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Abstract
Parkinson’s disease is a health-threatening neurodegenerative disease of the elderly with clinical manifestations of motor 
and non-motor deficits such as tremor palsy and loss of smell. Alpha-synuclein (α-Syn) is the pathological basis of PD, it 
can abnormally aggregate into insoluble forms such as oligomers, fibrils, and plaques, causing degeneration of nigrostri-
atal dopaminergic neurons in the substantia nigra in the patient’s brain and the formation of Lewy bodies (LBs) and Lewy 
neuritis (LN) inclusions. As a result, achieving α-Syn aggregate detection in the early stages of PD can effectively stop or 
delay the progression of the disease. In this paper, we provide a brief overview and analysis of the molecular structures and 
α-Syn in vivo and in vitro detection methods, such as mass spectrometry, antigen–antibody recognition, electrochemical 
sensors, and imaging techniques, intending to provide more technological support for detecting α-Syn early in the disease 
and intervening in the progression of Parkinson’s disease.
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Introduction

Parkinson’s disease (PD) has emerged as the second major neu-
rodegenerative disease that threatens people’s health in recent 
years. Its clinical manifestations are mainly motor symptoms 
such as resting tremor, bradykinesia, tonicity, and non-motor 
symptoms including olfactory loss, sleep disturbance, and gas-
trointestinal complications, which have a significant impact on 
the patient’s daily life [1, 2]. Since the pathogenesis has not 
been completely grasped and no efficient treatments for PD, all 
current preventive and therapeutic measures are merely helpful 

to delay the PD progression. Therefore, it is essential to seek 
strategies for PD early diagnosis and treatment.

In 1985, the discovery of amyloid-beta (Aβ) motivated 
researchers to investigate the molecular pathogenesis of AD 
proteins, which were discovered as the key proteins causing 
neurodegenerative diseases, along with microtubule-associated 
protein tau (Tau) and α-Syn. α-Syn is the main component of 
intracellular fibrillar Lewy bodies (LBs) and Lewy neuritis 
(LN). It can trigger nigral dopaminergic neuron degeneration 
and motor symptoms (Fig. 1a). Misfolded α-Syn can form 
protein oligomers, fibrils, and neuronal deposits with rich 
β-sheet structures and accumulate in patients’ cerebral cortex 
and hippocampus, causing memory and motor deficits. How-
ever, identifying the above pathological process in the early 
stages of PD is difficult [3, 4]. Therefore, the early detection 
of misfolded α-Syn is essential to control PD. Compared with 
changes in dopaminergic or vesicular monoamine transporter 
protein 2 (VMAT2), misfolded α-Syn has been illustrated that 
is the preferential evidence of PD before motor symptoms 
emergence [5, 6]. Currently, there have been numerous stud-
ies on α-Syn conformational changes and the pathogenesis 
and early diagnostic techniques of PD. In this review, we will 
summarize and prospect the relevant in vivo and in vitro stud-
ies to provide potential solutions for the early diagnosis and 
treatment of PD via real-time tracking of α-Syn (Scheme 1).
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Physiological functions, structures, 
and characterization of α‑Syn

α-Syn is a 140 amino acid (AA) presynaptic terminal protein 
encoded by SCNA genes. It is a soluble monomer in the 
physiological state and participates in cell membrane inter-
actions, synaptic function, vesicle transport, and dopamine 
synthesis, storage, and release in the central nervous system 
(CNS) [2, 7]. α-Syn consists of three structurally distinct 
physiological functional regions (Fig. 1): the N-terminal 
region (AA1-60) has mutation sites and contains four incom-
plete repetitive sequences that can participate in membrane 
binding interactions and promote the formation of β-sheet 
structures; the central NAC hydrophobic region (AA61-95) 
is highly involved in the formation of β-sheet structures and 
the production of insoluble LBs and LNs; the C-terminal 
region (AA96-140) is full of proline, which is highly acidic 
and can engage in post-translational modifications (PTMs) 
of proteins to regulate their function.

α-Syn is a pathogenic biomarker of neurodegenerative 
illnesses such as PD, multiple system atrophy (MSA), and 
dementia with Lewy bodies (DLBs) and accounts for barely 
1% of total brain protein content [6, 8–10]. The mechanism 
of α-Syn aggregation in the brain has not been clarified, and 
when intracellular homeostasis is disrupted, its non-structural 
monomer and sub-stable α-helical tetrameric forms will oli-
gomerize, and form toxic oligomers, fibrils, and deposits with 
different intermediate conformations through PTMs, which 
are difficult to distinguish from other amyloid proteins [3, 
8, 11, 12]. Studies have revealed that the preformed α-Syn 
conformational changes followed an S-shaped aggregation 

growth mechanism during the early stage of fibrillization 
[13], and self-conjugation interactions of α-Syn oligomers 
in the late stage of aggregation would accelerate the forma-
tion of fibrils and large-sized aggregates [9, 14]. Thioflavin-T 
(ThT) [11] exhibits different binding sites and binding pat-
terns when generating fibrils with two polycrystalline α-Syn 
mutants (A30P, A53T), which indicates that there are non-
single binding sites on the surface of α-Syn fibrils and lead 
to their conformational changes [8] (Fig. 2). This shows that 
it is difficult to identify α-Syn from other amyloid proteins 
because of its low content and a high degree of conforma-
tional plasticity in the brain. Therefore, the early dynamic 
detection of α-Syn conformation and content in vivo is neces-
sary for early diagnosis and treatment of PD.

Analytical methods commonly used to characterize α-Syn 
are mainly spectroscopy, microscopy, mass spectrometry 
(MS), electrophoresis, etc. Circular dichroism (CD) [15], 
fluorescence correlation spectroscopy (FCS) [16], Raman 
spectroscopy [17], atomic force microscopy (AFM) [18–20], 
and single-molecule total internal reflection fluorescence 
microscopy (TIRFM) [21] were used to monitor aggregation 
mechanism of recombinant α-Syn in vitro, allowing greater 
determination and sensitivity in samples such as cerebrospi-
nal fluid (CSF) to obtain the α-Syn conformational changes 
and its secondary or tertiary structures. MS has high sensi-
tivity and specificity for separating low molecular weight 
protein samples based on the mass-to-charge ratio upon 
vaporization and ionization. However, the method is less 
repeatable for protein separation with the same mass-to-
charge ratio, poor hydrophobicity, and interrupted intermo-
lecular interactions [22].

Fig. 1   a α-Syn aggregates 
in neurons. b The primary 
sequence and three distinct 
regions of α-Syn
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By using several MS methods, Rebecca’s group [23] has 
implemented a conformational analysis of α-Syn and apoli-
poprotein C-II (ApoC-II). Hydrogen–deuterium exchange 
mass spectrometry (HDX-MS), electrospray ionization mass 
spectrometry (ESI–MS), and ion mobility mass spectrom-
etry (IM-MS) are sensitive to intrinsically disordered protein 
(IDPs) and can distinguish the disordered and structured pro-
teins, confirm the disordered nature of α-Syn and ApoC-II, 
and reflect their conformational dynamics information. Payel 
et al. [24] detected different synaptic nuclear protein vari-
ants and quantified the α-Syn truncated at amino acid 119 
and the acetylated N-terminal α-Syn from cingulate cortex 

and occipital cortex of control and PD patients by using 
liquid chromatography and mass spectrometry (LC–MS/
MS) with differential solubilization, immunoprecipitation, 
and targeted proteomics approaches to analyze α-Syn. The 
results showed that the other α-Syn variants levels except 
for α-Syn103−119 (Ac-α-Syn1−6, α-Syn13−21, α-Syn35−43, 
α-Syn46−58, α-Syn61−80, and α-Syn81−96) in PD patient’s cin-
gulate region and Ac-α-Syn1−6 in the soluble fraction were 
significantly higher than the controls, and whether acetylated 
α-Syn can be used as a potential biomarker for PD needs 
to be further investigated. Sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS-PAGE) combined 

Scheme 1   In vivo and in vitro detection for alpha-synuclein
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with Western blotting and size exclusion chromatography 
(SEC) can detect protein aggregates based on antigen–anti-
body reaction and molecular sieve effect [25]. Furthermore, 
applying an electrical potential to the capillary, the capil-
lary electrophoresis (CE) technique can efficiently separate 
the amyloid proteins such as Aβ and overcome the effects 
of SDS and gel smears. CE needs to be further improved 
to increase the resolution of amyloid protein aggregates 
and has the potential for early oligomers detection like Aβ 
and α-Syn [26]. Online nucleic acid aptamer affinity solid-
phase extraction capillary electrophoresis–mass spectrom-
etry (AA-SPE-CE-MS) [27] can improve the shortcomings 

of traditional CE-MS, which has a small injection volume, 
easily affected by sample concentration, and realize the puri-
fication, separation, and identification of α-Syn in blood by 
specific binding of single-stranded DNA aptamer with low 
detection limit and sensitivity to acidic and alkaline environ-
ment, which will be used in the clinical monitoring of α-Syn 
in PD patient’s brains. Microfluidic capillary electrophoresis 
(MCE) [25] and affinity capillary electrophoresis (ACE) [26] 
can improve the migration rate of proteins by using binding 
agents (antibodies, aptamers, serum proteins, etc.), further 
improving protein separation with the advantages of lower 
sample consumption and higher automation potential.

In vitro approaches for the detection 
of α‑Syn

Immunohistological results of autopsy brain sections can be 
used to diagnose and reflect the severity of PD [9, 28]; the 
method is often difficult to accept by patients’ families and 
is commonly characterized by sampling errors. Therefore, 
a more cost-effective sampling method to detect α-Syn is 
required. Braak et al. proposed a hypothesis [7, 29–32] that 
microorganisms of the gastrointestinal can conduct immuno-
logical and endocrine signaling through the gut-brain axis; 
it was suggested that α-Syn could spread from the enteric 
nervous system (ENS) to CNS when exposed to environ-
mental and genetic damage. Studies showed that α-Syn has 
been found in the tissues of patients’ skin [33–40], gastro-
intestinal tract [41, 42], retina [43, 44], and body fluids such 
as blood [45, 46], CSF [47–49], saliva [50–52], and urine 
[53] (Fig. 3). In recent years, some analytical methods for 
detecting α-Syn and its conformation in the actual human 

Fig. 2   Confocal microscopy images of α-Syn amyloid fibrils. 
Reprinted with permission from ref. [8]

Fig. 3   The biological samples 
with α-Syn
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biological samples have been developed, which will facili-
tate the early diagnosis and prevention of PD.

Detection of actual human biological samples

Immunofluorescence (IF) staining based on antigen–anti-
body recognition, enzyme-linked immunosorbent assay 
(ELISA), and electrochemical sensors are commonly used 
to detectα-Syn in human biological samples such as skin tis-
sues and body fluids. Giorgia et al. [35] performed immuno-
fluorescence analysis on skin tissue from PD patients’ ankle, 
thigh, and neck; the results revealed that α-Syn formed posi-
tive deposits with 5G4 antibodies in each tissue’s dermal 
nerves and the degree of neck skin degeneration increased 
with the duration of the disease. Sharon’s team [54] detected 
total α-Syn of 16.7 ± 5.9 ng/ml and 55.9 ± 10.3 ng/ml in CSF 
and saliva samples by using phospholipid ELISA, whereas 
the traditional sandwich ELISA recorded 1.2 ± 0.4 ng/ml 
in CSF samples and could not achieve α-Syn detection in 
saliva. This approach was more sensitive than sandwich 
ELISA. For most peptides and proteins, IF and ELISA have 
the advantage of rapid analysis speed, low radiation, and 
high specificity, but lack international standard dyeing, 
and are vulnerable to personnel operation skill, body gland 
secretion, type and quantity of protein, protease inhibitors, 
and category of kits, restricting their accurate detection of 
α-Syn in vitro. Currently, there are electrochemical sensors 
mainly to detect Aβ, and fewer available to detect α-Syn, 
such as polyethylene glycol gold surface electrode sensors 
[55] based on antigen–antibody recognition, graphene oxide 
sensors [56], nucleic acid aptamer sensors [57, 58], indium 
tin oxide electrode sensors [59], etc. [60–62] (Fig. 4), have 
lower detection limits and higher specificity and sensitiv-
ity for α-Syn in vitro and are simple, portable, and mass-
produced. However, their further clinical applications are 
restricted by the variety of expensive electrode materials, 
complex structural modifications, and serious biological 
contamination.

Detection of recombinant α‑Syn in vitro

α‑Syn aggregates

Currently, there are many emerging techniques applied 
to detect α-Syn such as fluorescence imaging techniques 
and real-time quaking-induced conversion (RT-QuIC). 
Fluorescence imaging techniques [63–65] can better tar-
get the protein and generate strong fluorescence responses, 
as a potential technique for finding amyloid in vivo and 
in vitro without using any radionuclides, with lower injury, 
higher sensitivities, lower costs, detection limits, and faster 
elimination in vivo. ThT (Table 1) is a benzothiazole mol-
ecule based on the intramolecular charge transfer (TICT) 

mechanism to form a rigid molecular structure upon bind-
ing the β-sheet structure of amyloid proteins and generates 
fluorescence based on the energy released by the n-π* tran-
sition. Although the ThT method is the “gold standard” for 
detecting amyloid fibrils in vitro and a tool for recognizing 
their aggregation and restraint mechanisms [66, 67]. ThT is 
difficult to realize α-Syn detection because it lacks specific-
ity and low sensitivity, has susceptibility to interference by 
sample background fluorescence signal and inability to pen-
etrate the blood–brain barrier (BBB), and easily quenches 
after aggregation. Therefore, it is necessary to further 
develop other types of fluorescent probes to detect α-Syn 
aggregation.

Thomas M’s group presented four N-arylaminonaph-
thalene sulfonates (NAS) derivatives, 2,6-ANS, 2,6-TNS, 
bis-ANS, and bis-TNS, as universal probes for the detec-
tion of amyloid protein; bis-ANS and bis-TNS are the most 
sensitive probes to amyloid proteins. Compared with ThT 
(Kd = 14.9 M), the structure of NAS was more susceptible 
to α-Syn, with Kd values of 8.8, 11.7, 8.6, and 11.6 M, their 
charged properties and emission wavelength preventing 
them from being used as in vivo imaging probes for α-Syn 
[68]. Two fluorescence probes based on the benzothiazole 
structure, C15H15N3(C1) and C16H16N3O2(C2), can detect 
α-Syn at submicromolar concentrations. C1 and C2 do not 
interfere with α-syn aggregation and have lower detection 
limits and higher sensitivity than THT. They tend to bind 
α-Syn aggregates in SH-SY5Y cells with little cytotoxicity, 
so they are potential probes for detecting α-Syn [69]. Gorka 
et al. [70] found that the trochanteric thiazole molecules 
RB1 and RB2 have an extended π system, the molecular 
size of RB1 is between RB2 and ThT, and it has a higher 
affinity with α-Syn aggregate. Compared to ThT, the maxi-
mum absorption of RB1 combined with α-Syn aggregates 
was red-shifted at 76 nm, and the fluorescence intensity 
was increased by 112 times. So water-soluble RB1 could 
as a potential probe detect α-Syn aggregates in living cells, 
which can overcome strong background signals in living 
cells and stain the cytoplasm of HeLa and SH-SYY cells.

Needham’s group [71] created a new generation of probe 
ThX with methoxy and dimethylamino groups and PAP_1 
based on the ThT. ThX contains a higher density of electron 
clouds surrounding the C (sp3)-N bond, restricted rotation, 
and improved lipophilicity. ThX is suitable to detect α-Syn 
aggregates in high-background biological samples such as 
plasma and cerebrospinal fluid, because it can recognize 
α-Syn oligomers that ThT is unable, and the binding affin-
ity and brightness of wild reconstituted α-Syn aggregates 
are increased by 7 times and 5 times. Although the PAP_1 
probe was 100 times less brighter than ThT, it had a greater 
binding affinity for α-Syn aggregates and could image single 
recombinant α-Syn aggregates in brain tissue [72, 73]. Real-
time quaking-induced conversion (RT-QuIC) [62, 74–76] 
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can combine with ThT to rapidly detect α-Syn with low 
concentrations in vitro. However, due to the influence of 
sample size, concentration, temperature of α-Syn, and other 
conditions, the sensitivity and specificity of this method in 
the clinical application need to be further verified.

Monomers, oligomers, and fibrils of α‑Syn

Compared with other conformations, α-Syn oligomers have 
a stronger neurological damaging effect on the brain and can 
cause neuronal injury and death. Therefore, it is essential to 
detect α-syn oligomers and inhibit production. Curcumin 
[77] may hasten the transition of α-Syn from oligomers to 
fibrils and decrease neurotoxicity by reducing the number 
of oligomers. Epigallocatechin gallate (EGCG) [78] can 
preferentially bind α-Syn fibrils and form them into novel 
amorphous and smaller aggregates. As a result, probes or 
inhibitors with curcumin, EGCG, and Anle138b [79] struc-
tures can intervene early in the α-Syn aggregation process. 
BE01, BE02, mBE01, and mBE02 [80] are four highly sen-
sitive bifunctional fluorescence probes with higher fluores-
cence intensity than ThT (Fig. 5a) and simultaneously detect 
α-Syn and H2O2. The non-methylated structure of BE01 and 
BE02 binds α-Syn with lower bonding constants, allowing 
the detection of a single α-Syn fibril as shown in Fig. 5b. In 
addition, phenothiazine derivative 11b showed a high affin-
ity for α-Syn fibrils and will be expected as a radioactive 
ligand to target α-Syn in vivo after further characterization 
[81].

A few fluorescence probes with different phenyl, alkyl, 
and halogen substitutions and a large aromatic conjugated 
system can bind α-Syn monomers and oligomers, be used as 
its in vitro potential imaging probes, and accumulate expe-
rience for further development of in vivo imaging probe 
technology. By selecting target α-Syn oligomers and fibrils, 
respectively, the aromatic dyes pentamethyl anthocyanine 
SL-631 and trimethyl anthocyanine SH-299 [82] further 
enhance the detection limit of α-Syn fibrils. DCVJ probe 
[83] binds α-Syn oligomers with 2–4 times higher fluores-
cence intensity than that of bind monomers or fibrils. JC-1 
carbocyanine [84] can distinguish α-Syn monomers and 
fibrils by emitting lights of different colors and has a lower 
detection limit for α-Syn monomers.

Additionally, aggregation-induced emission (AIE) 
probes and dyes [85, 86] were developed and applied for 
α-Syn detection. The methylpyridine and dimethylamine in 

the ASCP structure [87] improve the ability of electron-π 
conjugate expansion, share the ThT binding site, and have 
a larger Stokes shift (145 nm), which can replace ThT to 
research α-Syn fibrils growth in vitro. TPE-TPP [88] is a 
sensitive probe for identifying α-Syn monomers, oligom-
ers, and fibrils with higher affinity, fluorescence intensity, 
and lower signal-to-noise ratio. It can compete with ThT 
on the binding site of α-Syn fibrils; however, its selectivity 
and affinity for other proteins are unidentified. Currently, the 
emerging fluorescence probes and RT-QuIC methods only 
achieved the detection of in vitro recombinant α-Syn; it is 
necessary to improve these methods to realize the detection 
of α-Syn in actual human samples and in vivo.

Compared with in vitro recombinant α-Syn fibrils, vari-
ous α-Syn conformations in the human brain and actual 
human biological samples are significantly different in 
composition and cellular environment; thus, the recombinant 
α-Syn cannot completely simulate the in vivo aggregation of 
α-Syn. Therefore, it is necessary to develop in vivo detection 
techniques for α-Syn.

In vivo methods for the detection of α‑Syn

At present, compared with in vitro detection techniques, 
radiographic positron emission tomography (PET), sin-
gle photon emission computed tomography (SPECT), and 
non-radiographic magnetic resonance imaging (MRI) can 
achieve in situ detection of α-Syn in vivo. These methods 
accurately reflect abnormal metabolic changes of the brain 
and anatomical information to achieve early diagnosis and 
identification of brain diseases such as PD.

Radiative PET ligands for imaging α‑Syn

PET and SPECT are less invasive and have higher specificity, 
sensitivity, and spatial resolution, allowing labeling biological 
samples such as enzymes or proteins by radionuclides (20 and 
110 min) with short half-lives and high safety including 11C, 
18F, 123I, or 99Tc and tracking imaging at the nanoscale [89, 90].

At present, only the US Food and Drug Administration 
(FDA)–approved PET probes [18F]Florbetapir [91], [18F]Flor-
betabeben [92, 93], and [18F]Flutemetamol [94–96] can be used 
to detect Aβ, while fewer PET ligands can target α-Syn, and 
have not been imaged in vivo. Although the ligands [11C]PiB 
[97], [18F]BF227 [98, 99], and [11C]-PBB3 [100] are selec-
tive for α-Syn recombinant fibrils in vitro, more easily bound 
to Aβ and Tau fibrils, which are highly abundant in human 
brain homogenates and have similar β-sheet structure rather 
than α-Syn fibrils [101]. Therefore, it is crucial to develop high-
sensitivity PET ligands that target α-Syn to detect α-Syn fibrils 
in vivo at low concentrations. Studies demonstrated that the phe-
nothiazine derivatives as [125I] SIL23[102], [11C]-SIL5, [11C]2a, 

Fig. 4   Electrochemical biosensors for α-Syn detection. a Schematic 
illustration of graphene oxide–modified biosensor to detect α-Syn 
autoantibodies. Reprinted with permission from ref. [56]. b Sche-
matic illustration of the electrochemical aptamer sensor to detect 
α-Syn oligomer. Reprinted with permission from ref. [57]. c Sche-
matic representation of the indium tin oxide electrode sensors to 
detect α‐Syn. Reprinted with permission from ref [59]

◂
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Table 1   The structures and 
characteristics of ThT, 2,6-
ANS, 2,6-TNS, bis-ANS, 
bis-TNS, C15H15N3 (C1), 
C16H16N3O2 (C2), RB1, RB2, 
ThX, PAP_1, curcumin, EGCG, 
ASCP, Anle138b, 11b, SL-631, 
SH-299, DCVJ, TPE-TPP, JC-1

Probes Structures
LOD

Kd
EX/EM
range

Target
s

Scaffold
Stat
us

Ref.

0-2μg/m

l
35nM

EX385-45

0nm

EM445-4

82nm

amyloi

d 

fibrils

Benzothiazole

in 

vitr

o

[66, 

67]

-
8.8 ± 

0.5M

EX320nm

EM471n

m

α-Syn 

amyloi

d 

fibrils

NAS derivatives

in 

vitr

o

[68]

-
11.7 ± 

0.4M

EX320nm

EM475n

m

α-Syn 

amyloi

d 

fibrils

NAS derivatives

in 

vitr

o

[68]

-
8.6 ± 

0.5M

EX395nm

EM493n

m

α-Syn 

amyloi

d 

fibrils

NAS derivatives

in 

vitr

o

[68]

-
11.6 ± 

0.7M

EX395nm

EM505n

m

α-Syn 

amyloi

d fibril

NAS derivatives

in 

vitr

o

[68]

100nM

6.19 ± 

0.03×

10
–9

M

EX350nm

EM400n

m

α-Syn 

amyloi

d 

fibrils

Benzothiazole

in 

vitr

o

[69]

C16H16N3O2(C2)

100nM

6.93 ± 

0.15×

10
–9

M

EX350nm

EM433n

m

α-Syn 

amyloi

d 

fibrils

Benzothiazole

in 

vitr

o

[69]

<30μM

0.03 ± 

0.01μ

M

EX569nm

EM604-6

06nm

α-Syn 

amyloi

d fibril

Trochanteric 

thiazole

livin

g 

cells

[70]

<30μM

4.4 ± 

0.5μ

M

EX508nm

EM578-5

83nm

α-Syn 

amyloi

d 

fibrils

Trochanteric 

thiazole

livin

g 

cells

[70]
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Table 1   (continued)

20nm

0.68 ± 

0.1μ

M

EX452nm

EM494n

m

single 

Aβ1–42; 

P301S 

tau; 

α-Syn 

aggreg

ate

Benzothiazole

in 

vitr

o

[71]

-
0.1μ

M

EX407nm

EM425n

m

α-Syn 

aggreg

ates

Benzothiazole

in 

vitr

o

[72,

73]

1.2-2.2μ

M
-

EX426nm

EM540n

m

α-Syn

oligom

ers

Curcumin

livin

g 

cells

[77]

- - -

α-Syn 

amyloi

d 

fibrils

Flavonoids

in 

vitr

o

[78]

- -

EX300nm

EM340n

m

α-Syn 

amyloi

d 

aggreg

ates

Diphenyl 

pyrazoles

in 

vitr

o 

and 

in 

vivo

[79]

-

32.10

±1.25

nM

EM485n

m 

α-Syn 

amyloi

d 

fibrils

Phenothiazine 

derivatives

in 

vitr

o

[81]

0.2-2μM

3.8 ±

0.5×1

0
5

M
−1

EX650nm

EM665n

m

α-Syn 

oligom

ers

Pentamethyl 

anthocyanine

in 

vitr

o

[82]
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and [18F]2b [103], indole diene derivatives [18F]WC-58a and 
[18F]46a[104, 105], and thiazole derivatives Anle253b [106] and 
[18F]DABTA-11 [12, 107, 108] were highly selective for in vitro 
reconstituted α-Syn fibrils. Among them, ligands [11C]-SIL5, 
[11C]2a and [18F]2b, Anle253b, and [18F] DABTA-11 can 
penetrate BBB of healthy cynomolgus monkeys or rats and 
achieve rapid brain elution, and these structures are anticipated 
to be used for in vivo α-Syn imaging after further optimization 
[12, 102]. However, ligands [18F]WC-58a, [18F]46a, and [18F]
DABTA-11 are unable to participate in the imaging of α-Syn 
fibrils in human brain homogenates due to their lipophilicity. 

Currently, the drawbacks of existing ligands structures may 
be improved by enhancing the affinity with α-Syn fibrils and 
reducing their lipophilicity, in order to provide a possibility for 
PET ligands (Table 2) to target human α-Syn imaging and as a 
potential diagnostic tool for neurodegenerative diseases like PD.

Non‑radiative MRI to image α‑Syn

MRI can provide information about brain anatomy, func-
tion, and metabolism [116, 117] based on the longitudinal 
(T1) and transverse (T2) relaxation signals generated by 

Table 1   (continued)
oligome
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<0.1mM

fibrils>5

mM
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0.8×1

0
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- -
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50nm
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o
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0.5 mg/
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m
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derivative
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5μM
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0nm

EM420-4

80nm

α-Syn 
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mers 

and 

fibrils

tetraphenylethene 

tethered 

in 

vitr

o

[88]

Note: “-” indicates that no data is found
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magnetized water protons in brain tissues. For the detection 
of PD, MRI-based conventional methods are mainly used 
to identify the secondary PD caused by structural lesions in 
the brain. In addition, the development of diffusion-weighted 
imaging (DWI), susceptibility-weighted imaging (SWI), and 
other MRI imaging technologies has further improved the 
reliability of PD diagnosis in clinical practice [90, 118].

Khairnar et al. [119] used diffusion kurtosis imaging (DKI) 
with mean kurtosis (MK) as the assessment index to scan α-syn 
overexpressing TNWT-61 mice and the method overcame the 
environmental limitation of water quality subanisotropy to 
achieve the detection of mouse brain microstructural changes, 
which could be an effective clinical diagnosis tool for early 
PD. Studies found that 3-month-old mice showed increased 
MK values in striatal and thalamic regions with insignificant 
changes in substantia nigra, hippocampal regions, and senso-
rimotor cortex, whereas 6-month-old TNWT-61 mice showed 
increased MK values in substantia nigra regions and behavioral 
assessments showed some age dependence. This suggests that 
the α-syn accumulation may be manifested in higher-density 
dopaminergic nerve terminals and that the young mouse 
model lacks dopaminergic neuronal degeneration; LB and 
brain atrophy is only applicable to imaging of early prodromal 

symptoms in PD patients. In view of the role of the glymphatic 
system and the meningeal lymphatic system in excreting toxic 
macromolecular protein metabolites and maintaining the meta-
bolic balance of the central nervous system, Xue et al. [120] 
used dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) to evaluate the basal meningeal lymphatic flow in 
patients with idiopathic PD (IPD) or atypical PD (APD); the 
results showed that meningeal lymphatic vessels have an abil-
ity to clear α-Syn. The impaired function can delay meningeal 
lymphatic drainage and aggravate the pathological reaction of 
α-Syn, indicating that this method is helpful for the early dif-
ferentiation between IPD and APD, and meningeal lymphatic 
vessels are expected to be key targets to delay the progres-
sion of PD. MRI is an important method for the diagnosis of 
early PD brain structural imaging, which can demonstrate the 
functional and structural changes of α-Syn pathological areas 
in the brain through image differences. However, MRI is an 
expensive instrument with drawbacks of standardized tissue 
quantification methods, diagnostic indicators, and prognostic 
treatment strategies; it needs to overcome the extremely low 
chemical shift dispersion of α-Syn and improve high resolu-
tion in 3D structure detection and is unable to achieve α-Syn 
in situ imaging.

Fig. 5   a Synthetic scheme 
for the dyes of BE01, BE02, 
mBE01, and mBE02. b 
Schematic illustration of the 
fluorescence intensities of the 
BE, mBE, and ThT probes in 
PBS buffer, with H2O2, with 
α-Syn aggregates and with 
concomitant H2O2 and α-Syn 
aggregates. Reprinted with 
permission and adapted from 
ref. [80]
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Table 2   The structures 
and characteristics of [18F]
Florbetapir, [18F]Florbetabeben, 
[18F]Flutemetamol, [11C]PiB, 
[18F]BF227, [11C]-PBB3, [125I]
SIL23, [11C]-SIL5, [11C]2a, 
[18F]2b, [18F]WC-58a, [18F]46a, 
Anle253b, and [18F]DABTA-11

Ligands Structures Targets Scaffold Status Ref.

Aβ and Tau 

amyloid
Pyridyl stilbene

in vivo 

(human and 

animal)

[91, 109]

Aβ1-42 amyloid

deposition

polyethylene 

glycol stilbene

in vivo 

(human)
[92, 93, 110]

Aβ amyloid 

deposition
Benzothiazole

in vivo 

(human)
[94-96,111]

Aβ amyloid 

fibrils
Benzothiazole

in vivo 

(human and 

mice)

[97,112]

Aβ and α-Syn 

amyloid fibrils
Benzoxazole in vitro [98,99,113]

Tau, α-Syn 

amyloid 

aggregates

Benzo[d]thiazol in vitro [100, 114]

α-Syn amyloid 

fibrils

(Ki148nM)

Phenothiazine 

derivatives
in vitro [102]

α-Syn amyloid 

fibrils

(Ki66.2nM)

Phenothiazine 

derivatives
in vitro [102]

α-Syn amyloid 

aggregates

Phenothiazine 

derivatives

living 

imaging 

(rats)

[103]

α-Syn amyloid 

aggregates

Phenothiazine 

derivatives

living 

imaging 

(rats and 

macaque)

[103]

α-Syn amyloid 

fibrils 

(Kd8.9nM)

Indole diene in vitro [104,105]

α-Syn amyloid 

fibrils (Ki2.1 ± 

0.3nM)

ndole diene in vitro [104,105]

α-Syn amyloid 

fibrils

Diphenyl 

pyrazoles

living 

imaging 

(rats)

[106]

α-Syn amyloid 

aggregates

Benzo[d]

bithiazole

living 

imaging 

(rats)

[12, 

107,108,115]

Note: “-” indicates that no data is found
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Conclusions and perspectives

In this paper, we reviewed the associated methods to detect 
α-Syn in vivo and in vitro. Currently, traditional methods 
based on antigen–antibody reactions to detect human actual 
samples such as autopsy, tissues, and biological fluids are 
specific for α-Syn, but with highly invasive, lower sensi-
tivity, and are difficult to detect different forms of α-Syn. 
Although in vitro analytical detection and in vivo MRI can 
obtain information about secondary and tertiary structures 
of α-Syn and structural pathologies in the brain with high 
resolution, and realize the size quantification and image, it is 
difficult to realize in situ α-Syn detection and widespread use 
for clinical patients because of lack standardized quantitative 
methods and indicators, low resolution, and environmental 
influence. The abovementioned in vivo and in vitro meth-
ods for α-Syn detection have made considerable progress 
in illustrating the pathogenesis of PD and the dynamics of 
α-Syn aggregation, but they still lack effective methods for 
α-Syn in vivo detection and intervention.

The improvement of PET ligands and fluorescence 
imaging probes are potential methods and research hot-
spots to realize α-Syn in situ detection, early diagnosis, and 
therapy of PD. In situ α-Syn with lower abundance, com-
plex intracerebral environment, and PTMs lead to different 
forms and binding sites that are difficult to be detected 
compared with Aβ, Tau, and in vitro recombinant α-Syn 
models. At present, fluorescence probes that target α-Syn 
have slow development compared to PET ligands. Only a 
few fluorescence probes can target in vitro and intracellu-
lar recombination α-Syn but have not yet achieved α-Syn 
in vivo imaging due to poor selectivity, elution ability, and 
high lipophilicity. A few α-Syn PET ligands are still in the 
primary stage compared to Aβ and Tau ligands. Although 
PET ligands can target different forms of α-Syn in vitro 
and penetrate the BBB in rodent animal models, its limited 
emission wavelengths are unsuitable for human studies, 
and no clinically approved PET ligands for in vivo α-Syn. 
Therefore, fluorescence probes and PET ligands for α-Syn 
in vivo imaging should have the following characteristics: 
(1) small molecular weight, low lipophilicity and cytotox-
icity, long fluorescence lifetime, and good elution capacity 
after penetrating the BBB by passive diffusion; (2) highly 
sensitive to α-Syn, high selectivity and affinity, and low 
detection limit; (3) suitable emission wavelength to achieve 
α-Syn in situ imaging. Therefore, in further development 
and application of α-Syn in situ imaging technology, it is 
necessary to evaluate the fidelity of the recombinant α-Syn 
models in vitro and simulate its aggregation environment 
in the brain, considering the influence of the difference dis-
tribution and concentration of the target proteins and non-
target proteins. Using structural modification strategies 

like substitution and enhanced conjugation improves the 
abovementioned features of new fluorescence probes and 
PET ligands. Meanwhile, microscopy, MS, and computer 
molecular docking technology could be used to clarify the 
process of aggregation dynamics, detect α-Syn conforma-
tion and size, and predict the binding sites. The develop-
ment of potential probes and ligands for targeting various 
α-Syn conformations in vitro is anticipated to further apply 
for α-Syn in situ imaging.
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