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Abstract
The rapid increase in the production and global use of chemicals and their mixtures has raised concerns about their potential 
impact on human and environmental health. With advances in analytical techniques, in particular, high-resolution mass 
spectrometry (HRMS), thousands of compounds and transformation products with potential adverse effects can now be 
detected in environmental samples. However, identifying and prioritizing the toxicity drivers among these compounds remain 
a significant challenge. Effect-directed analysis (EDA) emerged as an important tool to address this challenge, combining 
biotesting, sample fractionation, and chemical analysis to unravel toxicity drivers in complex mixtures. Traditional EDA 
workflows are labor-intensive and time-consuming, hindering large-scale applications. The concept of high-throughput 
(HT) EDA has recently gained traction as a means of accelerating these workflows. Key features of HT-EDA include 
the combination of microfractionation and downscaled bioassays, automation of sample preparation and biotesting, and 
efficient data processing workflows supported by novel computational tools. In addition to microplate-based fractionation, 
high-performance thin-layer chromatography (HPTLC) offers an interesting alternative to HPLC in HT-EDA. This review 
provides an updated perspective on the state-of-the-art in HT-EDA, and novel methods/tools that can be incorporated into 
HT-EDA workflows. It also discusses recent studies on HT-EDA, HT bioassays, and computational prioritization tools, along 
with considerations regarding HPTLC. By identifying current gaps in HT-EDA and proposing new approaches to overcome 
them, this review aims to bring HT-EDA a step closer to monitoring applications.
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Introduction

Recent studies reported that over 350,000 chemicals and 
mixtures have been registered for production and global 
use [1]. Many of these compounds finally end up in the 
environment through different routes potentially having 
harmful consequences on both human and environmental 
health. With the advancements in the analytical field, in 
particular high-resolution mass spectrometry (HRMS), 

thousands of compounds and transformation products 
that might cause adverse effects can be detected in 
typical environmental samples. Although not all of 
these compounds contribute to the observed effects, the 
identification and prioritization of toxicity drivers remain 
extremely challenging [2]. Hence, novel and comprehensive 
approaches are necessary to find toxicity drivers for a 
reliable hazard and risk assessment. Effect-directed analysis 
(EDA) has emerged as an essential tool in addressing this 
challenge. This multidisciplinary approach combines 
biotesting, sample fractionation, and chemical analysis to 
unravel toxicity drivers in complex mixtures [3]. An EDA 
study begins by fractionating a complex sample, typically 
using chromatography, that has shown effects on the 
endpoint being tested. This process separates the sample 
into various fractions with eluting intervals of several 
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minutes (usually between 2 and 3 min), containing fewer 
compounds and reduced matrix interference. The fractions 
are then subjected to biotesting to find those showing effects, 
or so-called active fractions, which will be then selected for 
chemical analysis to identify risk drivers.

The purpose of EDA can be divided into (i) identification/
discovery of toxic compounds and (ii) quantification of the 
contribution of different risk drivers to the effects of complex 
mixtures. In early EDA studies, instrumental analytical 
capabilities restricted the identification of potential toxicants 
to either GC-(HR)MS/MS, LC–MS/MS, or LC-UV detector 
with limited possibilities of identification [4]. This changed 
drastically with the development of high-resolution mass 
spectrometry coupled to LC which allowed the detection and 
identification of previously unknown semi-/polar compounds.

Current monitoring applications generate extensive 
datasets with both analytical and bioanalytical tools. One 
of the main challenges for EDA is maintaining pace with 
these expansive screening datasets to pinpoint toxicity 
drivers. Moving from individual case studies to large-scale 
applications requires a leap in performance at every step of 
the process, improving traditional EDA workflows, which 
are generally labor-intensive and time-consuming, and do 
not guarantee successful identification of toxicity drivers. 
If we consider that the initial milestone in advancing the 
success of EDA was the integration of Suspect and Non-
Target Screening (NTS) workflows, we currently witness 
the emergence of two additional ones: the implementation 
of high-throughput fractionation and biotesting, and the 
development of computational tools implemented in NTS 
workflows to enhance the overall success and speed of 
compound identification in EDA [3]. With these improved 
approaches, the so-called high-throughput (HT-) EDA aims 
to accelerate these workflows, relying on the following 
key features: (i) the combination of microfractionation 
and downscaled bioassays, (ii) the automation of sample 
preparation and biotesting to minimize manual intervention, 
and (iii) the use of tailored and efficient data processing 
workflows supported by novel computational tools to 
prioritize and identify the toxicity drivers.

The implementation of microplates (24-, 96-, or 384-well 
plates) in fractionation greatly reduces the manual interven-
tion in intermediate steps such as sample transfer or evapo-
ration of each fraction in separate vials or tubes [5]. This, 
in turn, significantly minimizes losses and contamination 
risks and improves the repeatability of the process. Addi-
tionally, the microplate format facilitates high-performance 
methods, allowing for almost simultaneous fractionation and 
biotesting of multiple samples, a concept that was previously 
unthinkable in traditional EDA using semi-preparative col-
umns. This holds particularly true when making use of the 
latest advancements in instruments for automated in-plate 
fractionation, pipetting robots, or microplate evaporation 

systems. The toxicity of the fractionated sample can be 
tested easily with multiple endpoints, as substantiated by 
numerous recent studies [6, 7]. Since NTS remains one of 
the critical steps for HT-EDA, fast and effective data pro-
cessing workflows for structure elucidation are required to 
efficiently explore the detectable chemical space, prioritize 
features with toxic potential, and pinpoint candidate struc-
tures that deserve further identification efforts. However, the 
fractionation and biotesting on microplates is not the only 
strategy that meets the demands of HT-EDA. Another viable 
approach is utilizing high-performance thin-layer chroma-
tography (HPTLC) as an alternative to HPLC in EDA. The 
hyphenation of HPTLC and bioassays, called bioautogra-
phy, enables the detection of toxicity drivers in complex 
environmental samples [8–10]. The direct accessibility of 
the analytes allows for the application of bioassays directly 
on the surface of the HPTLC plate resulting in an efficient 
workflow that produces effect profiles that can be directly 
used to compare samples along a temporal or spatial gradient 
or along a process such as wastewater treatment [11].

In our review, we provide an updated perspective on the 
state-of-the-art in EDA, high-throughput applications, and 
novel methods/tools that can be incorporated into HT-EDA 
workflows. Specifically, we have reviewed papers dealing 
with (HT-)EDA studies published since the last in-depth 
review in 2016 [3]. In addition to these, the search has been 
extended to include studies of particular interest on HT 
bioassays, NTS workflows, or computational prioritization 
tools with potential application in EDA. As an increasingly 
promising alternative to HPLC for HT-EDA, we also discuss 
specific considerations regarding HPTLC. Finally, based on 
the information gathered from the reviewed literature, we 
discuss the ongoing challenges that HT-EDA has yet to over-
come and provide recommendations. It is important to note 
that this article does not intend to reiterate a comprehensive 
literature review of each individual step in the conventional 
EDA protocol (e.g., sampling or sample preparation), as 
this has been previously covered by other authors [3, 12]. 
Instead, it is the progress towards high-throughput applica-
tions that drives us to conduct this review and assess whether 
HT-EDA is indeed ready to go.

Requirements, achievements, 
and challenges for bioanalytical tools 
in HT‑EDA

Effect-based methods are bioanalytical tools that use the 
response of living organisms, cells, or molecular systems to 
detect and quantify the potency of chemicals and complex 
environmental samples affecting specific biological end-
points [13, 14]. With the overall aim of identifying toxicity 
drivers, effect-based methods serve as the primary tools to 
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derive information about adverse effects caused by a mixture 
of compounds. Bioassays do not require a selection of known 
target compounds to be addressed but rather detect the bio-
logical activity of whole mixtures, considering all known 
and yet unknown compounds that interact with the bioassay 
[1]. In (HT-)EDA studies, bioanalytical tools are used in an 
initial step to identify bioactive samples and fractions, which 
will be further analyzed for toxicity driver identification. As 
a subsequent step, in the absence of toxicological data for 
the identified compounds, bioassays are performed to verify 
their activity by concentration–response relationships for the 
individual toxicity drivers and their mixtures. Through this 
approach, the contribution of these components to the over-
all detected toxicity of the fraction(s) and the sample itself 
can be confirmed and quantified.

HT bioassays can be defined as systems that allow 
testing of a  large number of samples simultaneously or 
in rapid succession, efficiently and quickly. They usually 
involve automated procedures or robotics to achieve this 
goal. The utility of high-throughput bioassays for toxicity 
monitoring in large-scale environmental studies has already 
been demonstrated in the last years [14–16]. However, 
their application in HT-EDA studies demands even greater 
efficiency, as the activity of a substantial number of fractions, 
typically ranging from 60 to 300, must be measured in a time 
and cost-effective manner. Bioassays successfully used in 
HT-EDA meet some common criteria including miniaturization 
feasibility, high specificity, good reproducibility, automation 
capability, and high sensitivity. However, especially in the 
pursuit of such high performance, new approaches might bring 
some disadvantages and challenges that need improvement. 
Here, we discuss each of these criteria, reviewing the bioassays 
already implemented in HT-EDA, exploring novel potential 
approaches, and highlighting the challenges that lie ahead. 
The pros and cons of using in vitro vs. in vivo assays are also 
discussed under these criteria.

Compatibility with HPLC‑based HT‑EDA

Scalability

For their compatibility with microfractionation (see the 
“Sample fractionation in HT-EDA” section), it is important 
that bioassays in HT-EDA are scalable to 96- or 384-
well plates. This can facilitate the simultaneous testing of 
several samples with one or even multiple bioassays, as 
demonstrated in recent studies that exposed cells in parallel 
experiments to study at least three independent endpoints 
[7, 17, 18]. HT bioassays require a small sample volume 
as the test volume rarely exceeds 200 µL. This is a major 
advantage in extending HT-EDA to large-scale studies, as it 
avoids the need to handle excessive sample volumes. Most 
conventional EDA studies for water samples require sample 

volumes of tens to hundreds of liters, e.g., Hashmi et al. [19], 
Lopez-Herguedas et al. [20], and Massei et al. [21], which 
required 5, 25, and 850 L of water, respectively. In contrast 
in studies with HT microfractionation and specific in vitro 
bioassays, a grab sample of 100 mL of water [7], 150 mg 
of dust, or 9 mL of serum [22] may be sufficient, largely 
due to the reduced injection volumes achievable through 
microfractionation.

A wide range of in vitro bioassays in 96- or 384-well 
plate formats are described in the literature, giving them 
an advantage over in vivo bioassays that are often limited 
by the need for larger volumes [13]. These include several 
endocrine disrupting endpoints, mutagenicity, genotoxic-
ity, cytotoxicity, aryl hydrocarbon receptor affinity, enzyme 
inhibition etc. [3]. In the literature, (anti-) androgenic, estro-
genic, (anti-) progestogenic, glucocorticoid, mutagenic, 
and neurotoxic activities have been studied in HT-EDA 
workflows (Table SI.1) using 384-well plates following 
the (Anti-)AR-, ER-, (Anti-)PR- and GR-CALUX, Ames 
(VM7Luc4E2) and AchE inhibition assay protocols respec-
tively [6, 7, 23]. In the same vein, microbial growth inhibi-
tion and transthyretin (TTR) binding assay in 96-well plate 
format also showed a good compatibility with HT-EDA [22, 
24, 25]. Certain in vivo tests, however, have the potential to 
overcome the scalability issues and high volume require-
ments. For example, bioassays using Daphnia magna can be 
efficiently performed with comparable results to the classical 
approach, even in 24-, 48-, and 96-well plates by reduc-
ing the total volume and keeping a fixed surface to volume 
ratio [26]. Furthermore, modified versions of the FET can 
be conducted in 96-well plates, drastically reducing the final 
exposure volume (200 µL per well). Despite the potential of 
these bioassays, no studies that address their implementation 
for HT-EDA have been found. The only self-styled high-
throughput in vivo bioassay used in the latest EDA works is 
a scaled-down version of the midge toxicity assay in 12-well 
plates [27, 28]. This assay was used to identify several toxic 
compounds and quantify their contribution to the toxicity of 
urban waterway sediment samples, showing a great potential 
for the assessment of contaminated sediment samples.

Beyond making the practical aspects of testing easier, 
microscaling also brings time and cost benefits. Most 
in vitro assays used in HT-EDA studies involve exposure 
periods of 24 h maximum (e.g., reporter gene assays such 
as CALUX or EcoScreen) or even 2-h exposure followed by 
28-h incubation (Ames luminescence assay). Meanwhile, 
organismal assays typically have exposure times of 48, 72, 
or even 120 h, e.g., the Daphnia magna immobilization test, 
the midge toxicity test, and the algal growth inhibition test 
or the acute fish embryo toxicity test, which greatly lengthen 
the experiments [29, 30]. The cost savings are also related to 
the use of less material by unifying fractionation and biotest-
ing in the same plate. However, the use of plates can also 
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bring certain practical limitations, such as the impact of the 
materials used. In many in vitro bioassays, polystyrene well 
plates are used for cell exposure which might result in modi-
fication of the biological response due to leaching of, e.g., 
additives from the plastic or sorption of sample components 
to the plastic, depending on the physico-chemical charac-
teristics of the contaminants in complex samples. This, for 
instance, has been shown by Johann et al. [31], where the 
estrogenic activity of oil-contaminated water-accommodated 
fractions in polystyrene well plates would have overesti-
mated the real estrogenicity, likely due to leaching effects. 
While glass-coated alternatives are available, in which nor-
mal cell growth has been shown, these materials are more 
expensive, and not all well plate formats are available.

Specificity

Addressing bioassays with specific endpoints, such as 
receptor-based assays, significantly increases the chances 
of success in EDA since toxicity is caused by a few toxicity 
drivers. Furthermore, it increases throughput by facilitating 
their identification using endpoint-specific databases or tox-
icity prediction tools (see the “Identification of the toxicity 
drivers” section). In Table SI.1, some EDA studies using 
non-specific bioassays are shown, both in vivo and in vitro, 
such as the sea urchin embryo test or oxidative stress by 
ARE c32 [31–33]. Although these studies are more relevant 
to aquatic ecosystems, they also show a wider distribution 
of activity [21]. HT-EDA studies conducted thus far con-
sider this aspect, with almost all of them employing specific 
in vitro bioassays, as mentioned earlier. Although in vitro 
assays provide valuable information, especially with their 
link to molecular initiating events (MIE) [34], in vivo bio-
assays provide higher ecological relevance. Consequently, 
the implementation of HT in vivo bioassays should be fur-
ther explored in HT-EDA, despite the difficulties posed by 
their lower specificity. However, behavioral assays focusing 
on sublethal effects can increase the specificity of the test, 
allowing a higher chance of identification of compounds 
with specific MoA and can also be applied in low-volume 
plates in a high-throughput manner. In the last years, many 
studies have shown the application of behavioral assays with 
Daphnia magna in plates to screen the effect of neuroac-
tive chemicals [35–37], and such tests could be applied also 
in HT-EDA studies for the identification of neurotoxicity 
drivers. Zebrafish (Danio rerio) embryo test (FET) repre-
sents also a promising tool since it allows the screening of 
a wide variety of endpoints, such as behavior, morphology, 
enzyme activity, and metabolomic patterns. A recent EDA 
study from Massei et al. [21] showed the potential of the 
acetyl cholinesterase (AChE) assay with zebrafish embryos 
for the identification of neuroactive chemicals in complex 

environmental mixtures. However, so far, the assay has not 
been miniaturized to be used in an HT-EDA study.

Modern techniques such as transcriptome analysis can 
also account for a holistic identification of toxicity pathways. 
In this approach, targeted RNA sequencing measures the 
expression of a selected set of key genes, typically around 
1000–1500 [38]. For instance, Guo et al. [34] exposed a 
human permanent cell line (MCF7 cells) to water sample 
extracts, performed a reduced human transcriptome analysis, 
and identified some affected toxicity pathways, namely 
endocrine disruption (estrogenicity) and immune pathways. 
This identification was carried out using a virtual EDA 
approach where the sample effects were correlated with 
detected compounds by suspect and non-target screening 
without fractionation. The identified key drivers explained 
54% of the estrogenic bioequivalent activity, which is in 
line with other EDA studies focusing on estrogenicity [20]. 
Although these high-throughput transcriptomics techniques 
have not been combined with fractionation to date, they 
align well with the requirements of HT-EDA and their joint 
potential is worth mentioning.

In addition, the implementation of biosensors as analytical 
tools has been recently proposed as complementary strategy 
to HT-EDA that will allow its application to on-site 
monitoring [39]. In this review, Li and Guo covered the 
latest developments on chemo/biosensors for toxicity testing 
and chemical analysis. These assays are based on a specific 
biological sensing element (DNA, protein, antibody, lectin, 
aptamers, or whole cell models) that produces a signalling 
element (i.e., fluorescence, luminescence, or color) when 
in contact with environmental pollutants present in a real-
life sample or an extract [40]. However, these biosensors 
for the detection and semi-quantification of established 
biomarkers of toxicity still need further development, and 
this newly proposed SensorEDA needs to be tested with real-
life samples.

Reproducibility

Reproducibility of the bioassay is another important aspect, 
as it allows throughput to be further increased by eliminating 
both technical and biological replicates. Though replication 
is an irreplaceable measure to cover biological variability, it 
might be sufficient to limit replication if the assay is used as 
a first screening tool in HT-EDA [17]. Hence, for explora-
tory identification of toxicity drivers, a single biotest may 
be sufficient to compare the toxicogram or bioassay chro-
matogram (i.e., the activity of the sample along the elution 
time) with the chromatogram, as demonstrated by Zwart 
et al. [17]. So far, most of the established HT-EDA work-
flows use a similar approach, where the number of biotests 
is reduced to a minimum. The contribution of the identi-
fied compounds is commonly calculated by comparing the 
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 EC10/50 of the compound and the full extract or fractions. If 
the unfractionated extract is used as the reference, testing 
of the dose–response curves of the fractions can be avoided 
[41, 42]. Although this greatly speeds up the process, there 
are a number of factors that can influence the results, even 
if the assay is highly reproducible. Firstly, the activity of 
the sample may be masked by the antagonistic effects of 
the mixture and fractionation can help to unmask them. For 
instance, Houtman et al. [6] found both progestogenic (PR) 
and anti-PR activities in WWTP influent samples, but their 
bidirectional masking was separated through fractionation. 
Building the dose–response curve of the fractions would 
help to quantitatively explain the contribution of the toxic-
ity drivers on unmasked effects. In addition, the calculated 
concentration in the sample does not consider possible losses 
in the process and the matrix effect (i.e., ionization suppres-
sion or enhancement leading to under- or overestimation of 
the concentration) may also bias the results.

The testing of a recombined sample is also a common 
practice in conventional EDA [19, 20, 32, 43], which so far 
has been lost in HT-EDA studies. This reconstituted sample 
is used to assess the recovery of the toxicity by combin-
ing all fractions into a new sample, which is then tested 
under the same nominal concentration and conditions as 
the raw sample [3]. Pooling an aliquot from each fraction 
into a new well or vial could also work for QC in HT-EDA, 
although the maximum achievable REF would be limited. 
Therefore, even though these QA/QC practices work against 
high throughput, they are important criteria to be met for 
the design of fractionation protocols in HT-EDA [3]. Skip-
ping the preparation of a recombined sample may be justi-
fied in scenarios where the sample volume is exceptionally 
restricted, such as in biological or human samples. As part 
of these good QA/QC practices, the evaluation of poten-
tial false positives should also be considered. For that, it is 
important to test procedural blanks alongside every sample. 
This allows the assessment and control of false positives 
due to interferences introduced either during the extraction 
process or during the chromatographic separation.

Automation

Another source of HT is automation, which is increasingly 
being integrated into bioanalytical work, for example using 
robotics for tasks such as applying exposure solutions via 
automated liquid handling robots [44]. This type of tech-
nology has only been applied in one HT-EDA work [24], 
although others have emphasized the need for it, especially 
if the workflow is to be extended to large-scale studies [7]. 
Technology in in vivo toxicity pipelines is also progressing 
towards high-throughput capabilities, including automatic 
pipetting, dechorionation and imaging [45, 46], contribut-
ing to bringing certain in vivo bioassays closer to HT-EDA. 

Although the authors describe the procedure as high-
throughput, the midge toxicity test mentioned above did not 
make use of automated pipetting or image analysis-based 
counting technologies [27]. Furthermore, only four samples 
were studied in this study, so the potential of the bioassay in 
the context of HT-EDA has yet to be further demonstrated.

Sensitivity

Sensitivity of the bioassays is an even more critical aspect 
for a successful HT-EDA application. Overall, we observe 
a fine interplay between the number of fractions and the 
sensitivity of the bioassay that needs to be balanced in the 
HT-EDA study design. With increasing number of fractions, 
compounds are potentially eluted into several adjacent frac-
tions, which reduces the concentration in one fraction and 
consequently the biological response. The influence of the 
number of fractions on toxicity can be deduced from three 
studies in which estrogenicity drivers in wastewater efflu-
ents were sought. Hashmi et al. [47] identified two active 
fractions occurring between minutes 14–16 and 28–30 (18 
fractions in total), while Sonavane et al. [48] detected two 
active regions consisting of four and two active fractions, 
within minutes 39–51 and 54–60 (40 fractions of 3 min in 
total), respectively, both employing semi-preparative frac-
tionation. In contrast, for the study with microfractionation 
by Zwart et al. [7], estrogenic activity was detected within 
minutes 11–14 and 15–16.5 with more than 10 fractions in 
each region (288 fractions in total), some identified com-
pounds being the same in all three studies. In the first study, 
the contribution of the risk drivers could be successfully 
explained by constructing the dose–response curves of the 
fractions. In the latter case, even if a quantitative analysis of 
the contribution to toxicity was not sought, due to the large 
number of toxic fractions it would be infeasible to follow 
the same approach. Therefore, the alternative would be to 
use the raw sample as a reference, thus resulting in a biased 
explanation of the toxicity contribution(s) of the identified 
compounds. The width of the chromatographic peak limits 
the maximum resolution that can be obtained in the frac-
tions, so increasing the number of fractions may not be ben-
eficial beyond a certain number. The use of HT-EDA in this 
work undoubtedly reduced the workload, but decreasing the 
number of fractions could have facilitated the identification 
and calculation of the contribution.

The toxicity distribution does not only hinder the contri-
bution quantification, but it can also lead to false negative 
responses and an underestimation of the hazard if the bio-
logical response falls below detection limits. To overcome 
this limitation, the concentration factor of the fractions could 
be increased. Sufficient sensitivity in the bioassay is also 
important to perform HT-EDA studies on some sample types 
where lower contaminant concentrations are expected, such 
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as drinking water [49]. In that sense, most in vivo assays 
might not be sensitive enough and reporter gene assays 
would especially be recommendable due to their higher 
sensitivity. Depending on the potency of the substance, 
some reporter gene assays detect bioequivalents in low ng/L 
ranges [50]. In the analysis of surface waters, Zwart et al. [7] 
found an activity of 0.20 ng DHT eq/L and 0.05 ng E2 eq/L 
for AR-agonism and ER-agonism respectively.

Compatibility with HPTLC‑based HT‑EDA

Although the conventional strategy to address the require-
ments for HT bioassays involves the use of 96- or 384-well 
plates, HPTLC has also emerged as an attractive alternative. 
Despite having lower analyte separation efficiency compared 
to workflows based on HPLC (see the “GC-based separa-
tion” section), HPTLC undoubtedly provides high perfor-
mance. This can greatly assist HT-EDA workflows that seek 
to identify potential toxicity drivers in an exploratory man-
ner. Some of the bioassays we have already referred to can 
be implemented on the surface of TLC plates in a hyphena-
tion technique called bioautography (Fig. 1). Briefly, after 

the application and separation of the sample on the HTPLC 
plate, a biological entity is applied directly on the surface of 
the HPTLC plate. In this way, the sample separation, toxic-
ity assessment, and, even in certain cases, chemical analysis 
can be carried out on the plate. The miniaturization capacity 
is therefore also fulfilled in the HPTLC format, even more 
efficiently. Up to now, a diverse array of planar bioassays 
has been incorporated to HPTLC analysis (see Table SI.2), 
including enzyme activity-based assays, such as the inhi-
bition of acetylcholinesterase [11]; biotests that measure 
physiological responses like the inhibition of biolumines-
cence and microbial growth [51, 52]; and even assays target-
ing specific endpoints such as the inhibition of photosystem 
II [53], genotoxicity [8, 54–56], or agonistic and antago-
nistic activation of (hormonal) nuclear receptors [53, 57, 
58]. Although most HPTLC studies aim to identify toxicity 
drivers in a qualitative manner, the potential of this tool to 
quantify their contribution was also demonstrated by Stütz 
et al. [11], who explained a significant proportion of the 
neurotoxic effect by four main drivers. HPTLC technology 
has also advanced in the direction of high-throughput, espe-
cially with the development of multiple development step 

Fig. 1  Bioautography workflow for HPTLC
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devices (see the “HPTLC-based separation” section) which, 
in addition to optimizing and accelerating the process, offer 
improved reproducibility [59]. Furthermore, a high sensitiv-
ity can be also achieved in HPTLC using specific reporter 
gene assays for detecting genotoxicity or cellular signal 
transduction mediated by nuclear receptors. Results from 
various studies even concluded that the p-YES was as or 
more sensitive than the classic L-YES [60–62]. Similar to 
the HT bioassays using 96- or 384-well plates, these tests 
also require low sample volumes and need short exposure 
periods. For example, Alivibrio fischerii luminescent bac-
teria can be used in direct contact with the HPTLC plate to 
measure metabolic activity and detect cytotoxic compounds 
in as short as 5 min of exposure.

The main practical challenge in HPTLC lies in adjusting 
the optimal conditions for bioautography, which primarily 
involves the compatibility of the stationary phase with the 
biological entity. For example, the pH of the plate can affect 
the cell viability, and the selection of the stationary phase 
can also impact the sensitivity of the assay since the uptake 
of analytes is determined by a partitioning between the 
surface of the plate and the cells. Further information on 
advances in stationary phase materials that are compatible 
with bioassays to improve separation can be found in the 
“GC-based separation” section.

Sample fractionation in HT‑EDA

The progress in high-throughput bioassays mentioned in 
the previous section has influenced the development of new 
fractionation technologies. For instance, to maintain an 
automated workflow, microplate fractionation instruments 
coupled to HPLC have emerged, substantially enhancing the 
efficiency of EDA. Furthermore, separation in HPTLC has 
also significantly improved, and combined with the capability 
of applying certain bioassays on the same plate, has resulted 
in increasingly efficient EDA studies. In both cases, these 
improvements not only speed up EDA protocols and bring 
them closer to monitoring demands, but the narrower fractions 
also allow a reduction in the number of candidates to be 
identified, increasing the chances of success. The following 
subsections will cover the advances in fractionation/separation 
using HPLC and HPTLC implemented in HT-EDA and 
discuss the challenges and remaining needs. Despite its low 
representation in the literature, fractionation after GC will be 
briefly discussed as well.

HPLC‑based HT microfractionation

HT microfractionation presents an alternative to traditional 
fractionation within EDA which typically involved 15–30 
fractions, each lasting 1–3 min. Instead of semi-preparative 

columns that require higher flow rates and thus large vol-
umes, microfractionation uses analytical columns that 
provide improved chromatographic resolution, as well as 
a larger number of fractions in reduced volumes, thereby 
shortening retention time intervals (60–300 fractions, each 
lasting 6–30 s). In HT-EDA, the same analytical column and 
chromatographic conditions can be used for fractionation 
and HPLC-HRMS analysis, allowing a more straightforward 
comparison between the MS chromatogram and the toxico-
gram without the need for up- or down-scaling calculation 
and the associated errors, e.g., retention time shifts and peak 
shape differences [25]. One of the main advantages of this 
approach is that it simplifies EDA workflows notably when 
the aim is to discover toxicants rather than to quantify con-
tributions. For this aim, an initial screening of the toxicity of 
the fractions with the appropriate enrichment factor would 
be sufficient (“Requirements, achievements, and challenges 
for bioanalytical tools in HT-EDA” section) and it may not 
be necessary to perform additional chemical analyses on the 
fractions. Microfractionation also allows for smaller volume 
fractions, leading to reduced injection volumes and sample 
consumption. This is another key reason why smaller sample 
volume is required in HT-EDA, making it more suitable for 
monitoring studies.

In addition, by increasing the separation power due to 
having shorter fractions, this approach also allows a better 
differentiation between endogenous molecules that might 
pose an intrinsic effect on the bioassay, and potential envi-
ronmental pollutants with similar elution patterns. This is 
of great importance when HT-EDA wants to be performed 
in samples with a more complex matrix, such as wastewater 
influent, biota, or human samples. Fractionating by analyti-
cal columns also reduces the solvent consumption due to 
lower mobile phase flow rates. General recommendations 
for chromatographic column choice and separation methods 
(i.e., stationary phase chemistry, column dimensions, gra-
dient condition, etc.) in HT fractionation align with those 
for any NTS workflow dedicated to environmental sample 
analysis [63]. The objective is to attain optimal separation 
performance for a broad spectrum of compounds while 
maintaining short programs for time and cost efficiency, 
making C18 columns the most prevalent choice in HT-EDA 
(see Table SI.1). When investigating highly hydrophilic 
compounds, it may be worth considering alternatives such 
as hydrophilic interaction liquid chromatography (HILIC) or 
mixed mode LC (MMLC) columns, although these have not 
yet been investigated in this particular context.

This high resolution with smaller intervals per fraction 
requires cutting-edge technology capable of rapidly and 
accurately collecting the fractions [5, 25, 64]. Novel sole-
noid valve-based fractionation systems, such as the Frac-
tiomate™ [5], enable the accurate spotting of the sample 
on microplates on a base that moves along the x–y axis, 
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allowing the distribution of fractions according to user pref-
erences. The miniaturization of this key step has allowed 
EDA protocols to fractionate multiple samples on the same 
day compared to the time-consuming multi-day processes 
by semi-preparative fractionation. This is particularly use-
ful in combination with highly sensitive small-scale in vitro 
bioassays (e.g., hormone receptor activation assays) (see 
“Requirements, achievements, and challenges for bioana-
lytical tools in HT-EDA” section). This approach allows 
the desired enrichment factors to be achieved with a single 
injection, and the well plates can then be evaporated and 
reconstituted into the bioassay medium for rapid testing. 
Zwart et al. [17] used a single injection for parallel toxicity 
testing and chemical analysis by splitting the column flow 
between the fraction collector and the MS. Yet, a limitation 
of microfractionation systems like the Fractiomate™ is their 
current inability to facilitate the collection of the recombined 
sample for quality control purposes, as they are exclusively 
designed for microplate fractionation.

In conventional EDA, the use of orthogonal fractiona-
tion is a commonly used strategy to improve the chances of 
success with highly complex samples. In this strategy, the 
analytes are separated by two or more successive or paral-
lel chromatographic columns with highly distinct selectiv-
ity, thus bringing additional dimension(s) to the separation 
(Fig. 2). Although it is a priori opposed to high throughput, 

its potential to facilitate the identification of toxic com-
pounds should be also considered in HT-EDA. In the typical 
scenario, the toxic fraction undergoes a second fractionation 
to further reduce the number of compounds in the fractions. 
The identification of risk drivers is then focused on a reduced 
list of compounds detected after the second step, and further 
filtered by keeping only those detected compounds common 
to both steps. However, implementing this method, known as 
sequential fractionation, in HT-EDA with microplate frac-
tionation poses challenges due to the increased difficulty in 
achieving the necessary enrichment factor for the second 
step. There are two orthogonal fractionation alternatives that 
would be more compatible with HT-EDA. The first is paral-
lel fractionation, where the raw sample is fractionated on 
two columns providing orthogonal separation and compound 
identification is focused on common compounds from the 
toxic fractions of both methods. However, this alternative 
does not allow a second simplification of the toxic fraction-
ation and duplicates the bioassay and fractionation work. 
The second alternative, and the only one explored so far in 
HT-EDA, is online fractionation. In this approach the frac-
tions are collected after the samples pass through two online 
orthogonal columns and fractions are tested only once. In 
Ouyang et al. [65], an LC x LC separation was achieved 
using C18 and PFP columns and fractions collected in 384-
well plates. The orthogonality of this method yielded a high 

Fig. 2  Overview of the different orthogonal fractionation strategies
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chromatographic resolution, coupled with HT fractionation, 
leading to the identification of tiapride, amisulpride, and 
lamotrigine, which entirely explained the observed effects 
of 3 out of 7 fractions (Table SI.1). Although this method 
fits well with HT-EDA and greatly simplifies the matrix, it 
does not allow cross-checking of common compounds from 
sequential or parallel toxic fractions to filter compounds 
as deeply. In general, as with quality control practices, 
these strategies can be explored in HT-EDA, even if they 
reduce performance, as they help to make HT-EDA more 
successful.

HPTLC‑based separation

Thus far, our emphasis has been on studies employing LC/
HPLC for chromatographic separation coupled with post-
column fractionation. In contrast, HPTLC offers separation 
on a two-dimensional surface. Compared to the classical 
TLC, HPTLC plates have lower diffusion of analytes due 
to the significantly smaller particle size of the novel plate 
materials, which results in enhanced detection sensitivity 
and analysis speed. Furthermore, this improvement facili-
tates more efficient application of bioassays, identification 
of narrower toxic regions or spots, and direct elution or des-
orption of analytes, which makes HPTLC a robust choice 
for HT-EDA. By incorporating all these steps on the plate, 
efficient HT-EDA workflows that should be considered for 
large-scale monitoring can be reached, especially when 
the goal is solely the discovery of toxic compounds. When 
appropriate chromatographic conditions are combined with 
compatible bioassays, the use of HPTLC can even transi-
tion from the qualitative screening to identify potential toxic 
compounds to the quantitative analysis of their contribution 
to the total toxicity of the sample [7]. Moreover, technologi-
cal advancements are aiding in enhancing peak capacity in 
HPTLC, reducing the resolution gap compared to HPLC. 
As recapped by Weiss et al. [59], the commercially avail-
able product range for HPTLC hardware/chambers had been 
extended by multiple development step devices (automated 
multiple development, AMD), performing several consecu-
tive plate developments with changing mobile phases [59]. 
The main disadvantage of this method is that it is more 
time-consuming than single step development. In addition, 
the improved peak capacity is wasted if the bioassay used 
increases the diffusion of the analytes, which is often the 
case for bioassays with long exposure times. Thus, bioas-
says with a short exposure time, such as the bioluminescent 
bacteria test, can be usefully combined with AMD, whereas 
other assays, such as the pYAAS, might need fixation of the 
compounds before testing [66].

Currently, stationary phases consisting of spherical silica 
particles, as already established for HPLC approaches, are 
available, promising enhanced performance. In comparison 

to classic TLC silica plates, an improved separation could 
be demonstrated for hormones (estrone, 17β-estradiol, 
5α-dihydrotestosterone, progesterone) on these plates [57] 
and they had successfully been used in acetylcholinester-
ase inhibition bioautography experiments [11, 67]. While 
the first results on the separation performance of plates 
with spherical silica particles seem promising, their influ-
ence on bioassay sensitivity still needs to be investigated in 
more detail since a loss in sensitivity was indicated [68]. 
This could be due to the altered structure of the stationary 
phase hampering the interaction of microbial test organism 
with the surface of the HPTLC plate. As an alternative to 
the classic normal phase separation using a silica matrix, 
C18-modified reversed phase (RP) plates might be used. The 
big advantage of non-polar stationary phases is that due to 
the weak elution strength of water, the performance of the 
aqueous bioassay on the plate surface does not increase the 
diffusion of the analytes. For example, Klingelhöfer et al. 
[52] developed a novel method to detect (anti-)androgenic 
compounds in cosmetics and thermal paper using RP-18W 
plates. Another aspect to consider is the pH of RP HPTLC 
plates which is comparatively low (~ 4.7) [69]. This means 
that preconditioning of the plate is necessary before apply-
ing the assay organisms, as shown for the bioluminescence 
inhibition assay (Aliivibrio fischeri), p-YES or p-YAS [52, 
68, 69].

For reliable identification of compounds within the 
active zone (i.e., the spots of the HPTLC plate where activ-
ity is found), elution-based methods are the most common 
approach for transferring compounds from HPTLC plates to 
MS [11]. Other transfer methods belong to the desorption-
based approaches like MALDI etc. and are reviewed in detail 
elsewhere [70, 71]. The coupling of HPLC to a subsequent 
MS analysis is technically much more advanced compared 
to the MS analysis of HPTLC plates. In this way, the com-
bination of HPTLC with HPLC-HRMS is the best approach 
when seeking an in-depth EDA. EDA workflows, including 
2D-HPTLC followed by HPLC-HRMS, have been used, 
for instance, for the identification of neurotoxic substances 
(acetylcholinesterase inhibition assay) in water samples [11].

Regarding orthogonal separation in HPTLC, two-
dimensional coupling of HPTLC developments has also 
been performed. Initially, the sample is first chromato-
graphically separated along the first axis. In a consecutive 
separation step with another mobile phase, the analytes are 
afterward separated along the perpendicular axis, resulting 
in the orthogonal separation of analytes throughout a two-
dimensional plane. In contrast to orthogonal separation 
in HPLC, where different columns are needed, here two-
dimensional chromatography on one [72] or two HPTLC 
plates [11, 73] can be adapted to EDA workflows. How-
ever, both come with disadvantages as in the first case only 
one sample can be tested per plate while the second case 
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involves an additional sample transfer. After the 2D sepa-
ration, the number of candidate compounds can be greatly 
reduced, as demonstrated by Stütz et al. [11].

All in all, HPTLC-based approaches for EDA can be 
established as high-throughput approaches to be used 
mainly for the exploratory identification of toxicity driv-
ers while they should be further developed for more quan-
titative analysis of toxicity contribution. It remains to be 
demonstrated that these methods work on a larger scale, 
as has been shown so far only in areas such as the routine 
detection of adulterants in milk [74]. Details of recent 
EDA studies using HPTLC, including endpoints, sample 
type, detection method, stationary phase and mobile phase, 
are given in Table SI.2.

GC‑based separation

Despite the obvious challenges associated with using gas 
chromatography for the separation and subsequent collec-
tion of fractions, this method was frequently employed in 
the past, when the focus was primarily on (semi-)volatile 
compounds and LC-HRMS was not available. The main 
methods for collecting fractions included using cold or 
adsorbent traps [75] but more modern techniques imple-
mented the use of solvent infusion after GC column [64, 
76]. The latter was used by Pieke et al. [76] to collect the 
column outcome via a condensation capillary directly into 
96-well plates, allowing a HT microfractionation that was 
the precursor of the Fractiomate™ (see the “HPLC-based 
HT microfractionation” section). This type of technology 
can be coupled to general purpose non-polar columns to 
cover a wide range of chemicals which in turn are recom-
mended for NTS [63]. The main challenge of this strategy 
is the potential loss of the more volatile compounds in the 
fractionation and evaporation stages. For chemical analy-
sis, this can be avoided by separating the effluent from the 
column to the MS detector and the fraction collector, as 
demonstrated in the improvement of the above system by 
Jonker et al. [64]. However, for toxicity analysis, evapora-
tion is mandatory and avoiding these losses is difficult. 
From 2015 to the date of this review, the literature on this 
particular method has been very limited, with only one 
article reporting the application of GC-based EDA to real 
samples [77]. In that work, authors studied the potential 
effects of AhR active compounds adsorbed on microplas-
tics deployed in the Great Barrier Reef, Australia by EDA. 
Although an adaptation of the HT microfractionation sys-
tem mentioned above was used, the fractions were col-
lected in vials, decreasing performance. The results of this 
study suggest that the recoveries from this process should 
be further investigated and optimized.

Identification of the toxicity drivers

From data acquisition until the last step of structure eluci-
dation of risk drivers, HT-EDA data processing workflows 
must comply with the requirements of high-throughput 
while maintaining or even improving the likelihood of 
success. If the advances outlined in the previous sections 
have ensured that an increasing number of samples can 
be fractionated and tested in a short timeframe, the iden-
tification of toxicity drivers must keep pace and not be 
the bottleneck. The main criterion to make an NTS high 
throughput is effective feature and candidate structure pri-
oritization. Unlike NTS workflows for other purposes, in 
(HT-)EDA most of the features detected are irrelevant to 
the end goal, i.e., prioritization of toxicity drivers is key. 
An inappropriate prioritization strategy, among others due 
to a feature list derived from an analytical method lacking 
coverage of the right chemical space (“Instrumental analy-
sis in HT-EDA” section) or due to raw MS data failing to 
meet quality standards (“Suspect and non-target screening 
(NTS) workflows in HT-EDA” section), may in turn lead 
to toxicity drivers being overlooked. Chemical analysis 
and compound identification efforts must find a balance 
between covering the largest detectable chemical space 
while filtering effectively to isolate the smallest number 
of potentially toxic compounds. The following subsec-
tions delve into the analytical methods and NTS work-
flows employed in HT-EDA studies. The discussion covers 
not only potential advancements to enhance performance 
but also to ensure the success of the studies. Finally, we 
review the computational tools based on machine learning 
algorithms for toxicity predictions which hold significant 
potential in the future of HT-EDA.

Instrumental analysis in HT‑EDA

Identification of active compounds in HT-EDA studies 
mainly relies on liquid chromatography-mass spectrometry 
(LC–MS). In fact, HPLC-HRMS was used to identify toxic 
compounds in all the studies reviewed that used micro-
fractionation. All but two were carried out on aqueous 
samples, so the range of compounds expected is suited to 
this technique. In one of the exceptions, microfractiona-
tion was used to analyze sediment samples with a focus 
on PFAS, but HPLC-HRMS is typically preferred for the 
analysis of this family of compounds also in non-aqueous 
matrices [78]. Common to almost all HT-EDA studies is 
the use of electrospray ionization (ESI) as the ionization 
source. ESI has the broadest coverage of the chemical 
space compared to other soft ionization techniques, such 
as atmospheric pressure chemical ionization (APCI) and 



Progress, applications, and challenges in high‑throughput effect‑directed analysis for…

atmospheric pressure photoionization (APPI), covering 
polar to semi-polar compounds. For this reason, ESI is 
often the first choice for the analysis of organic contami-
nants in water. However, studies showed the benefit of 
using multiple ionization modes (mainly ESI and APCI) 
to increase the coverage of compound classes [79–81]. 
One HT-EDA study used complementary ESI and APCI 
to analyze estrogenic compounds in consumer electronics 
plastics. In this study, BPA, a BPA-analogue, and 2,4-di-
tert-butylphenol were identified as the main potential 
toxicity drivers [82]. However, all were detected in both 
ionization modes, so APCI was used as a second confirma-
tion of identification rather than to detect new compounds. 
Because of the duplication of effort in data evaluation, it 
is more advisable to use complementary ionization tech-
niques in a stepwise fashion, unless the objective of the 
study requires otherwise. For instance, if the aim is to 
quantify contributions and this is not accomplished using 
compounds identified by ESI, attempting APCI may be 
recommended.

GC–MS analysis has been most commonly used in 
conventional EDA studies for sediment samples and for 
endpoints such as aryl hydrocarbon receptor activity, 
where the expected active compounds are semi-volatile 
(Table SI.1). In addition to the type of samples investigated 
so far in HT-EDA, another reason why GC–MS analysis 
has not yet been implemented is the significant gap in NTS 
workflows compared to LC. In GC–MS, electron impact (EI) 
ionization (typically 70 eV) is the most common technique 
for non-polar chemicals, where the ion form of the intact 
molecule is rarely preserved. This brings challenges to the 
identification of certain classes of compounds where the 
MS and the MS/MS spectra are unspecific. Soft ionization 
can also be achieved in GC–MS by using low-energy EI, 
APCI or APPI as the ionization source. Since the peak of the 
molecular ion will be preserved, NTS workflows developed 
in LC-HRMS can be adapted for GC-APCI-HRMS data. 
Additionally, the GC retention index library can also be 
used with APCI measurements, which brings further 
confidence in the identification [83]. GC-APCI-HRMS 
might therefore be a potential tool to consider in the design 
of HT-EDA workflows for the identification of novel semi-
volatile hydrophobic contaminants in sediments and other 
environmental matrices beyond water.

Similarly, ion mobility spectrometry (IMS) is another 
state-of-the-art technique that has not yet been investigated 
in HT-EDA but has significant potential to assist in the iden-
tification and prioritization of compounds in NTS. Briefly, 
in IMS, ions are subjected to an applied electric field and 
experience collisions with the gas molecules, leading to 
a change of velocity influenced by their size, shape, and 
charge. Therefore, an additional dimension of separation is 
added to chromatography, MS, and MS/MS for compound 

identification. IMS has the ability to filter interferences if 
co-eluting compounds have different drift times in the IM 
dimension. These drift times can be converted into cross 
collision sections (CCS) for each compound, a value that is 
independent of chromatographic conditions and unaffected 
by matrix effects. CCS can be used in compound identifica-
tion as an additional physico-chemical property to aid iden-
tification in a similar way to retention time. This was demon-
strated in studies by Menger et al. [84] for biota samples and 
by Celma et al. [85] for environmental water samples were 
data-independent data acquisition approaches were used.

Suspect and non‑target screening (NTS) workflows 
in HT‑EDA

Environmental monitoring efforts have increasingly shifted 
from the analysis of a targeted, yet limited, set of known 
contaminants towards the use of broad screening methods 
allowing the simultaneous detection of hundreds to thou-
sands of signals in a single analysis [14]. This shift has been 
facilitated by advancements in high-resolution mass spec-
trometry (HRMS) and associated NTS workflows. None-
theless, it has been estimated that less than 5% of the NTS 
features measured in environmental and biological samples 
are commonly identified by a combination of target, suspect, 
and non-target in silico identification efforts [86]. Effective 
prioritization strategies are essential due to the large num-
ber of features detected and the extensive efforts required to 
elucidate their structure [63]. Moreover, depending on the 
context and research question, not all detected features hold 
the same significance [87]. In this regard, (HT-)EDA plays 
a crucial role by directing the identification only towards 
compounds eliciting relevant biological effects [25, 88]. 
Although substantially reduced, the number of features per 
fraction requiring investigation to explain observed effects 
can still reach several hundred or more, depending on the 
type of matrix, considered endpoint, and total number of 
active fractions [33, 41, 89]. Therefore, if a feature is not 
prioritized, or identified, we are blind to its toxic potential 
in (HT-)EDA, which can partially explain why only a small 
part of overall mixture toxicity is sometimes elucidated [90]. 
Therefore, workflows used to process NTS data for (HT-)
EDA applications must be optimized to facilitate the prior-
itization and eventual identification of relevant features in 
active fractions.

After the acquisition, data from (HT-)EDA studies typi-
cally undergo (pre-)processing through workflows involving 
multiple steps also used in conventional NTS applications 
(e.g., data conversion, centroiding, compression, feature 
detection, componentization, and alignment over samples) 
[25]. Outputs, which are generally presented in the form of 
feature tables, require further verification using a combina-
tion of QA/QC, internal standards (IS), and blank samples. 
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However, in (HT-)EDA applications, the use of IS is often 
limited given that these compounds might also induce 
effects in the bioassays [91], unless two different aliquots 
(with and without IS) are fractionated for chemical analysis 
and biotesting, respectively [19]. Furthermore, care must 
be taken to ensure that bioassay and MS chromatogram 
profiles are properly aligned to minimize errors in associ-
ating features to specific fractions [25]. Recently, several 
approaches have been proposed to facilitate and expedite 
the annotation, prioritization, and eventual identification of 
features detected in EDA studies. For example, employing 
specific suspect lists and spectral libraries containing infor-
mation about compounds known to be (potentially) active on 
specific endpoints could help diminish the number of false 
positives and enable the elucidation of relevant suspected 
compounds [42, 92]. The NORMAN suspect list exchange 
(NORMAN SLE) currently comprises 111 suspect lists [93]. 
These lists include various endpoint-specific suspect lists, 
such as human neurotoxins, algal, and phytotoxins [94–96]. 
While suspect lists are a valuable tool for identifying and 
annotating known contaminants, they do not contain all 
compounds potentially present, and therefore, the risk of 
overlooking potentially relevant chemicals remains. This can 
hinder the discovery of new biologically active chemicals.

To overcome these limitations and allow for the detec-
tion and identification of novel unknown chemicals, several 
approaches have been proposed to tackle the large number of 
features present when working in non-targeted mode. These 
strategies can be divided into those that facilitate structure 
elucidation and annotation of long feature lists, and those 
that prioritize and filter both feature lists and candidate 
structures for each feature, according to the objective of 
the study. While some of them have already been employed 
in HT-EDA, others with significant potential remain unex-
plored and will be discussed here as well. A commonly 
employed method in NTS for identifying the structure of 
features of interest in the absence of matches with spectral 
libraries or mass lists is the use of in silico prediction tools, 
such as MetFrag [97], SIRIUS [98], or CFM-ID [99]. While 
the exact principles for the generation of the predicted spec-
tra vary depending on the technique (rule-based, machine 
learning-based, or combinatorial), their general operational 
principle is the same: to retrieve MS and MS/MS data, 
predict the molecular formula, and tentatively identify the 
molecular structure by comparing the experimental and the 
in silico generated molecular fingerprints or fragmenta-
tion patterns based on entries in chemical repositories. For 
instance, MetFrag was implemented in the HT-EDA data 
processing workflow by Jonkers et al., [25] to enhance the 
high-throughput identification of contaminants.

The structural elucidation of features mentioned above 
is usually applied to feature lists that have been previously 
filtered using the prioritization tools that fit the objective of 

the study. Furthermore, as the number of potential candi-
dates for each feature may vary, some tools can also be used 
to filter between candidates. In the same example as above 
by Jonkers et al., and others in (HT-)EDA [7, 32] retention 
time prediction was used as a post-processing tool to further 
reduce the number of possible candidate structures for pri-
oritized features. Another MS2-based approach that could 
be particularly useful for the processing of HT-EDA/NTS 
data are so-called molecular networks [100]. They allow 
for the visualization of related features based on similarities 
in their MS2 spectra and are one of the main data analy-
sis approaches used in the Global Natural Products Social 
Molecular Networking (GNPS) database [101]. Molecular 
networks can aid in the prioritization and identification of 
unknown potentially bioactive compounds in HT-EDA by 
visualizing their structural similarities with other known 
chemicals present in the same sample or fraction. Similar 
to RT, CCS prediction tools can also help to narrow down 
the list of candidates in each feature when IMS is used. This 
was demonstrated in the study by [102], where it was shown 
that the CCS prediction error was less than 6% for 95% of 
the compounds. Several machine learning prediction tools 
have emerged for that purpose [102–104]. Alternatively, an 
interesting approach for feature prioritization involves the 
use of multivariate statistics, such as partial least squares 
(PLS), which is occasionally referred to as virtual (v)EDA 
[105]. These methods prioritize features of interest by 
detecting particular patterns (e.g., temporal or spatial) within 
(unfractionated) bioassay data and linking them to analo-
gous patterns in feature intensities [106, 107]. While these 
approaches require adequate and representative sampling, as 
well as sufficient variability in activity between samples to 
derive significant statistics, they are generally applied in an 
untargeted manner, allowing the prioritization of previously 
unknown features. In the large-scale scenarios targeted by 
HT-EDA, meeting this requirement should not be an issue 
so this strategy could prove especially beneficial. To further 
reduce the number of features in EDA/NTS, prioritization 
based on the presence of specific fragment ions can be an 
effective approach. For example, Loewenthal et al. [108] 
recently showcased how organophosphorus acetylcholinest-
erase inhibitors could be prioritized in HT-EDA by identify-
ing indicative fragmentation ions. Prioritization techniques 
based on toxicity prediction from candidate structures or 
fragmentation spectra are covered in detail in the “Support-
ing tools for toxicity driver prioritization” section.

The efficiency of some of the approaches mentioned 
above strongly depends on the quality of MS2 data used 
as input to predict structures, perform library searches, or 
visualize structurally related compounds. Intelligent MS2 
acquisition workflows have been recently developed by 
vendors precisely to enhance the spectrum quality, such as 
AcquireX in orbitrap systems from Thermo and Iterative 
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MS2 on Agilent. In these workflows, a first full MS analysis 
is used to build the m/z inclusion list and exclusion lists 
from the sample and blank, respectively. These lists are then 
used in a second run to trigger the MS2 acquisition in the 
data-dependent-MS2 acquisition. Post-acquisition, triggered 
features are moved to the exclusion list, and the process is 
iteratively and automatically repeated until the MS2 acquisi-
tion of all features in the sample is achieved [63]. In addi-
tion, recently developed machine learning-based models to 
automatically assess the quality of MS2 spectra [109] could 
further improve the performances of the abovementioned 
tools for both prioritization and identification of relevant 
features detected in an HT-EDA study. Models that allow 
for the semi-quantification of suspects [110, 111] or even 
unknowns (based on their MS2 spectrum) [112] based on 
ionization efficiency and without the need for correspond-
ing reference standards have gained significant attention in 
the NTS community. Although their application in the field 
of HT-EDA has not yet been thoroughly explored, semi-
quantification approaches could be particularly useful to 
prioritize features based on risk [113] or to estimate their 
contribution to the observed effect. Semi-quantification tools 
could be of particular interest in HT-EDA studies that aim to 
quantify the individual contributions to the sample toxicity. 
Until now, these studies could only consider compounds for 
which a reference standard was available, which severely 
limited the possibilities. The introduction of these tools, 
and in particular the toxicity prediction tools listed in the 
following section, could completely change the HT-EDA 
landscape and also bring the unknowns into the contribution 
calculations.

Supporting tools for toxicity driver prioritization

The aforementioned prioritization strategies based on ana-
lytical and statistical approaches help us to reduce the list 
of features for identification efforts, but they do not provide 
information about the features’ toxicological importance. 
Computational toxicology methods are based on the obser-
vation that resembling chemicals often have similar prop-
erties and cause analogous toxic effects. We can thus use 
machine learning to teach algorithms to entangle complex 
patterns in structural data leading to toxic behavior and use 
the developed models to predict the toxicity of new com-
pounds. These approaches can be used to prioritize can-
didates in (HT-)EDA studies where several candidates are 
detected in the toxic fractions. Examples of utilization of 
various in silico tools to support feature prioritization in 
the context of EDA include the works of Gwak et al. and 
Cha et al., [18, 114, 115]. These studies utilized QSAR-
based toxicity prediction to prioritize the elucidated can-
didate structures. In the former case, VirtualToxLab [116] 
and VEGA QSAR [117] were used to confirm the binding 

affinity of the candidates with AhR. Similarly, Cha et al. 
[114, 115] extended the endpoints addressed to confirm 
AhR, ER, and GR binding affinity using the same tools. 
Besides these two tools, both in vivo and in vitro toxicity 
data have been used as target data for the modelling of a 
wide range of tools yet unexplored in (HT-)EDA. From the 
environmental point of view, aquatic toxicity [118, 119], 
mutagenicity [120], and the Tox21 data endpoints [121], 
in particular endpoints expressing endocrine disruption 
[122–124] are the most commonly predicted toxic outcomes. 
MLTox [118, 125], deepFPlearn [126, 127], and TrendProbe 
[128] are of particular interest and hold significant potential 
for HT-EDA implementation as they were developed for 
environmental applications.

The structural input to train these models is often obtained 
from common databases such as CompTox Chemistry 
Dashboard [129]. However, these structures are not used 
directly as input but; instead, after rigorous cleanup [130, 
131], they are converted into mathematical representations of 
molecules as fingerprints (binary strings of 0/1 s-containing 
bits indicating a particular substructure’s presence or 
absence) or molecular descriptors [132]. This also brings 
with it a major challenge, which is the high dimensionality 
of the input features (i.e., number of bits in molecular 
fingerprints, often several thousand) [133–135] that can slow 
down the data evaluation. Another challenge is that not all 
models are trained covering an adequate distribution of the 
chemical applicability domain. Some are trained on a specific 
chemical space and are used as universal conveyor belts for 
predictions of a broad spectrum of chemical structures, 
leading to biased results. Beyond these technical challenges, 
another drawback of this approach for implementation in 
HT-EDA is that they require an elucidated structure, so they 
can only be applied towards the end of the NTS to prioritize 
candidates within each feature.

Thus, an additional shortcut that can filter these exten-
sive feature lists is required to address the implementa-
tion of HT-EDA in large-scale scenarios. The models 
mentioned above require the structure to generate these 
fingerprints, which are then used to predict toxicity. How-
ever, this is not the only way to obtain these fingerprints. 
Recent advances such as CSI:FingerID (integrated into 
SIRIUS) [98] allow molecular fingerprints to be gener-
ated from fractionation spectra. On that basis, two cor-
responding approaches were proposed in parallel by Peets 
et al. (MS2Tox) [136] and Arturi and Hollender (MLin-
vitroTox) [137] for predicting the toxicity of unidenti-
fied features based on the molecular fingerprints derived 
from MS/MS spectra instead of structures. As elucida-
tion of unknown compounds’ structure is still the major 
bottleneck of all approaches utilizing in silico annotation 
tools, circumventing this step is expected to significantly 
streamline the data processing (Fig. 3). Exactly for this 
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reason, this strategy aligns well with what is sought in 
HT-EDA, as it prevents wasting efforts on elucidating 
structures of features that are not relevant to the endpoint 
of interest. MLinvitroTox used in vitro HTS ToxCast and 
Tox21 data for training of supervised classifiers predict-
ing a 1/0 binary hit call (toxic/nontoxic) for 500 + end-
points covering a broad spectrum of molecular toxicity 
endpoints such as AR, ER, PR (androgen, estrogen, and 
progesterone endocrine receptors, respectively), AChR 
(acetylcholine receptor and neurotransmitter), p53 (tumor 
suppressor), AhR (aryl hydrocarbon receptor responsible 
for cell metabolism), OSR (oxidative stress response), and 
IR (inflammatory response). This tool covers most of the 
endpoints addressed so far in HT-EDA studies. MS2Tox 
used also in vivo aquatic toxicity data and is able to pre-
dict LC50 of chemicals in, e.g., fish, via regression. Both 
approaches selected the XGBoost (extreme gradient boost-
ing) ML algorithm for training the models. The validation 
results have demonstrated that while both methods have 
limitations (e.g., only features with MS/MS spectra can 
be considered) and are associated with uncertainty, they 
can effectively guide the NTS towards toxicologically rel-
evant outcomes. Both tools enable a fully unsupervised 
and unbiased (by signal strength, the content of used data-
bases, or what was identifiable) assessment of the whole 
detected space based on the toxicological relevance of the 
single features. The features predicted to be potentially 

toxic still have to be identified and verified, but as the 
number of potentially toxic compounds is 10–100 times 
smaller than the number of input signals, the analytical 
efforts can be minimized and concentrated on relevant 
toxicity drivers. While using the MS2Tox and MLinvitro-
Tox outcomes for quantitative assessments is generally not 
recommended due to significant uncertainties from each 
modelling step, both can be applied for a stand-alone haz-
ard-driven prioritization of unidentified compounds or in 
support of the traditional prioritization approaches based 
on signal intensity, frequency, or relevant trends in the 
data. These methods align well and could streamline HT-
EDA studies focused on qualitatively identifying toxicity 
drivers.

In all of the above-mentioned approaches, feature priori-
zation is performed post-acquisition using descriptors that 
refer to the presence of certain substructures or functional 
groups in the molecule. However, the structures most closely 
related to certain endpoints, many of which are well known 
and collected in databases such as ToxPrint [138], can be 
prioritized from data acquisition as well. An example of this 
on the fly structural alert search was carried out by Meekel 
et al. [139], to study their presence and prioritize potential 
toxicants from data acquisition. Integrating these toxicant 
prioritization strategies in both acquisition and NTS can 
facilitate the development of tailored endpoint-specific HT-
EDA workflows that fulfil large-scale monitoring needs.

Fig. 3  Landscape of toxicity driver prioritization and identification. 
The green zone shows the traditional analytical path via identifica-
tion, toxicity assessment, and mapping to the original effects. The red 

zone shows the recently developed approach prioritizing the toxicity 
drivers via ML models based on the MS/MS spectra of the measured 
features, followed by the identification of the relevant candidates
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Final recommendations and conclusions

The recent incorporation of effect-based methods into the 
regulatory framework of the WFD shows that the potential 
of bioanalytical tools for monitoring contaminants and 
assessing risks has been recognized, particularly in water 
bodies [140]. Currently, this recognition is limited to 
the use of specific bioassays to evaluate the presence of 
estrogenic hormones in water bodies, with the prospect 
of establishing effect-based trigger values in the future. 
If this implementation starts to be extended to a wider 
range of endpoints, it will lead us to question what are 
the factors responsible for exceeding such levels, so 
EDA can become a useful tool to complement these 
monitoring methods in regulations. However, a strategy 
as time- and work-consuming as conventional EDA is less 
suitable for aligning with regulatory demands. HT-EDA 
contributes towards eliminating this bottleneck while 
ensuring successful identification of the toxicity drivers, 
and thereby supporting the prioritization of chemicals for 
regulatory bodies.

Regarding bioassays, HT-EDA benefits greatly from the 
use of downscaled specific bioassays, that not only present 
very high sensitivity, but are also more compatible with 
toxicity prediction models to prioritize compounds in the 
NTS (so far mainly used for EDCs, but with ongoing progress 
for others such as mutagenicity or neurotoxicity). Similar to 
what has occurred with effect-based methods, if HT-EDA 
protocols for identifying toxicity drivers are eventually 
implemented in major regulations, it will likely begin with 
these endpoints. However, if HT-EDA aims to identify risk 
drivers in large-scale monitoring applications, focusing 
on just one endpoint might be wasteful. Therefore, two 
main short-term goals of HT-EDA should be to implement 
bioassay batteries to cover several specific endpoints, while 
bringing above-mentioned high-throughput in vivo bioassays 
into HT-EDA. The suggested endpoint coverage for effect-
based methods, which depends on the sample type, is 
similarly applicable to HT-EDA. For instance, in wastewater 
monitoring, a recommended bioassay battery includes acute 
bacterial (Microtox), algal growth inhibition, estrogenic 
activity, glucocorticoid activity, xenobiotic metabolism 
(AhR and PXR), and genotoxicity assays [141, 142]. Studies 
by Zwart et al. and Houtman et al. [6, 17, 23], show the 
feasibility of using bioassay batteries in HT-EDA using those 
with the highest specificity among these recommendations. 
Yet, as emphasized in “Requirements, achievements, and 
challenges for bioanalytical tools in HT-EDA” section, 
toxicity assessment should not be limited to these and should 
be open to novel approaches.

In each of the sections above, we have compiled and 
discussed novel tools that can aid in designing HT-EDA 

studies and ease the identification of toxicity drivers. 
However, applying them wisely is important to avoid 
unnecessary efforts. Thus, unless the sample type or the 
studied endpoint suggests otherwise, it is optimal to start 
with conditions covering the broadest range of compounds 
possible. For most cases, especially in aqueous samples, 
this involves using C18 RP columns for separation and ESI 
(+ and -) as the ionization technique. From this starting point, 
the first question to ask is whether, after analyzing toxic 
fractions, the feature list is sufficiently manageable to make 
the direct identification of toxicity drivers feasible without 
further prioritization (Fig. 4). Identifying some alleged 
toxicity drivers before prioritization might be possible for 
some specific endocrine disruption endpoints (e.g., finding 
testosterone, estrone, or other well-known androgenic or 
estrogenic compounds, respectively). However, this is 
uncommon for non-endocrine disruption endpoints, even 
if the separation resolution is high. If needed, in silico 
prioritization requires less effort (compared to applying 
orthogonal separation), making it advisable to consider it 
as the first option. Ideally, using an in vitro bioassay with 
a specific endpoint, toxicity-based prioritization would be 
the best choice, whether applied directly to features (the 
fastest option), to candidate structures, or both. Regardless 
of the prioritization method, a curated feature list will be 
obtained, with compounds identified at various confidence 
levels for which toxicity must be verified. If prioritization 
tools do not narrow down the list or the prioritized features 
do not explain the activity of the toxic fractions, two possible 
approaches can be explored: using orthogonal separation 
as an experimental prioritization technique or exploring 
complementary ionization techniques. Prioritization by 
experimental techniques such as orthogonal separation is 
less biased towards known-like structures, so may increase 
the chances of success if the risk drivers are novel toxicants. 
The second option would be preferable when we suspect 
potentially active compounds for the selected endpoint may 
have been overlooked under the previous conditions. When 
these tools cannot resolve sample toxicity, two options must 
be considered: either the compounds are not detectable in 
the method, or the mixture effects are responsible for toxicity 
rather than individual compounds. The latter is less likely 
with microfractionation, as narrower RT intervals result in 
having fewer features. Therefore, considering an alternative 
ionization source (such as APCI) could help expand the 
detectable chemical space and identify the responsible 
compounds. Still, no matter the chosen fractionation method, 
mixture effects should be checked by biotesting the mixture 
of identified compounds at the quantified concentrations if 
possible.

Although one of the aims of this review is to facilitate 
the implementation of HT-EDA in monitoring studies, it is 
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important to be mindful of the associated costs and to use 
the approach smartly. Compared to conventional monitor-
ing tools, whether chemical or toxicological, the use of HT-
EDA involves more analytical or bioanalytical runs, greater 
material usage and more time due to demanding compound 
identification workflows. This directly results in higher 
costs, making it essential to apply HT-EDA only when truly 
necessary. Using HT-EDA on samples that show no activity 
in initial screenings, or whose activity can be explained by 
a few target compounds, is a misuse of resources. Therefore, 
it is advisable first to confirm that the activity of the sample 
is of concern (e.g., by comparing it with effect-based trig-
ger values) and then check if the compounds found by the 
available targeted analysis can explain the biological activity 
of the sample.

Until now, the challenge in effect-based methods, 
specifically in (HT-)EDA, has centered around handling 
unknowns. The understanding of toxicity contribution has 
been limited to quantifiable and experimentally testable 
compounds, representing merely the tip of the iceberg. 
However, significant progress has been made, supported by 
the tools introduced in previous sections. Advancements in 
semi-quantification methods are progressing, and toxicity 
prediction tools are expanding to cover a growing number of 
endpoints and delivering predictions in the form of ECx or 

PNEC values. This implies that if our unknowns fall within 
the chemical space covered by the analytical technique and the 
application domain of the model, their contribution to total 
toxicity can be predicted. These predictions involve a higher 
degree of uncertainty, needing cautious use and, importantly, 
not replacing experimental assessment since bioanalytical 
tools are still the only way to realistically capture the toxicity 
of the whole iceberg. Whenever possible, uncertainty in the 
quantification and assessment of toxicity should be reported 
and extrapolated to the contribution. Besides broadening the 
scope of EDA by enabling semi-quantification of unknown 
contributions, these tools also provide additional evidence 
of candidate toxicity if HT-EDA is applied in an explorative 
manner.

Currently, all compounds contributing to toxicity move 
in a similar range of uncertainty in experimental measure-
ments, but with the implementation of these new approaches, 
it may be necessary to distinguish the confidence with which 
the contribution is reported. To avoid misunderstandings 
and to seek a consensus that has worked well in other cases 
[143], we propose that future studies using these tools should 
classify contributing compounds into three levels (Fig. 4):

• High confidence level: Compounds that have been exper-
imentally quantified and tested with reference standards.

Fig. 4  Recommended workflow scheme for toxicity driver identification in HT-EDA. The suggested confidence levels for toxicity contribution 
annotation are shown on the left
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• Moderate confidence level: Compounds that have been 
experimentally quantified with a reference standard but 
no experimental toxicity information is available, i.e., 
toxicity is predicted. The opposite case could also be 
considered at this level, but it is much less likely for 
practical reasons.

• Low confidence level: Compounds for which a semi-
quantification without a reference standard is carried 
out and for which toxicity is predicted.

Certainly, there are numerous challenges to overcome 
before we can make HT-EDA a readily approachable and 
widespread tool. However, the innovations discussed 
throughout this review indicate that HT-EDA is on the 
right track to achieve this goal. In vitro bioassays with 
a specific endpoint are already well implemented in 
HT-EDA, performing robustly and seamlessly integrated 
with the new fractionation tools that reduce manual 
workload. In addition, the numerous computational 
tools that are emerging to facilitate the identification 
of toxicity drivers are creating new opportunities, 
but their value in HT-EDA applications remains to be 
proven. NTS is progressively gaining recognition in the 
analysis of environmental samples, and although there 
is still considerable ground to cover, the unknowns 
are becoming better known. With the support of the 
enhancements and implementations of computational 
tools, the toxicity of unknowns has started to unravel, 
marking also a significant turning point in (HT-)EDA. 
While establishing well-defined workflows for various 
environmentally relevant endpoints using receptor-
based assays is a key focus of HT-EDA, it should not 
be limited to them. Other relevant endpoints should 
also be considered, for instance, by leveraging new 
approach methods (NAMs). The demonstrated potential 
of EDA to unravel toxicity drivers in complex mixtures 
is significant. However, the labor-intensive workload and 
uncertain success rates of traditional EDA have raised 
doubts about its scalability for large-scale applications. 
Recent advances and the range of tools in development 
are signalling a shift in this perception. No longer limited 
to isolated cases, HT-EDA must embrace these new 
computational and technological developments and get 
ready for monitoring applications.
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