Fig. 5).

By using both evaluation steps (FDR and suspect screen-
ing) for feature detection algorithms, it can be shown that 
the use of optimized parameters improves the performance 
of the algorithms. This improvement is evidenced by either 
an increase in TPs features, as demonstrated by the increased 
suspect hits in the suspect screening, or a reduction in FPs 
features, as indicated by a decrease in the FDR%.

While Fig. 4 suggests that default and optimized param-
eters often yield similar results, it was clear in a specific 
scenario where parameter optimization significantly impacts 
the results. For instance, the optimization led to a doubling 
of the suspect hits for the SAFD algorithm, illustrating a 
clear benefit. Additionally, the reduction in FDR% in most 
scenarios with optimized parameters (Table 2) indicates that 
optimization helps in reducing the number of FPs, particu-
larly in complex datasets where noise can generate numerous 
false detections. For instance, the optimization led to 24% 
reduction in FDR% for OpenMS. The optimized parameters 
help filter out such noise, leading to a more accurate identi-
fication of true features.

It is important to note that the default algorithm param-
eters in patRoon were changed to suit the data generated for Ta
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our instrument (patRoon developed in our institute). This 
pre-optimization may contribute to the smaller observed 
differences between default and optimized settings in some 
cases. Additionally, the inherent robustness of some algo-
rithms to parameter changes or the nature of the dataset 
itself may also play a role. For example, certain PFAS com-
pounds with low peak intensity or narrow peaks may still 
pose detection challenges, even with optimized parameters.

Alignment and grouping algorithm optimization

Applying the same optimization approach used for feature 
detection to the alignment-and-grouping algorithm revealed 
no significant correlation between the parameter values 
(Table S3) and suspect hits in this context.

For feature alignment-and-grouping, only the max-
GroupRT parameter demonstrated a moderate correla-
tion (R = 0.62) with suspect hits when using features 

generated from OpenMS, SAFD, and XCMS (Figure S5, 
S6, S7). However, no correlation was observed when 
using features generated via KPIC2 (Figure  S8). The 
maxGroupMZ parameter showed no correlation with 
suspect hits across all feature detection algorithms. The 
correlation plots displayed a scattered pattern (see the 
correlation plot in the Supplementary Information), indi-
cating that the algorithm tends to yield artifact inconsist-
ent results, regardless of the input data. The dataset in 
our case was limited to three samples of a drinking water 
matrix measured in the same batch, resulting in minimal 
variation due to retention time drift and matrix effects. 
Consequently, the algorithm demonstrated sufficient per-
formance regardless of parameter changes. In scenarios 
involving larger sample batches and more complex matri-
ces, such as wastewater, optimization might prove crucial, 
potentially revealing differences between default and opti-
mized settings.

Fig. 4  The frequent detection for each individual suspect in the triplicate samples (training set) using optimized and default parameter settings 
for each algorithm (OpenMS, SAFD, and XCMS), before and after applying the filtering step in the NTS



A stochastic approach for parameter optimization of feature detection algorithms for non‑target…

Applicability of the optimization approach

Using both optimized and default settings of the stud-
ied algorithms on the test dataset produced comparable 
results to those on the training dataset (Fig. 6, Table S6). 
This improvement in feature detection was evident, either 
through an increase in the number of suspect hits in the case 
of SAFD and XCMS, or by a reduction in the number of 
feature groups, mainly FP features, for OpenMS (Table S6). 
These findings indicate that our optimization approach suc-
cessfully enhanced feature detection on the test set by opti-
mizing algorithm parameters using the training set, showing 
promise for future research in this area.

In the context of NTS, achieving optimal performance in 
feature detection requires a careful balance between maxi-
mizing the number of detected features and minimizing the 
FDR% (increasing the TPs and decreasing the FP). Although 
it may seem intuitive that an algorithm yielding a higher 
number of TPs with a low FDR% would perform better. It is 
important to note that the efficacy of feature detection can 
be dependent on the sample characteristics, such as matrix 
composition and targeted chemical classes (Rafiei and Sleno, 
2015).

The selection of algorithms should be guided by the spe-
cific application’s requirements and user needs, whether 
it necessitates an inclusive approach, as demonstrated by 
KPIC2 with a high number features and consequently a high 
number of FP features, or a more selective approach, as dem-
onstrated by SAFD, which generates fewer features of higher 
quality but risks missing some TP features.

Thus, it is recommended to perform parameter optimiza-
tion early in the NTS workflow regardless of the chosen 
algorithm, preferably using a sample spiked with the target 
group of chemicals to fine-tune algorithm parameters. This 
optimization approach aims to maximize the detection of 
TP features (e.g., suspect hits). In our study, focusing on 
drinking water samples and targeting PFAS as the chemi-
cal class, we used a PFAS list for parameter optimization. 
While this strategy does not guarantee the detection of all 
TP peaks or the elimination of all FP, it effectively mitigates 
FP by enhancing TP peak detection, thereby reducing the 
complexity of NTS analysis.

However, there are several limitations to our method 
that should be considered. Firstly, the current optimization 
approach does not account for parameter interactions, which 
can significantly impact the performance of feature detection 

Fig. 5  Peak chromatogram extracted using DataAnalysis software for selected suspect chemicals, including different scenarios of detection by 
the studied algorithms
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algorithms. Future work could expand the optimization strat-
egy to consider these interactions, potentially through multi-
factorial experimental designs or advanced stochastic opti-
mization methods. Additionally, the computational intensity 
of the optimization approach could be a limiting factor in 
some applications, as the process may require substantial 
computational resources, particularly for complex or large 
datasets.

Furthermore, the efficacy of the method may be depend-
ent on specific sample characteristics, such as matrix com-
position and the nature of the targeted chemical classes. This 
dependency can affect the generalizability of the optimiza-
tion results to different sample types or analytical contexts. 
As a result, it is essential to validate the optimization process 
with various sample matrices to ensure its robustness and 
applicability across different scenarios.

By addressing these limitations and refining the optimi-
zation process, we can further improve the reliability and 

accuracy of feature detection in NTS. Despite these limita-
tions, our approach offers advantages over using the default 
parameters. The proposed method improved the performance 
of feature detection algorithms, which can lead to increase 
the detection of TP features, and is going to be integrated in 
the future version of patRoon. By addressing the computa-
tional and interaction-based limitations in future work, our 
approach has the potential to become even more robust and 
widely applicable.

Conclusion

Feature detection algorithms require careful selection of 
algorithm parameters due to the importance of reliable data 
for the subsequent steps in the NTS. However, selecting 
appropriate algorithm parameters is complex, and manual 
fine-tuning can lead to unpredictable data quality outcomes. 

Fig. 6  The frequent detection for each suspect in the three drinking water samples (test dataset) using optimized and default parameter for each 
algorithm (OpenMS, SAFD, and XCMS)
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To address this challenge, we developed a novel optimization 
method within the patRoon platform to automate the fine-
tuning of parameter settings of feature detection algorithms.

Our study demonstrates that using our approach for 
parameter optimization enhances the performance of feature 
detection algorithms. This optimization results in improved 
detection frequencies of suspect analytes and reductions in 
FDR%. Despite variations in outcomes observed with dif-
ferent algorithms, optimizing parameters reduces the risk of 
losing true peaks from the original data.

To apply this optimization strategy with other algo-
rithms, one should define parameter ranges, perform random 
sampling and iterations, evaluate performance, optimize 
parameters based on significant correlations, and validate 
the results (Fig. 7). We plan to integrate our optimization 
approach into future versions of patRoon to facilitate its 
application and improve feature detection performance. 
Employing multiple feature detection workflows can signifi-
cantly enhance TP detection, as overlapping features identi-
fied by different algorithms are more likely to be TPs. This 
approach leverages the strengths of each algorithm, reduc-
ing the likelihood of missing true features due to algorithm-
specific biases or limitations. As observed in our work, the 
overlapping regions between different algorithms serve as 
valuable indicators TP features and this could be used for 
the prioritization step in the NTS.

However, ranking the performance of the algorithms 
may not be meaningful, as each algorithm operates differ-
ently and requires optimization adopted to specific research 
objectives, sample matrices, and instrument configurations. 
Therefore, algorithm selection should align closely with the 
unique requirements of the application.

Our study underscores the importance of early parameter 
optimization in the NTS workflow to maximize the detec-
tion of true positive features, simplifying subsequent analy-
ses and reducing complexity. By optimizing algorithms to 
maximize suspect hits as TP features in samples spiked with 
chemical structurally similarly of the interested chemical 
classes, this approach would increase the detection of TP 
features. Future research can explore more refined methods 

for increasing TPs and reducing the FP features to further 
enhance the accuracy of NTS analyses.
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