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Abstract
Single-cell multiomics technologies empower simultaneous measurement of multiple types of molecules within individual 
cells, providing a more profound comprehension compared with the analysis of discrete molecular layers from different cells. 
Microfluidic technology, on the other hand, has emerged as a pivotal facilitator for high-throughput single-cell analysis, 
offering precise control and manipulation of individual cells. The primary focus of this review encompasses an appraisal 
of cutting-edge microfluidic platforms employed in the realm of single-cell multiomics analysis. Furthermore, it discusses 
technological advancements in various single-cell omics such as genomics, transcriptomics, epigenomics, and proteomics, 
with their perspective applications. Finally, it provides future prospects of these integrated single-cell multiomics method-
ologies, shedding light on the possibilities for future biological research.
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Introduction

As the essential structure of living organisms, cells have been 
primarily studied in bulk population in the past decades. How-
ever, given the inherent cell heterogeneity, even the cells with the 
same cellular history can exhibit differences in physical charac-
teristics, chemical compositions, as well as biological activities, 
which can be masked by traditional bulk analysis [1, 2]. Moreo-
ver, the hidden variations among cells are prominent especially 
for understanding the mechanism underlying diseases, such as 
the initiation and progression of cancers. For this reason, single-
cell technologies have emerged to uncover the heterogeneity 

underlying different cells. Specifically, single-cell sequencing 
technologies have been increasingly developed for the observa-
tion of multilayered information ranging from transcriptomic, 
genomic to epigenomic, and proteomic heterogeneity of indi-
vidual cells [3–5].

While characterization of single modality within indi-
vidual cells is valuable, it may not capture the whole pic-
ture of cellular modalities. To overcome this limitation, it 
is important to integrate multiple modalities and consider 
the interactions between different cells within a system 
[6–8]. Single-cell multiomics analysis has revolutionized 
our ability to investigate the complex biological system at 
an unprecedented level of resolution. By integrating data 
from different modalities, such as transcriptomics, genom-
ics, epigenomics, and proteomics, researchers can obtain a 
comprehensive understanding of molecular profiles within 
individual cells and unravel previously inaccessible molecu-
lar intricacies potentially [9, 10].

Microfluidic technology, which allows for precise manip-
ulation, control, and analysis of small volumes of fluids at 
the microscale level, has emerged as a highly efficient and 
versatile tool for single-cell analysis [11]. With the merits 
of minimalization, integration, automation, low reagent con-
sumption, and high throughput, microfluidics has boosted 
the analysis of single-cell multiomics [12, 13]. For instance, 
using a specially designed microfluidic chip, single cells 
can be isolated individually in micro-scaled compartments, 
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followed by the subsequent cell lysis and chemical reactions. 
Independent chambers eliminate the possible contamination 
from other cells, thereby improving the accuracy of single-
cell analysis. Moreover, the picoliter-to-microliter reaction 
volume can significantly enhance the reaction efficiency and 
shorten the analytical time. Furthermore, microfluidics offers 
precise control over the surrounding microenvironment of 
single cells, enabling the study of cell behavior under con-
trolled conditions with high throughput. Overall, microflu-
idic technology has revolutionized single-cell analysis by 
offering improved control, throughput, and integration.

In this review, we outline various state-of-the-art microflu-
idic platforms employed in single-cell analysis, encompassing 
droplets, valves, microwells, and digital microfluidics (DMF) 
(Fig. 1). Moreover, we expound on different layers of omics, 
with a primary focus on transcriptome, genome, proteome, 
etc. Notably, we undertake a comparative analysis of these 
approaches, examining their respective merits and demerits. 
Finally, we discuss the challenges and provide a visionary out-
look for the future of microfluidic-based single-cell multiomics 
analysis.

Typical microfluidic platforms 
and commercial microfluidic devices 
for single‑cell analysis

The implementation of microfluidics in single-cell multiom-
ics analysis presents a groundbreaking opportunity to intri-
cately manipulate target cells and acquire multiomics data 
from individual cells with high sensitivity and resolution. 

Microfluidic devices can process a large number of individ-
ual cells in parallel, improving the throughput of single-cell 
multiomics analysis. Moreover, microfluidic platforms can 
be designed to integrate different omics assays, which allows 
researchers to obtain a comprehensive view of a cell’s molecu-
lar profile in a high-throughput manner. Microfluidic devices 
can be adapted for dynamic and temporal studies, enabling 
researchers to track changes in a cell’s multiomics profile over 
time or under various conditions. Typically, different types 
of microfluidic-based platforms display varied throughput 
including low (less than one hundred), median (hundreds to 
thousands), and high (more than thousands). The required 
number of cells depends on the complexity of samples. Usu-
ally, the suggested number increases with the heterogeneity 
of samples [14]. High-throughput methods are suitable for 
atlas construction where large numbers of heterogeneous 
cells are required. On the contrary, low-throughput strategies 
find their applications especially in the cases where in-depth 
and high coverage analysis is necessary [15]. Overall, these 
cutting-edge approaches possess the potential to revolutionize 
our understanding of cell biology and diseases. While vari-
ous types of microfluidic-based devices have been extensively 
covered in previous reviews [11–13], this overview will pro-
vide a concise introduction to these platforms.

Droplet‑based

Droplet-based microfluidic technologies have gained 
immense popularity due to the merits of high throughput 
and high speed [16–18]. Numerous droplets, typically in 

Fig. 1   Schematic diagram of single-cell multiomics characterization empowered by microfluidics
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the range of picoliters to microliters, can be generated as 
independent compartments by carrier oil, which enables 
the processing of thousands to millions of cells. More 
importantly, these droplets can be precisely controlled 
and subjected to subsequent manipulation such as merg-
ing, heating sorting, and storage, facilitating on-chip sin-
gle-cell analysis such as fluorescence-based profiling of 
cells. Drop-seq [17] and InDrops [18] were back-to-back 
pioneering work for droplet-based scRNA-seq (Fig. 2A). 
These techniques have found great suitability in various 
applications, including single-cell drug discovery and 
high-throughput screening. However, to eliminate the 
potential for cell doublet formation, large numbers of 
samples are required to be diluted, leading to limited cell 
availability. Thus, this strategy is less suitable for trace 
samples.

Valve‑based

Valve-based microfluidics is a technique that utilizes valves 
to regulate the movement of fluids within microchannels. 
These valves are commonly made of soft materials such as 
polydimethylsiloxane (PDMS) and can be controlled using 
various methods such as pneumatic pressure or electrostatic 
forces. By controlling the movement of individual cells 
through a series of processing steps, valve-based microflu-
idics enables the isolation, lysis, and library preparation of 
single cells with exceptional precision [19–22]. For instance, 
Paired-seq was developed for precise pairing of single cell 
and single barcode bead, enabling highly efficient scRNA-
seq (Fig. 2B) [19]. With their exceptional ability to precisely 
control the fluid flow and execute complex fluidic opera-
tions, valve-based microfluidic platforms are well-suited 
for integrated single-cell analysis that necessitate precise 
manipulation of diverse analytes, especially the identifi-
cation of rare cell populations. But valve-based platforms 
face limitations related to its complexity and cost. And the 
throughput (usually hundreds to thousands of cells) is lower 
compared with droplet-based methods.

Microwell‑based

Microwell-based devices are a class of prevailing micro-
fluidic platforms that feature an array of interconnected 
micro-wells or micro-chambers. These platforms facilitate 
the distribution and manipulation of cells, particles, or 
other small targets, allowing for parallel analysis [23–27]. 
Compared with other microfluidic technologies, microw-
ell-based platforms are easy to handle because cells can 
be seeded based on gravity without the need for addi-
tional instruments. Typically, Well-Paired-Seq leveraged 

a dual-layer microwell structure to ensure highly efficient 
pairing of single cell and single barcode bead based on 
size-exclusion principle (Fig. 2C) [26]. By adjusting the 
size and design of the microwells, researchers can con-
trol the number and distribution of cells, enabling high-
throughput single-cell sequencing experiments. This 
strategy is particularly well-suited for studying cellular 
interactions and lineage tracing, as it allows for the longi-
tudinal analysis of single cells over time and space due to 
the static location of each cell and the transparent charac-
teristics for direct monitoring. Nonetheless, the size and 
shape of the microwells can affect the capture efficiency 
of different cell types, posing challenges when studying 
heterogeneous populations.

DMF‑based

DMF is an advanced technology that enables the manipu-
lation of small volumes of fluids on an array of electrodes 
based on electrowetting-on-dielectric (EWOD). Different 
from other microfluidic strategies, DMF offers automatic 
control over the movement of droplets, allowing for a 
wide range of chemical and biological processes, such as 
mixing, dispensing, diluting, and reacting [28–31]. Using 
DMF, single cells can be lysed, cellular analytes extracted, 
and libraries prepared in a highly controlled and efficient 
manner, facilitating in-depth single-cell analysis (Fig. 2D) 
[30]. With the advantages of automation, high precision, 
and addressability, DMF is well-suited for customized 
workflows of various single-cell sequencing applications. 
Since it relies on precise control of limited numbers of 
electrodes, DMF-based strategies usually face the chal-
lenges of the relatively small numbers of cells that can be 
processed simultaneously compared with other techniques.

Commercial microfluidic devices

Commercial microfluidic platforms are become increas-
ingly popular in recent years due to their capability to 
execute a wide range of researches, spanning various fields 
such as cancer biology, medical diagnosis, and drug dis-
covery (Table 1).

A typical example of commercialized droplet-based plat-
form is the Chromium™ system released by 10 × Genom-
ics company, which pioneered the market of single-cell 
sequencing using droplet-based strategies [32]. In this way, 
approximately tens of thousands of cells can be encapsulated 
into the drops per run, followed by the subsequent auto-
mated workflows. A similar droplet-based Tapestri system 
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Fig. 2   Typical microfluidic plat-
forms for single-cell analysis. 
(A) Droplet-based platforms.  
Reproduced with permission 
from ref. [17] Copyright 2015, 
Elsevier. (B) Valve-based 
circuits. Reproduced with 
permission from ref. [19] Copy-
right 2020, Springer Nature. 
(C) Microwell-based chips. 
Reproduced with permission 
from ref. [26] Copyright 2022, 
Wiley–VCH GmbH. (D) DMF-
based strategies. Reproduced 
with permission from ref. [30]. 
Copyright 2020, The American 
Association for the Advance-
ment of Science
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was released by Mission Bio to allow both characterization 
of genomics and surface proteins [33].

The C1 Autoprep System, which harnesses integrated flu-
idic circuits with multiple valves as well as channels, was 
released by Fluidigm to perform single-cell capture and a 
series of reactions of up to 96 single cells [21]. Recently, the 
system has been updated that up to 394 single-cell samples 
can be analyzed in parallel, which offered increased through-
put and reliability.

As the representative of commercial microwell-based 
devices, the Rhapsody™ Single-Cell Analysis System 
released by BD Company allows as high as 20,000 cells 
to be isolated in microwells within a chip. Likewise, Sin-
gleron Matrix was established by Singleron Bio to perform 
the pipeline of scRNA-seq from cell isolation to library 
construction. More recently, a double-layered microwell-
based system was released by Dynamic Biosystems, where 
improved barcoding efficiency of single cells was achieved 
(82%).

Characterization of different layers of omics

Linking transcriptome with genome

The transcriptome consisting of mRNA transcripts can 
reflect gene expressions that cause cellular heterogeneity. 
Single-cell transcriptional analysis provides comprehen-
sive pictures of the diverse transcriptional signatures of 
single cells under internal and external influences, thus 
enabling identification of cell subsets and cell states [5]. 
In most cases, single-cell transcriptional analysis is per-
formed by single-cell isolation, lysis, reverse transcription, 
and amplification of cDNA. Subsequently, the amplified 

cDNA can be analyzed using PCR for targeted analysis or 
sequencing for whole transcriptome profiling. For single-
cell RNA sequencing (scRNA-seq), barcoding strategy 
has been implemented for paralleled analysis. Typically, 
barcode beads were incorporated to label individual cells. 
The bead barcodes were composed of four parts: oligo 
dT to capture polyadenylated mRNA, cell barcode for 
identification of each cell, unique molecular identifier 
(UMI) to benchmark the absolute gene expression, and a 
PCR primer for the subsequent amplification. In this way, 
thousands of single cells and single barcode beads were 
co-trapped. After single cell was lysed, and the transcrip-
tomic information was transferred to the paired barcode 
bead during reverse transcription. Afterwards, barcode 
beads were pooled and the transcripts were amplified and 
sequenced [17, 23].

Single-cell genome analysis allows for the characteri-
zation of genetic mutations and variations such as copy 
number variations (CNVs) and single-nucleotide vari-
ants (SNVs), thereby revealing the genetic heterogene-
ity during cell proliferation as well as differentiation. 
Such genetic heterogeneity has been reported as a lead-
ing cause of cancer and development disorders [34]. Due 
to the limited amounts of the genetic materials in single 
cells, the genomic DNA (gDNA) should be amplified by 
whole-genome amplification (WGA) using strategies such 
as PCR [35], multiple displacement amplification (MDA) 
[36], multiple annealing and looping-based amplification 
cycles (MALBAC) [37], and linear amplification via trans-
poson insertion (LIANTI) [38]. However, it still remains 
challenging to achieve WGA with high uniformity and 
fidelity. In this case, microfluidic-based platforms with 
small reaction volumes can minimize contamination and 
reduce amplification bias, thereby serving as ideal tools 
for single-cell genomic analysis.

Joint analysis of transcriptome and genome allows 
the profiling of RNA and DNA from the same single 
cell, thereby linking the transcriptional variation with 
the genetic differentiation unambiguously, and enabling 
the identification of disease-causative genetic variations 
among the diverse gene expressions. DNA-RNA sequenc-
ing (DR-seq) [39] and genome and transcriptome sequenc-
ing (G&T-seq) [40, 41] were developed successively 
for co-measurement of DNA and RNA from the same 
cell using different separation strategies. Both methods 
required multiple tube-based handling processes and were 
constrained by low coverage and sample losses.

To solve these limitations, Fan’s group proposed the 
first microfluidic platform enabling joint profiling of genes 
and transcripts at the single-cell level [42]. Specifically, 
they designed a valve-based microfluidic device to trap 
single cells, enabling selective cytoplasmic lysis from the 
nucleus. Following the separation of lysed RNA and reverse 

Table 1   Comparison of different commercial microfluidic systems

Name Throughput (per 
run)

Parameters Technology

Chromium™  > 10,000 cells Transcriptome
Genome
Proteome
Epigenome
TCR/BCR

Droplets

Tapestri  ~ 5000 cells Genome
Proteome

Droplets

C1 Autoprep 96/384 cells Transcriptome
Proteome

Valve

Rhapsody™ 20,000 cells Transcriptome
Proteome

Microwell

Singleron Matrix  > 10,000 cells Transcriptome
Proteome
TCR​

Microwell

Well-Paired-Seq  > 10,000 cells Transcriptome Microwell
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transcription, the nucleus was lysed to release gDNA. The 
platform seamlessly integrated single-cell capture and mul-
tistep reactions with precise control. The small chambers 
facilitated rapid mixing, leading to the enhanced efficiency 
of nucleic acid amplification, which was imperative for the 
limited amounts of DNA and RNA from a single cell.

Similarly, Zaag et al. proposed a pressure-driven micro-
fluidic platform for differential on-chip extraction of both 
DNA and RNA from single cells [43]. Using this method, 
they characterized the functional activity of the Wnt pathway 
from both cytosol and nuclear fraction. Leveraging DMF 
technology, Yang’s group devised a DMF-based platform 
for joint measurement of DNA and RNA (DMF-DR-seq) 
(Fig. 3A) (Table 2) [44]. It facilitated streamlined analysis 
of genome and transcriptome from the same single cells with 
higher genome coverage and less amplification bias at lower 
costs in comparison with other strategies. Given the limited 
throughput, DMF-DR-seq was well-suited for trace samples 
like circulating tumor cells (CTCs) or stem cells where deep 
information is needed.

Current droplet-based single-cell sequencing platforms 
usually profile all the cells in each sample but cannot dif-
ferentiate cell subsets, which is unsuitable for analysis 
of rare cell subpopulations. To this end, Abate’s group 
introduced a novel droplet-based microfluidic device with 

fluorescence-activated droplet merger for RNA and DNA 
sequencing of selected cells (Fig. 3B) [45]. The droplet con-
taining the targeted cell could be triggered to merge with the 
droplet with a barcode bead, thereby achieving pairing of 
targeted cells and barcode beads. With such technology, rare 
subpopulations of cells were identified while large numbers 
of uninformative cells were discarded, thereby saving the 
sequencing cost.

Linking transcriptome with proteome

Proteins are principal biological executors of important 
cellular behavior such as DNA replication and metabolic 
reactions. Proteome profiling allows large-scaled charac-
terization of protein signatures within cells, promotes the 
understanding of biological mechanisms, and facilitates 
the discovery of disease-related biomarkers or therapeutic 
targets [46, 47]. Compared with transcripts, proteins have 
less stochastic noises, higher stability, and higher expression 
levels than cognate mRNA [48]. Antibodies conjugated with 
fluorophores or metal isotope tags have been widely used 
to measure protein expressions by flow cytometry or mass 
cytometry [49]. However, the number of markers available 
for the identification of cell subpopulations was limited due 
to the spectral overlap of fluorophores. Furthermore, while 

Fig. 3   Microfluidic-based 
strategies for co-analysis of 
transcriptome and genome. (A) 
Schematic of DMF-DR-seq 
using an integrated DMF plat-
form.  Reproduced with permis-
sion from ref. [44]. Copyright 
2022, Elsevier. (B) Schematic 
of RNA and DNA sequencing 
of selected cells using droplet 
technology. Reproduced with 
permission from ref. [45] Copy-
right 2020, American Chemical 
Society
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DNA and RNA can be amplified by various amplification 
strategies using universal probes, it is challenging to amplify 
proteins directly, which adds additional circumstances to 
single-cell proteomic analysis [50]. To this end, antibodies 
conjugated with DNA barcodes have been implemented for 
unlimited simultaneous analysis of markers as well as con-
verting protein signals into DNA readout [51].

Recent reports have revealed unexpected discrepancy 
between mRNA and corresponding proteins, emphasizing 
the importance of constructing the dynamic relationship 
between transcriptome and proteome [52]. Considering the 
close relationship between transcriptome and proteome, 
integrative analysis of both omics offers a holistic view of 
gene expressions and protein synthesis, thus bridging a gap 
between genotype and phenotype. Generally, current strat-
egies can be classified into antibody- and aptamer-based 
approaches.

Antibody‑based strategies

Antibodies conjugated with DNA barcodes have been 
extensively used for simultaneous measurement of RNA 
and proteins. For instance, CITE-seq (cellular indexing of 
transcriptomes and epitopes by sequencing) was developed 
for multiplexed quantitation of proteins and transcripts 
from the same single cells [51]. In this case, cells were 
incubated with labelled DNA-barcoded antibodies, which 
was similar to the flow cytometry staining process but with 
DNA-antibody conjugates instead of fluorophores. The 
antibody-DNA complexes are also comprised of three parts 
including oligo-dA, antibody barcodes, and PCR handle. 
After routine droplet-based scRNA-seq workflow, mRNA-
derived labels (~ 500 bp) can be size fractioned from the 
antibody-derived tags (~ 150 bp). The strategy was applied 
for enhanced characterization of immune cell phenotypes. 
Similarly, the RNA expression and protein sequencing 
assay (REAP-seq) was also reported [53]. Different from 
CITE-seq using streptavidin–biotin to link antibodies and 
oligos, REAP-seq employed the conjugation of DNA and 
antibodies using unidirectional chemistry with a covalent 
bond. Such conjugation strategy was more stable and mini-
mized the steric hinderance, and was crucial for enhancing 
the scalability of protein analysis. REAP-seq has been com-
mercialized by Fluidigm as C1 REAP-seq for simultaneous 
characterization of scRNA-seq and surface proteins. Taking 
advantage of DNA-antibody conjugates, Yang’s group intro-
duced a strategy termed as multi-Paired-seq for resolving the 
expression dynamics of both the transcriptome and proteins 
of single cells based on previously developed Paired-seq 
(Fig. 4A) [54]. Single cells and barcode beads could be pre-
cisely manipulated and paired by the control of valve/pump 
structures, and background noises such as free mRNA and 
conjugates could be removed efficiently.Ta
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Considering the significance of protein interaction and 
challenges where the scale of paired proteins increased quad-
ratically, Tay’s group recently presented proximity sequenc-
ing (Prox-seq) combining PLA with scRNA-seq to simulta-
neously measure extracellular protein complexes and mRNA 
(Fig. 4B) [55]. Prox-seq used a pair of DNA-antibody con-
jugate probes with index information of corresponding pro-
teins to identify protein conjugates. Initiated by a universal 
connector, paired probes were ligated to generated complete 
PLA products, including barcode information of protein 
complexes, UMI, and a poly-A tail. Integrated with scRNA-
seq, Prox-seq allowed for joint characterization of protein 
complexes and transcriptomes in a similar way to CITE-seq 
and REAP-seq. Using Prox-seq, the authors observed Toll-
like receptor (TLR)–associated protein interactions.

Instead of combining phenotypes with whole transcrip-
tome, Prlic et al. characterized protein expressions with tar-
geted transcriptomes in microwells based on a BD Rhapsody 
platform (Fig. 4C) [56]. Hundreds of immune-related genes 
were selected for the establishment of immunophenotypes 
and transcripts in T cells. In comparison with routine meth-
ods, such strategy only required minimal sequencing depth 
(approximately 10% of other methods). Therefore, the over-
all cost was reduced without compromising high sensitivity. 
But upfront decisions on targets of interest were needed.

Aside from surface proteins, intracellular staining and 
sequencing (INs-seq) was proposed for high-throughput 
scRNA-seq with characterization of intracellular proteins 
(Fig. 4D) [57]. Different from other strategies, cells were 
permeabilized, intracellularly stained by fluorophore-
labelled antibodies, and sorted to droplet-based microfluidic 
systems, followed by conventional scRNA-seq protocols, 
allowing for coupled analysis of transcriptome and intracel-
lular protein activity.

More recently, a groundbreaking strategy termed “time-
resolved assessment of protein secretion by sequencing” 
(TRAPS-seq) was developed to characterize secreted pro-
teins using scRNA-seq [58]. Released proteins were cap-
tured onto the cell surfaces using bispecific antibodies, 
followed by the formation of immunosandwich structure 
with barcode antibodies. TRAPS-seq was leveraged to dis-
sect the interplay between cytokines as well as cellular gene 
expressions.

Single-nucleus (sn)RNA-seq is paramount for charac-
terization of solid tissues where cellular membrane integ-
rity is damaged during dissociation. Joint measurement of 
nuclear transcriptome and proteins provides deeper insight 
into how nuclear proteins and transcriptomes shape gene 
expressions and pathways [59]. As an expansion of CITE-
seq, inCITE-seq was proposed for intracellular indexing of 
transcriptomes and epitomes with droplet-based microfluidic 
platforms [60]. Cells were fixed and permeated, followed 
by intracellular binding of DNA-antibody conjugates and 

nucleus-hashing antibodies for multiplex sampling. inCITE-
seq allowed the deciphering of cells from solid tissues espe-
cially those that are hard to dissociate, and shed light on 
gene regulation during dynamic responses.

Aptamer‑based strategies

In most cases, antibodies are ideal tools for proteomic pro-
filing. However, antibodies are limited by batch effects and 
high costs. Moreover, the steric hindrance caused by the 
relatively large size could impact binding affinity. Alter-
natively, aptamers are single-stranded nucleic acids with 
unique tertiary structures that could specifically recognize 
targets [61]. Aptamers are evolved by Systematic Evolu-
tion of Ligands by EXponential enrichment (SELEX) [62]. 
Compared with antibodies, aptamers hold unique merits 
such as ease of modification, controllability, facile chemical 
synthesis, versatile structural design, and flexibility. Abate 
et al. reported Apt-seq for simultaneous profiling of surface 
proteins and transcriptomes of single cells with aptamers 
[63]. Certain types of aptamers corresponding to epitopes 
were incubated with cells, followed by general droplet-based 
scRNA-seq protocols. In this way, independent information 
of cell types can be inferred from aptamer binding. And 
additional information could be obtained to solidate the dif-
ferentiation of cell states. Taking 3T3 and Ramos cells as an 
example, the authors confirmed that aptamers clustered in 
transcriptional fingerprints, indicating that aptamers could 
be leveraged to differentiate cell types and states in line with 
transcriptional data.

Linking genome with proteome

While combined analysis of transcriptome and proteome has 
been widely studied, co-measurement of single-cell geno-
type–phenotype was rarely reported. Although scRNA-seq 
provides a valuable tool for the study of genotype–phe-
notype linkage, where the sequences of mRNA and their 
abundance reflect the genotype and phenotype, respectively, 
the genotyping from mRNA only reflects the expressed part 
of the genome, indicating that non-transcribed information 
and other mutations are lost. In the circumstances, Abate’s 
group proposed Dab-seq for combined profiling of immu-
nophenotype and genotype of single cells from patients with 
acute myeloid leukemia (AML) (Fig. 5) [64]. Dab-Seq was 
based on Abseq that enabled sequencing of single-cell sur-
face proteins using barcoded antibody-DNA conjugates for 
immunostaining of single cells, but with additional cell lysis 
for genome amplification. Using a commercial Mission Bio 
Tapestri instrument, droplets were paired with those contain-
ing barcode beads and subjected to PCR using targeted prim-
ers for amplification of specific genomic regions. As a result, 
DAb-seq identified 49 target DNA and 23 hematopoietic 
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markers in AML, revealing the variability of the genotype 
and phenotype of blast cells over different clinical scenarios. 
Since Dab-seq required a prior knowledge of the targeted 
loci and epitopes, it was inaccessible to profiling disease-
related mutations beyond the targeted loci or phenotypic 
markers.

Linking epigenome with transcriptome

Epigenomic analysis focuses on revealing how functional 
genomic elements informs the phenotype via regulatory 
variations, including DNA methylation, post-translational 
histone modifications, and chromatin accessibility, which 
is essential for investigating diverse cellular behavior and 
uncovering disease development [65]. For instance, DNA 
methylation, the most generally studied epigenetic modifica-
tion, is related with repression of gene expression and regu-
lation of diverse cellular behavior. Notably, 5-methylcyto-
sine (5mC) at guanine base (CpG dinucleotide) serves as an 
epigenetic mark, and the strategy of analyzing 5mC usually 
relies on using bisulfite to convert cytosine to uracil, while 
the leftover 5mC residues remain unchanged [66]. Besides, 
histone modifications indicate the likelihood of gene expres-
sion near a DNA locus and reflect cellular differentiation 
trajectories. Chromatin immunoprecipitation (ChIP), which 
leveraged specific antibodies to pull down the associated 
chromatin, comes as one of the conventional approaches 
for detection of histone modifications [67]. For instance, 
droplet-based single-cell chromatin immune-precipitation 

sequencing (Drop-ChIp) was considered as a gold stand-
ard for analyzing posttranslational histone modifications 
at the single-cell level [68]. Moreover, chromatin accessi-
bility can reflect the dynamic contact of macromolecules 
and packed DNA, providing insights of transcription fac-
tors and cis-elements, revealing the regulatory variation 
between single cells. Chromatin accessibility can be quan-
tified via enzymatic methylation or DNA cleavage. For 
example, valve-, droplet-, and microwell-based single-cell 
assays for transpose accessible chromatin using sequencing 
(scATAC-seq) were developed [69]. Basically, scATAC-seq 
leveraged transposases (Tn5) to fragment and insert adaptors 
to DNA in open chromatin, where the regulatory proteins 
were attached and transcription was initiated. Afterwards, 
the regions were amplified by PCR and enriched for library 
construction, enabling the discovery of trans-factor related 
cell-to-cell variation.

Linking epigenetic and transcriptomic analysis allows for 
simultaneous interrogation of the gene expression and epi-
genome at multiple loci, offering a powerful tool to deepen 
the understanding of linkage of cell fates during dynamic 
processes. Burkholder et al. developed an automated, inte-
grated, and high-throughput microfluidic platform (sc-GEM) 
for implementation of gene expression and DNA methyla-
tion based on a commercial Fluidigm C1 AutoPrep IFC [70]. 
sc-GEM combined the single-cell restriction analysis of 
methylation (SCRAM) measurement proposed by the same 
group [71] with RT-qPCR as well as sequencing, utilizing 
methylation-sensitive restriction endonuclease (MSRE) 
instead of bisulfite conversion to digest the CpG methyla-
tion at specific locations, which ensured less sample loss and 
DNA degradation. Taking reprogrammed human fibroblasts 
as examples, sc-GEM allowed identification of specific epi-
genetic signatures in tumor subpopulations.

While sc-GEM targeted specific gene expressions, Zhang 
et al. proposed single-nucleus chromatin accessibility and 
mRNA expression sequencing (SNARE-seq) based on the 
Drop-seq platform for joint profiling of chromatin accessi-
bility and whole-transcriptome with high throughput [72]. 
The accessible genomic sites in nuclei were pre-tagged by 

Fig. 4   Microfluidic-based strategies for joint characterization of tran-
scriptome and proteome. (A) Schematic of multi-Paired-seq using 
microwell-based microfluidics.  Reproduced with permission from 
ref. [54] Copyright 2022, American Chemical Society. (B) Schematic 
of Prox-seq for simultaneous measurement of extracellular protein 
complexes and mRNA using commercial droplet-based systems. 
Adapted from ref. [55]. (C) Schematic of targeted transcriptomes and 
protein expressions in commercial microwell devices. Reproduced 
with permission from ref. [56] Copyright 2020, Elsevier. (D) Sche-
matic of INs-seq for integrated analysis of transcriptome and intracel-
lular proteins. Reproduced with permission from ref. [57], Copyright 
2020, Elsevier

◂

Fig. 5   Schematic of Dab-Seq for combined analysis of genotype and phenotype using droplet-based microfluidics.  Reproduced with permission 
from ref. [64] Copyright 2023, Springer Nature
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Tn5 transposase, and emulsified with barcode beads. And 
the fragmented chromatin captured by designed sequences 
as well as poly (A) tailed mRNA were captured, enabling 
the two layers of omics information to share with cellular 
barcodes. SNARE-seq enabled reconstruction of the tran-
scriptome and epigenome landscape from thousands of 
mouse cerebral cortices cells, as well as the identification 
of linkage-associated epigenomic sites. Subsequently, this 
technique was updated to SNARE-seq2, which dramatically 
increased the throughput by the incorporation of cellular 
combinatorial indexing [73].

In addition, Transcript-indexed ATAC-seq (T-ATAC-seq) 
was designed for combined analysis of chromatin accessibil-
ity and T cell receptors (TCRs) using a commercial C1 sys-
tem [74]. Tn5 was incorporated for transposition of acces-
sible chromatin and primers targeting the encoding region 
of TCR chains were introduced for TCR-seq. T-ATAC-seq 
was applied for identification of tumor-related epigenomic 
signatures in T cell leukemia, holding potential for uncov-
ering specific regulatory elements underlying different cell 
states. However, due to the limited throughput of C1 systems 
(96 cells per chip), T-ATAC-seq was better suited for the 
identification of TCRs of interest, and increased throughput 
is anticipated.

To streamline the workflow, in situ sequencing hetero 
RNA–DNA-hybrid after assay for transposase-accessible 
chromatin-sequencing (ISSAAC-seq) was devised for 
highly sensitive investigation of both chromatin and tran-
scriptome within the same cell [75]. ISSAAC-seq was 
established based on Sequencing HEteRo RNA-DNA-
hYbrid (SHERRY) [76], a simplified and versatile strat-
egy of RNA-seq library construction. Unlike traditional 
scRNA-seq protocols where RNA is usually converted into 
dsDNA via reverse transcription, SHERRY employed Tn5 
to cleave RNA/DNA hybrids with adapters, mimicking the 
process utilized for dsDNA, thus dramatically simplifying 
the scRNA-seq workflow and curtailed manual involvement 
to a mere 30 min. Incorporating SHERRY with scATAC-
seq, ISSAAC-seq facilitated the interrogation of chromatin 
accessibility and gene expression with high sensitivity and 
flexibility. It is noteworthy that ISSAAC-seq was compat-
ible with either FACS or droplet-based microfluidic systems 
regarding the number of samples.

Linking diverse omics

While most multimodal single-cell analytical methodologies 
were confined to the integration of transcriptomic data with 
an auxiliary omic dataset, multiplex single-cell measure-
ments have illuminated a path towards comprehensive snap-
shots of intricate cellular compositions across diverse layers 
of characterization. For example, Peng et al. reported single-
cell triple omics sequencing (scTrio-seq), which combined 

single-cell reduced representation bisulfite sequencing 
(scRRBS) [66] and RNA-seq for joint analysis of genomic 
copy-number variations, DNA methylome dynamics, and 
transcriptome of single mammalian cells by concessive cell 
lysis, separate library construction, and data analysis [77]. 
Such concept was extended for high-throughput single-cell 
profiling integrating protein measurement, transcriptome 
analysis, and mapping of chromatin accessibility using 
10 × Genomics systems. Greenleaf et al. combined CITE-seq 
and scATAC-seq to construct molecular features of patients 
with mixed-phenotype acute leukemias (MPALs), which dis-
played multiple hematopoietic lineages. Using integrative 
analysis of single-cell multiomics, the authors constructed 
the framework of cancer development and identified both 
common and distinct molecular signatures across different 
patients with individual phenotypes [16]. Likewise, ATAC 
with select antigen profiling by sequencing (ASAP-seq) was 
presented for simultaneous analysis of accessible chroma-
tin, transcriptome, as well as surface proteins [78]. Instead 
of simply combining CITE-seq with scATAC-seq, ASAP-
seq optimized the enzymatic steps to minimize sample loss 
and ensure high-quality analysis of multiple modalities. To 
tackle the challenge that most scRNA-seq was constrained 
by profiling of poly A-tailed mRNA, ASAP-seq introduced 
bridging identifier sequences (UBI) and UMI sequences for 
poly A-tailed mRNA and other none polyA-tailed mRNA, 
respectively. And ASAP-seq was applied for profiling of 
epigenomic, transcriptomic, and proteomic analysis of bone 
marrow mononuclear cells. Furthermore, ASAP-seq was 
transferred to 10 × Chromium single-cell multiome platform 
as DOGMA-seq, which allowed profiling of gene regula-
tion from chromatin accessibility to mRNA expression and 
proteome over the central dogma.

Meanwhile, TEA-seq was also developed as a trimodal 
platform for measurement of transcriptomic, surface 
epitopes, and chromatin accessibility of permeabilized cells 
using a 10 × Chromium system [79]. Considering that the 
release of ambient RNA during cell lysis could impair cell 
barcoding, the authors selected hypotonic lysis to weaken 
the perturbation of non-cell barcodes, thus improving the 
signal-to-noise ratio of sequencing data. Afterwards, a tech-
nique called NEAT-seq was developed, enabling the study 
of quantitative impact of epigenetic regulators on chromatin 
and gene expression states in primary human samples with 
10 × Genomics Multiome kits (Fig. 6A) [80]. This technique 
has been successfully applied to study CD4 memory T cells 
and identify regulatory activities gated by transcription, 
translation, and chromatin binding.

Aside from routinely characterized omics including tran-
scriptome, genome, and proteome, other molecular signa-
tures have also been profiled for comprehensive understand-
ing of cellular stages. For instance, SUrface-protein Glycan 
And RNA-seq (SUGAR-seq) incorporated posttranslational 
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modification with transcriptional and phenotypic charac-
teristics (Fig. 6B) [81]. Specifically, lectins of Phaseolus 
vulgaris agglutinin (L-Pha) that could selectively bind with 
N-linked glycosylation (N-glycans) on the T cell surface 
were utilized. With the integration of CITE-seq and TCR-
seq based on 10 × Genomics platforms, SUGAR-seq drew 
a comprehensive snapshot of glycoproteome, epitopes, and 
transcriptome of tumor-infiltrating T cells (TILs) and could 
be readily adaptable with commercial microfluidic strate-
gies, thus allowing deeper multi-faceted single-cell analysis. 
However, the selectivity of SUGAR-seq was less desirable 
since L-Pha could label multiple glycan structures. And the 
multivalent binding sites could induce the crosslinking to 
change cellular status. Alternatively, Li’s group proposed a 
chemoenzymatic-based approach to characterize N-acetyl-
lactosamine (LacNAc), a natural disaccharide unit on cell 
surfaces (Fig. 6C) [82]. LacNAc-seq leveraged the fuco-
sylation reaction, where guanosine diphosphate β-l-fucose 
(GDP-Fuc) as the donor could be transferred to LacNAc as 
the receptor with the help of fucosyltransferase (FT). By 
introducing barcode DNA to GDP-Fuc analogs, the level of 
cellular LacNAc could be translated into DNA sequences 
that could be further compatible with commercial micro-
fluidic-based scRNA-seq such as 10 × Genomics, paving a 
new way for the understanding of the relationship between 
glycans, transcriptomics, and TCR signatures.

Although scRNA-seq facilitates the identification of cells 
by nature, it lacks the ability to resolve cells with genetic 
perturbations, thereby impeding the dissection of genetic 
function as well as causality. To this end, clustered regularly 
interspaced short palindromic repeats (CRISPR/Cas)–based 
technologies have been incorporated for genetic screens. 
The CRISPR/Cas system consists of a single-guide RNA 
(gRNA) and a Cas protein, which can trigger the cleavage 
of the target site upon the recognition of gRNA and the cor-
responding sequences. The controllability, accuracy, and 
versality have propelled its broad applications in identifi-
cation of genes underlying diverse biological mechanisms 
[83]. For instance, Perturb-Seq [84] and CRISP-Seq [85] 
integrated droplet-based microfluidic systems for parallel 
profiling of both transcriptome and genomic perturbation 
within individual cell, achieving accurate elucidation of 
molecular circuits and identification of independent gene 
signatures during genetic perturbations.

Meanwhile, CROP-seq combined pooled CRISPR screen-
ing with droplet sequencing, allowing direct reading of gRNA 
expression associated with corresponding transcriptome 
responses, and simplifying tedious CRISPR screening processes 
[86]. To incorporate CRISPR-based genetic screening with omic 
analysis beyond transcriptome, Smibert’s expanded CITE-seq, 
which allowed joint profiling of transcriptome and surface pro-
teins by DNA oligo-labeled antibodies, for CRISPR-compatible 
cellular barcoding (ECCITE-seq), achieving massive parallel 

analysis of multiple modalities from transcriptome and epitopes 
to clonotypes and CRISPR perturbations [87]. Rather than using 
3′tag barcoding strategies, ECCITE-seq leveraged 10 × Genom-
ics 5P/V(D)J systems with custom reverse transcription primers 
based on template switch oligos (TSO) during reverse transcrip-
tion. Moreover, the invariant scaffold at the 3′ end of gRNAs 
was taken as the annealing site to append the barcode beads. 
In this way, gRNAs can be directly captured, and transcripts 
especially non-polyadenylated ones as well as epitopes were 
interrogated to the same barcode bead, enabling multimodal 
assessments within each single cell. As a result, ECCITE-seq 
allowed clonotype determination with immunophenotyping of 
PBMCs from patients with cutaneous T cell lymphoma (CTCL).

Conclusion and future developments

Microfluidic-based single-cell multimodal analysis has revo-
lutionized the ability to provide comprehensive molecular 
profiles of individual cells from the perspective of transcrip-
tome, genome, proteome, and epigenome, etc. Characteri-
zation of multi-modalities offers unprecedented opportuni-
ties for the exploration of cellular regulatory circuitry and 
heterogeneity in a more comprehensive way. For instance, 
joint measurement of transcriptome and genome revealed 
the correlation of transcriptional dynamics and genomic 
alterations for disease-associated genes. Besides, integra-
tive analysis of epigenome and transcriptome established 
the link between regulatory networks and gene expression. 
On the other hand, microfluidics with the merits of mini-
malization, integration, high throughput, and automation 
has emerged as a powerful tool for large-scaled single-cell 
analysis. Large numbers of commercial microfluidic sys-
tems represented by 10 × Genomics Chromium and Fluidigm 
also dramatically propelled the wide adoption of single-cell 
multiomics analysis. It is expected that by developing more 
robust and user-friendly platforms, researchers can process 
larger numbers of samples, resulting in increased through-
put. Moreover, automation will reduce the need for highly 
specialized skills and enhance accessibility. For enhanced 
multiplexing capabilities, sophisticated microfluidic design 
is anticipated to enable the simultaneous processing of mul-
tiple samples or assays. Furthermore, the development of 
standardized microfluidic platforms as well as open-source 
designs can promote widespread adoption and makes it 
easier for laboratories to create and implement their own 
microfluidic systems.

Single-cell multiomics analysis is a transformative 
approach with profound current and potential future 
applications. In the present, it offers insights into cell 
typing, lineage tracing, and the unraveling of tumor 
heterogeneity, aiding in precision medicine [9]. Addi-
tionally, the profiling of immune cell responses and the 
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amalgamation of scRNA-seq with functional genomics 
and epigenomics will expand our understanding of cel-
lular regulation. Ultimately, the clinical realm is poised 
to benefit from this technology’s evolution, fostering 
personalized medicine, early disease detection, and the 
monitoring of treatment efficacy.

Despite the enormous advances in multiplex single-
cell analysis based on microfluidics, there remains sev-
eral challenges regarding technical improvements and 
further applications. First, improved sensitivity and 
accuracy of multimodalities were expected. For instance, 
conventional scRNA-seq usually required more than 10 
mRNA molecules for characterization of gene expres-
sion [88]. It is anticipated that such threshold could be 
lowered for detection of other low-copy-number mRNAs. 
Efforts focusing on optimizing enzymes [70] and advanc-
ing microfluidic platforms [26, 89] have been reported 
for enhanced sensitivity. In addition, the accuracy of 
different layers of omics analysis could be subjected to 
sample pretreatment. For example, bisulfite treatment 
usually required by methylome analysis could result in 
DNA damage, which impaired intrinsic genomic infor-
mation. Moreover, fixed cells were prone to biased 
measurement and lost information. Thus, it is crucial to 
integrate mild sample pretreatment that is compatible 
with multi-layered characterization. Recently, a series of 
newly developed DMF-based strategies have paved a way 
for streamlined multiomics analysis with high sensitivity 
and less sample damage [89].

Second, although huge strides have been made in multi-
omics measurements, a large proportion of reported strate-
gies focus on dimension transcriptome, genome, proteome, 
and epigenome, excluding metabolism, which is crucial 
for elucidating life process of organisms and revealing tis-
sue heterogeneity. The lack of microfluidic-based single-
cell metabolomic is possibly due to huge diversity and 
remarkably high dynamics of cell metabolites. Moreover, 
most single-cell metabolomic methods depend on mass 
spectrometry, which is hard to integrate with other omics 
characterization, and are not well suited for measure-
ment of short-lived metabolic molecules. Therefore, it 

is anticipated that extended or refined strategies can be 
proposed to combine single-cell metabolism with other 
omics, which will be paramount to investigate how meta-
bolic molecules affect other omics profiling at the single-
cell level.

Third, innovative computational tools capable of inter-
rogating multiple modalities and lowering information loss 
are solely needed. As bioinformatic approaches advance 
by leaps and bounds, it becomes accessible for research-
ers to restore the characterization of original molecules in 
single cells and establish biological regulatory networks. 
However, it remains challenging to distinguish the biologi-
cal variance between technical noises. It is also crucial to 
eliminate the interference between individual modalities. 
More importantly, most current multimodal computational 
strategies were based on independent modality. A common 
approach entails the transformation of multimodal data into 
a unified feature space based on a priori knowledge, fol-
lowed by the utilization of single-omics data integration 
methodologies [90]. Although conceptually straightfor-
ward, it leads to information loss. As such, the data qual-
ity and information content of each modality should be 
guaranteed, and the information variance among different 
modalities presented a challenge for integration of multi-
omics datasets. An alternative avenue involves the align-
ment of cells from different omics layers through nonlin-
ear manifold-based techniques, which has been applied to 
relatively modest datasets featuring a limited diversity of 
cell types [91]. Therefore, strategies like “weighted-near-
est neighbor” [92] and “graph-linked unified embedding 
(GLUE)” [93] that could integrate multimodal data were 
highly desired. The introduction of AI technology is also 
expected to boost the bioinformatic analysis of multiomics.

Overall, the field of single-cell multiomics analysis is 
experiencing rapid growth and holds immense potential to 
transform our comprehension of biological systems. As the 
technology continues to evolve and become more acces-
sible, it is expected to assume a progressively significant 
role in uncovering novel insights into the intricacies of 
life.
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Fig. 6   Microfluidic-based strategies for multi-modular characteri-
zation. (A) Schematic of NEAT-seq for integrated analysis of intra-
nuclear proteins, epigenome, and transcriptome.  Adapted from ref. 
[80]. (B) Schematic of SUGAR-seq for integrated analysis of glyco-
proteome, epitopes, and transcriptome. Reproduced with permission 
from ref. [81] Copyright 2021, The American Association for the 
Advancement of Science. (C) Schematic of LacNAc-seq for simul-
taneous characterization of glycans, transcriptomics, and TCR sig-
natures. Reproduced with permission from ref. [82] Copyright 2023, 
American Chemical Society
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