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Abstract
A novel time-resolved fluorescence nanoprobe (PBMO, PLNR-BSA-Mn2+-OPD) is fabricated for the label-free determina-
tion of acetylcholinesterase (AChE). The ZnGeO:Mn persistent luminescence nanorod (PLNR) and Mn(II) are, respectively, 
exploited as the signal molecule and quencher to construct the PBMO nanopobe using bovine serum albumin (BSA) as 
the surface-modified shell and o-phenylenediamine (OPD) as the reducing agent. In the presence of H2O2, the persistent 
luminescence of PBMO at 530 nm is enhanced remarkably within 30 s due to the oxidation of Mn(II). H2O2 can react with 
thiocholine (TCh), which is produced through the enzymatic degradation of acetylcholine (ATCh) by AChE. The PBMO 
nanoprobe is successfully applied to the determination of AChE in the linear range of 0.08–10 U L−1, with a detection limit 
of 0.03 U L−1 (3σ/s). The practicability of this PBMO nanoprobe is confirmed by accurately monitoring AChE contents in 
human serum samples, giving rise to satisfactory spiking recoveries of 96.2–103.6%.
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Introduction

Acetylcholinesterase (AChE) is a serine hydrolase in neuro-
muscular junctions, brain synapses, and erythrocytes. The 
main physiological process AChE participated in is hydro-
lyzing neurotransmitter, acetylcholine (ATCh), thus induc-
ing the termination of signaling transmission at cholinergic 
synapses and neuromuscular junctions. Acetylcholinesterase 
also exhibits other functions, including morphoregulation, 
adhesion, stress, and pathogenesis [1, 2]. The researches 
show that AChE is associated with cell apoptosis and even 
considered to be a marker under certain circumstances [3]. 
Acetylcholinesterase is closely related to the pathogenesis 
of insulin-dependent diabetes and the clinical symptoms of 
Alzheimer’s disease [4, 5]. Therefore, accurate monitor-
ing of AChE activities is critical to disease diagnosis and 
intervention.

At present, varieties of methods have been adopted to 
explore AChE activities, such as mass spectroscopy [6], 
immunoassay [7], electrochemical analysis [8], colorim-
etry [9], and fluorescence spectrometry [10]. Among them, 
mass spectroscopy requires non-portable and expensive 
equipment; immunoassay is lengthy and labor-intensive; 
electrochemical analysis usually exhibits poor preparation 
ability; and the colorimetry has low sensitivity. Attributed to 
the high sensitivity, excellent stability, simple manipulation, 
and fast response time, the fluorimetric methodology gains 
increasing attention [11]. Time-resolved fluorescence (TRF) 
analysis is one of the most sensitive fluorimetric methodolo-
gies due to the elimination of interference from auto-fluo-
rescence and scattering light. The application fields of TRF 
analysis involves immunoassays, sensing, and bioimaging. 
The luminescent materials with long lifetime are applied to 
ensure the success of delay collection to fluorescence signals 
[12–14].

As a kind of emerging nanomaterials, persistent lumi-
nescence nanorod (PLNR) can store energy from excitation 
sources and slow release it in the form of photonic emission, 
providing long-lasting afterglow of several hours. Compared 
to organic compounds, the PLNR exhibit outstanding advan-
tages: (i) readily available, complex synthesis processes 
are not required; (ii) it is possible to acquire PLNPs with 
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different luminous performances and morphology by tuning 
the host and emitter; (iii) good biocompatibility and low tox-
icity got through surface modification [15–17]. In general, 
luminescence resonance energy transfer (LRET) is utilized 
to give the switch signal of PLNR, in which PLNR is an 
energy donor and other materials are energy acceptors. The 
emitting light of PLNR is decreased by the energy accep-
tors, accompanying an analyte-inducing recovery [18]. The 
degree of spectral overlap affects the sensitivity of the probe, 
so the choice of energy receptors is particularly important 
[19].

Attributing to the high quenching efficiency, metal ions 
are widely used to develop LRET systems together with 
various fluorophores and phosphors. To avoid the instabil-
ity of metal ion–based LRET systems developed by directly 
mixing in aqueous solution or anchoring on the surface of 
nanoparticles, researchers utilize the mesoporous silica as 
a template to encapsulate ZnGa2O4:Cr3+ and metal ions 
[20–23]. However, the encapsulation process is tedious, 
which include template synthesizing, ionic impregnation, 
annealing, and shell encapsulating.

In this study, a novel TRF nanoprobe based on the LRET 
principle is fabricated for the label-free detection of AChE, 
referring to as PBMO (PLNR-BSA-Mn2+-OPD). We devel-
oped a novel assembly strategy for the LRET system. The 
PLNR is coated with bovine serum albumin (BSA) com-
bined with Mn(II) and o-phenylenediamine (OPD) by a sim-
ple one-pot method. Among them, phenylenediamine deriva-
tives are always used for probe fabrication [24, 25]. Herein, 
the roles of PLNR, Mn(II), and OPD are as luminescent 
material, quencher, and reducing agent, respectively. Bovine 
serum albumin as the nanocarrier provides a shell cavity 
for Mn(II). The shell cavity not only offers reaction space 
for Mn(II) and H2O2, but also shorten the distance between 
energy donor and energy receptor. We found that H2O2 
strongly increases the TRF of PBMO at 530 nm. Therefore, 
the PBMO nanoprobe can be applied for the determination 
of H2O2. Thiocholine (TCh) is generated in situ during the 
enzymatic degradation of ATCh by AChE and able to con-
sume H2O2, so the PBMO nanoprobe is successfully used for 
the determination of AChE and its contents in human serums 
are successfully detected by this probe.

Experimental section

Materials and apparatus

Zn(NO3)2·6H2O, GeO2, Mn(NO3)2·6H2O, NH3·H2O, o-phe-
nylenediamine (OPD), and N-ethylmaleimide (NEM) were 
bought from Aladdin Reagent Company (Shanghai, China, 

https://​www.​aladd​in-e.​com). Glutaraldehyde (50 wt%), 
H2O2 (30 wt%), NaOH, Na2HPO4·12H2O, NaH2PO4·12H2O, 
FeCl3·6H2O, Na2SO4, CH3COOK, and (NH4)2SO4 were 
obtained from Sinopharm Chemical Reagent Co., Ltd. 
(Shanghai, China, http://​www.​reage​nt.​com.​cn). Bovine 
serum albumin (BSA), lysozyme, trypsin, ALP, human 
serum albumin (HSA), IgG, α-globulin (α-GLB), and 
β-globulin (β-GLB) were purchased from Sigma-Aldrich 
(Milwaukee, WI, USA, https://​www.​sigma​aldri​ch.​cn).

The TRF measurements and UV–Vis absorption spec-
tra were conducted on a Spectra Max M5e (Molecular 
Devices Co. Ltd, USA). The morphology of PBMO PLNRs 
was characterized via a Jem-2100F field emission electron 
microscope (JEOL, Japan). X-ray photoelectron spectrome-
try (XPS) characterization of ZnGeO:Mn PLNR and PBMO 
was recorded on a Thermo Scientific™ K-Alpha™+ spec-
trometer. X-ray diffraction (XRD) analysis was measured on 
a D8 Advance powder diffractometer (Bruker, Germany). 
Fourier transform infrared (FT-IR) spectra were carried 
out with a Tensor-27 FT-IR spectrophotometer (Bruker, 
Germany).

Synthesis of PBMO

ZnGeO:Mn PLNR was prepared by the hydrothermal 
method described in our previous work [26]. Briefly, Zn2+ 
(2 mmol), Mn2+ (5 μmol), and concentrated HNO3 were 
mixed in H2O, and then Ge4+ (3 mmol) was added dropwise, 
while NH3·H2O was added to adjust pH. After continuous 
stirring, the resulting mixture was sealed at 220 °C for 10 h. 
The as-prepared ZnGeO:Mn PLNR was collected through 
centrifugation. ZnGeO:Mn-OH PLNR was obtained by 
adding 50 mg of ZnGeO:Mn PLNR to 20 mL of sodium 
hydroxide solution (5 mmol L−1) and stirring for 24 h, then 
washing and dissolving in H2O for later use. The processes 
for the synthesis of PBMO were as follows according to the 
reported literature with slight modifications [27]. Twenty-
five milligrams of BSA was dissolved in 1.5 mL H2O to 
obtain a suspension and 1.5 mL ZnGeO:Mn-OH PLNR (10 
mg mL−1) was added into it. After sonicating for 15 min and 
stirring for 5 min, 1.5 mL of Mn(NO3)2 aqueous solution (50 
mmol L−1), 25 μL of OPD (2 mol L−1, in DMF), 25 μL of 
sodium hydroxide (2 mol L−1), and 10 μL of glutaraldehyde 
were dropped successively into the mixture, following con-
tinuously stirring for 24 h at 40 °C. The resulting products 
were centrifuged at 12,000 rpm and washed with H2O for 
several times.

Detection of H2O2

Ten microliters of H2O2 solution (concentrations between 
4 and 100 μmol L−1), 10 μL of PBMO solution (400 μg 

https://www.aladdin-e.com
http://www.reagent.com.cn
https://www.sigmaaldrich.cn
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mL−1), and 80 μL of PB (10 mmol L−1, pH 8.5) were mixed 
in a black 96-well plate with 5-min vibration at 37 °C. The 
TRF intensity at 530 nm was recorded with excitation at 250 
nm. The luminous enhancement efficiency (q1) was achieved 
from the calculation formula q1 = F/F0 − 1, in which F and 
F0 were the TRF intensity of PBMO after and before the 
addition of H2O2, respectively.

Calibration plot of AChE detection

For AChE detection assay, mixtures of 10 μL ATCh (20 
mmol L−1), freshly prepared AChE with different activities 
(10 μL, 0.8 − 100 U L−1), and 10 μL of phosphate buffer 
(PB, 10 mmol L−1, pH 7.4) were incubated for 10 min at 37 
°C. After that, 10 μL of H2O2 (300 mmol L−1) was added 
and incubated at 37 °C for another 10 min. Finally, 10 μL of 
PBMO solution (750 μg mL−1) and 50 μL of PB (10 mmol 
L−1, pH 8.5) were added into the mixture and equilibrated 
for 5 min before fluorescence measurements. The luminous 
quenching efficiency (q2) was achieved from the calcula-
tion formula q2 = 1 − F/F0, in which F and F0 were the TRF 
intensity with and without AChE, respectively. To evalu-
ate the selectivity of PBMO nanoprobe for AChE, some 
nonspecific enzymes, proteins, and ions were individually 
investigated.

Real sample analysis

The human blood samples were obtained from the Jiangy-
uan Hospital of Jiangsu Province and all experiments were 
approved by the ethics committee. The samples were cen-
trifuged at 3000 rpm for 5 min, and then the supernatant 
was filtered through a 0.22-μm membrane filter to obtain 
human serum samples. Samples were spiked with different 
concentrations of AChE, following adding N-ethylmaleimide 
(NEM) and diluting for 500-fold. The prepared samples were 
detected according to the aforementioned steps.

Results and discussion

Characterization of PBMO

To endow superior modifiability of the ZnGeO:Mn PLNR, 
it is first hydroxylated. The ZnGeO:Mn-OH PLNR and BSA 
are well pre-mixed through hydrogen bonding in water. 
Glutaraldehyde is used as a cross-linking agent in the pres-
ence of Mn2+ and OPD to coat BSA layers on the surface 
of ZnGeO:Mn-OH PLNR. Under an alkaline condition, 
MnO and DAP produced from Mn2+ and OPD are simul-
taneously loaded in the BSA shell to form PBMO. The rod 

Fig. 1   A TEM images of PBMO. B Powder XRD patterns of 
ZnGeO:Mn-OH PLNR and PBMO. C XPS spectra of PBMO. D 
FT-IR spectra of ZnGeO:Mn-OH PLNR and PBMO. E UV–Vis 
absorption spectra of PBMO (a), fluorescence excitation spectra 
(λem = 530 nm, b) and fluorescence emission spectra (λex = 250 nm, 

c) of PBMO, fluorescence emission spectra of PBMO in absence of 
5 μmol L−1 H2O2 (d), and fluorescence emission spectra of PBMO 
nanoprobe in absence of 10 U L−1 AChE (e). F Luminescence decay 
curve of PBMO
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morphology of PBMO is described in Fig. 1A. There is a 
uniform core–shell nanostructure, and the length and diam-
eters of PBMO are 56.3 ± 3.1 and 22.3 ± 2.2 nm, with a shell 
thickness of 3.9 ± 0.6 nm.

The X-ray diffraction (XRD) results show that the XRD 
pattern of PBMO matched quite well with ZnGeO:Mn-OH 
PLNR (Fig. 1B), indicating there are no changes of the 
crystallization after BSA modification. The XRD patterns 
of PBMO are well-matched to the standard card (JCPDS 
No.11–0687), which is the crystallization of the rhombohe-
dral phase [28].

In addition, X-ray photoelectron spectroscopy (XPS) 
spectra of PBMO (Fig. 1C and Fig. S1) exhibit typical peaks 
due to the presence of Zn at 1021.1 eV, Ge at 31.7 eV, Mn at 
641.1 eV, C at 284.8 eV, N at 399.5 eV, and O at 530.7 eV, 
which relative atomic percentages are 4.49%, 6.53%, 1.62%, 
50.79%, 10.57%, and 26.01%, respectively.

After coating hydroxyl-functionalized PLNR with 
BSA shell, PBMO shows several new absorption bands. 
The appearance of a broad peak at 3410 cm−1 along with 
a weak peak at 3250 cm−1 corresponding to the –NH2 
group of DAP in Fourier transform infrared (FT-IR) spec-
tra (Fig. 1D). The peaks at 1531 cm−1, 1657 cm−1, 2870 
cm−1, 2927 cm−1, 2958cm−1, and 3080 cm−1 are ascribed 

to C═C stretching, − CO − NH − stretching band, symmet-
ric − CH2 − stretching band, asymmetric − CH2 − stretching 
band, − C − H stretching band, and ═C − H stretching band. 
These results confirm the successful coating of BSA with 
DPA loading.

The luminous performance of obtained PBMO nanoprobe 
remains consistent with the ZnGeO:Mn-OH PLNR. PBMO 
shows a relatively narrow absorption at 250 nm (Fig. 1E, 
line a). The excitation and emission maxima of PBMO in the 
luminous spectra are 250 and 530 nm, respectively (Fig. 1E, 
lines b and c). The luminous decay profiles of PBMO are 
illustrated in Fig. 1F, and its lifetime is deduced to be 13.21 
ms using a two-exponential distribution.

Mechanism of H2O2 detection

It is proved by initial experiments that the luminous inten-
sity of ZnGeO:Mn-OH PLNR is not affected by H2O2. After 
coating with BSA, Mn(II), and OPD, the TRF of PBMO can 
be significantly enhanced under the addition of H2O2. In 
order to explore the response mechanism, PBMO is devel-
oped from different concentrations of Mn(NO3)2 and OPD 
and their response to 5 μmol L−1 H2O2 is investigated. When 
only 2 mol L−1 OPD is used, the afterglow luminescence of 

Fig. 2   The fluorescence 
enhancement efficiency (q1) of 
PBMO prepared from different 
concentrations of Mn(NO3)2 (A) 
and OPD (B) under the addition 
of 5 μmol L−1 H2O2
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PBMO is the strongest and has no response to H2O2. The 
luminous enhancement efficiency increases with increas-
ing concentration of Mn(NO3)2 and the strongest signal is 
obtained at 50 mmol L−1 Mn(NO3)2 (Fig. 2A). Since the 
generation of precipitation, the luminous enhancement effi-
ciency decreased upon further Mn(NO3)2 concentration.

However, the afterglow luminescence of PBMO pre-
pared from raw materials that contained only 50 mmol 

L−1 Mn(NO3)2 can be enhanced by H2O2. The luminous 
enhancement efficiency firstly increases with the OPD con-
centration in the range of 0 − 2 mol L−1, and then levels off 
are observed when the OPD concentration is higher than 2 
mol L−1 (Fig. 2B). The possible reason for this phenomenon 
is that the BSA shell is saturated with OPD.

Combining with the abovementioned experimental 
results, we suppose that the main contribution to H2O2 
response is manganese species. In the presence of Mn(NO3)2, 
amorphous Mn(OH)2 is obtained after adding NaOH solu-
tion with high concentration, and Mn(OH)2 subsequently 
transforms into Mn3O4 by the oxidation of oxygen dissolved 
in solution [29]. Then a part of Mn3O4 is further reduced 
to Mn(II) by OPD, which is verified through the peak at 
641.0 eV in the high-resolution XPS spectra of Mn 2p. The 
rest of Mn3O4 is further oxidized into Mn(IV) by O2 under 
heated condition, which is verified through the peak at 641.9 
eV in the high-resolution XPS spectra of Mn 2p (Fig. 3A). 
The treatment with H2O2 possibly leads to oxidation of the 
Mn(II) in BSA shell under an alkaline condition, induc-
ing the production of Mn3O4 and the weaker quenching of 
luminous intensity. This hypothesis is proved by Fig. 3B, in 
which the ratio of oxidation state is higher. When no OPD 
exists, the percentage of Mn(II) in PBMO is decreased 
from 48 to 30% and the response to H2O2 is barely notice-
able (Fig. 3C). Thus, the detection mechanism is shown in 
Scheme 1.

Scheme 1   Schematic illustration of detection mechanism for H2O2 by 
the PBMO nanoprobe

Fig. 4   Effect of PBMO con-
centration (A), and ATch, H2O2 
concentration (B) on AChE 
detection (AChE concentration: 
1.0 U L−1). (C) The relation-
ship between the fluorescence 
quenching efficiency (q2) and 
the logarithm of AChE concen-
tration (0.08–10 U L−1). (D) 
Fluorescence response of the 
proposed probe toward various 
biomolecules and ions (the con-
centrations of AChE, enzymes, 
other proteins, and ions are 1 U 
L−1, 1 U L−1, 10 μg mL−1, 100 
mmol L.−1)
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TRF determination of H2O2

To explore the analytical application of PBMO, its lumi-
nescence response to H2O2 is studied under optimized 
conditions. Experimental results show that the TRF inten-
sity of PBMO at 530 nm is significantly enhanced within 
30 s after mixing with H2O2 solutions of different concen-
trations. As shown in Fig. S2A, the luminous enhancing 
efficiency (q1) is linearly proportional to the logarithm 
of H2O2 concentration in the range of 0.4–10 μmol L−1, 
with a regression equation of q1 = 0.326logC + 0.175 
(R = 0.995). The detection limit to H2O2 is estimated to 
be 0.14 μmol L−1 from the ratio of triple standard devia-
tion of blank signal to the slope of calibration plot (3σ/s, 
n = 11). The successful determination of H2O2 by PBMO 
paves the way for the detection of substances related to 
H2O2.

Analytical performances to AChE

As the key enzyme of biological nerve conduction, AChE 
can hydrolyze ATCh into TCh. The mercapto group of TCh 
gives it reducibility, and easily oxidized by H2O2. Therefore, 
we assume that the AChE activity can be detected using the 
inhibition of TCh to H2O2-triggering TRF enhancement. The 
feasibility of using PBMO nanoprobe to the determination 
of AChE is verified by recording the TRF intensity under 
different conditions. The ATCh or AChE has no obvious 
influence on H2O2-triggering TRF enhancement. How-
ever, after incubating ATch with AChE and adding H2O2, 
the luminous enhancement efficiency of PBMO is signifi-
cantly decreased compared to H2O2-triggering TRF (line e 
in Fig. 1E). The experimental parameters affecting AChE 
detection, for example, the dosage of PBMO, ATCh, and 
H2O2, are thoroughly investigated (Fig. 4A and B). As a 
result, the optimized concentrations of PBMO, ATCh, and 
H2O2 are 75 μg mL−1, 2 mmol L−1, and 30 μmol L−1.

Experimental results show that the TRF intensity at 530 nm 
decreases gradually with increasing AChE concentrations in 
the range of 0.08–10 U L−1. The plots of luminous quenching 

efficiency (q2) and the logarithm of AChE concentration 
possess good linear relationships, with a calibration plot of 
q2 = 0.0931log C + 0.124 (R = 0.997) (Fig. 4C). The detection 
limit is calculated to be as low as 0.03 U L−1 based on the 3σ/s 
rule. The relative standard deviations (RSDs) of intra-day and 
inter-day are derived to be 2.3% and 4.8%, respectively.

The linearity range and the detection limit (LOD) of this 
proposed TRF method are compared to those of the previ-
ously reported methods for AChE determination (Table 1). 
The probe we proposed possesses obvious advantages, 
including high sensitivity, short response time, and easy to 
operate. To inspect the selectivity of this proposed PBMO 
nanoprobe, the intensity change of TRF in the presence 
of potential interfering substances in human serums are 
measured, including enzymes (lysozyme, trypsin, ALP), 
proteins with high abundance (HSA, IgG, α-GLB, β-GLB), 
and ions (Zn2+, Ca2+, Mg2+, Na+, NH4

+, K+, NO3
−, Cl−, 

CO3
2−, CO3COO−). Figure 4D shows that these mentioned 

interfering substances do not pose any interference on the 
luminescence of PBMO nanoprobe, indicating the excellent 
detection selectivity of this proposed sensor toward AChE.

Table 1   Comparisons on the performances of this probe with various fluorescent sensors for AChE detection

Fluorescence sensor Linear range (U L−1) LOD (U L−1) Refs

CdS quantum dots 1 − 10 - [30]
Carbon nitride quantum dots integrating with phenylboronic acid and alizarin red S 0.5 − 15 0.36 [31]
Polyethyleneimine-protected copper nanoclusters 3 − 200 1.38 [32]
Small molecule fluorescent probe BDFA 4.5 − 1000 4.5 [33]
A near-infrared fluorescent probe containing fluorophore and 2-thienylformyl chloride 0.6 − 10 0.2 [34]
TRF nanoprobe based on heavy metal ion–modified ZnGeO:Mn luminescence nanorods 0.08 − 10 0.03 This study

Table 2   Determination of AChE contents in real samples (n = 3, at 
95% confidence level)

Sample Spiked (U 
L−1)

Found (U L−1) Recovery/%

Diluted serum 1 0 1.30 ± 0.09 -
4 5.49 ± 0.21 103.6 ± 4.1
5 6.06 ± 0.26 96.2 ± 4.9
6 7.21 ± 0.19 98.8 ± 2.7

Diluted serum 2 0 1.51 ± 0.07 -
4 5.33 ± 0.28 96.7 ± 3.9
5 6.39 ± 0.21 98.2 ± 2.5
6 7.55 ± 0.29 100.5 ± 4.0

Diluted serum 3 0 1.09 ± 0.06 -
4 5.21 ± 0.30 102.4 ± 2.1
5 5.99 ± 0.21 98.4 ± 1.8
6 6.87 ± 0.19 96.9 ± 3.4
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Analysis of AChE in real samples

To evaluate the practical applicability of this PBMO nano-
probe to real samples, AChE content in human serums is 
detected. The Cys and GSH in human serum have interfer-
ence in the AChE detection; thus, a thiolblocking reagent, 
NEM, is added into human serum [35].

It is found that the AChE concentrations presented 
in the diluted human serums from healthy volunteers are 
1.30 ± 0.09, 1.51 ± 0.07, and 1.09 ± 0.06 U L−1 (Table 2), 
with RSDs of 2.5%, 3.2%, and 2.9%. The spiking standard 
recovery method is used to evaluate the accuracy of this 
probe. The spiking recoveries for human serums samples are 
in the range of 96.2 − 103.6%, implying the potential of this 
PBMO nanoprobe in analyzing complex samples.

Conclusion

We have established a PBMO nanoprobe for AChE analy-
sis by modifying ZnGeO:Mn PLNR with BSA combined 
with Mn(II) and OPD. The specific reaction between Mn(II) 
and H2O2 remarkably induces the fluorescence enhancing 
of PBMO. The outstanding long afterglow luminescence of 
ZnGeO:Mn PLNR, high fluorescence quenching efficiency 
of Mn(II), and short distance between energy donor and 
energy receptor provide the basis for high-sensitive and 
rapid TRF detection of H2O2. Acetylcholinesterase can cata-
lyze ACh to produce TCh, and TCh can easily be oxidized 
by H2O2. The PBMO nanoprobe was successfully applied 
for the determination of AChE in human serum with much 
simpler and higher sensitivity. This approach may open a 
new way to design and apply PLNR-based probes. In addi-
tion, this PBMO nanoprobe developed in our study can be 
employed for other analytes related to H2O2.
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