
Vol.:(0123456789)1 3

Analytical and Bioanalytical Chemistry (2023) 415:2601–2611 
https://doi.org/10.1007/s00216-022-04428-2

RESEARCH PAPER

Authentication of fish oil (omega‑3) supplements using class‑oriented 
chemometrics and comprehensive two‑dimensional gas 
chromatography coupled to mass spectrometry

Rássius Alexandre Medeiro Lima1,2  · Sofia Madruga Marcondes Ferraz1,2  · Victor Gustavo Kelis Cardoso1,2  · 
Carlos Alberto Teixeira1,2  · Leandro Wang Hantao1,2 

Received: 21 August 2022 / Revised: 31 October 2022 / Accepted: 4 November 2022 / Published online: 14 November 2022 
© Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Food supplement authentication is an important concern worldwide due to the ascending consumption related to health 
benefits and its lack of effective regulation in underdeveloped countries, making it a target of fraudulent activities. In this 
context, this study evaluated fish oil supplements by comprehensive two-dimensional gas chromatography coupled to mass 
spectrometry (GC×GC–MS) to obtain fingerprints, which were used to build predictive models for automated authentication 
of the most popular products sold in Brazil. The authentication process relied on a one-class classifier model using data-
driven soft independent modeling of class analogy (DD-SIMCA). The output of the model was a binary classifier: certified 
IFOS fish oils and non-certified ones — regardless of the source of adulteration. The compositional analysis showed a sig-
nificant variation in the samples, which validated the need for reliable statistical models. The DD-SIMCA algorithm is still 
incipient in GC×GC studies, but it proved to be an excellent tool for authenticity purposes, achieving a chemometric model 
with a sensitivity of 100%, specificity of 98.6%, and accuracy of 99.0% for fish oil authentication. Finally, orthogonalized 
partial least square discriminant analysis (OPLS-DA) was used to identify the features that distinguished the groups, which 
ascertained the results of the DD-SIMCA model that IFOS-certified oils are positively correlated to omega-3 fatty acids, 
including eicosapentaenoic acid (EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3).
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Introduction

Food supplements are an important source of bioactive 
substances, which can be sold as capsules or liquid dosage 
forms to complement the regular diet [1–4]. In 2016, the 
food supplement industry contributed with over 120 billion 
dollars to the US economy [5].

Many food supplements are commercially available, and 
fish oil is the most popular product worldwide [6, 7], prob-
ably due to several reports showcasing important health 
benefits [8–10]. Such benefits are related to the occurrence 
of polyunsaturated fatty acids, wherein the most important 
are the omega-3 (n-3) constituents [11, 12]. Fish oil is rich 
in eicosapentaenoic acid (EPA, C20:5 n-3) and docosahex-
aenoic acid (DHA, C22:6 n-3), which are different omega-3 
fatty acids exclusively found in marine products [11–13]. 
Other fatty acids are found in seeds and plant oils such as 
alpha-linolenic acid (C18:3 n-3), linoleic acid (C18:2 n-6), 
arachidonic acid (C20:3 n-6), oleic acid (C18:1 n-9), and 
nervonic acid (C24:1 n-9) [11, 12].

The increasing demand for fish oil and the lack of effec-
tive regulation in some countries, such as underdeveloped 
countries, are a potential scenario for fraudulent practices, 
like mislabeling and adulteration with lower quality ingredi-
ents [1, 3, 13, 14]. For this reason, the assessment of fish oil 
quality has raised concerns among consumers and regulatory 
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agencies worldwide [13, 14]. This awareness has led to 
the implementation of the international fish oil standards 
(IFOS), which is the oldest and most popular certification by 
Nutrasource, a Canadian company [15]. The IFOS-certified 
products meet the levels of omega-3 fatty acid described 
on the labels and are tested to check for possible oxidation 
and contaminants found in fish, including dioxins, furans, 
mercury, and lead [15]. Consequently, the IFOS-certified 
products are typically more expensive than the non-certified 
analogs, which raises concerns about the safety and quality 
of the latter products. Hence, quality assurance protocols are 
desperately needed to monitor fish oil supplements.

Multiple analytical platforms are needed to assess the 
inorganic and organic constituents of fish oils. However, 
this study focuses on the analysis of the fatty acids found in 
such products, which are the main ingredients of this sup-
plement. Several studies were reported evaluating fish oil 
quality using different analytical techniques [14], such as 
vibrational spectroscopy [16–20], nuclear magnetic reso-
nance [19, 21, 22], liquid chromatography (LC) [23–25], and 
gas chromatography (GC) [13, 26–28]. More specifically, 
an interesting technique for the analysis of the individual 
fatty acid isomers is comprehensive two-dimensional gas 
chromatography (GC×GC) [29].

Comprehensive two-dimensional gas chromatography is 
a multidimensional separation technique that explores two 
sequential GC stages to improve the overall peak capacity 
of the composite system [30–33], being considered an ideal 
platform for untargeted analysis in foodomic investigations 
[34]. Important reports of fish oil analysis using GC×GC 
include analysis of dioxins in fish oil [35], profiling of fatty 
acid methyl esters (FAME) in menhaden fish oil [36], and 
occurrence of persistent organic pollutants in fish oils [37]. 
However, to the best of our knowledge, there are no studies 
using GC×GC to study fish oil certification.

Fundamental studies with product certification and adul-
teration are challenging because the quality assurance and 
nature of potential adulterants are highly dependent on the 
country. Usually, underdeveloped countries are more sus-
ceptible to adulterations, which challenges multiclass clas-
sification. For instance, discriminant analysis using partial 
least squares (PLS-DA) may be unsuccessful if many impu-
rities and adulterants are used, as the intra-class variation 
may become too large, jeopardizing the performance of the 
chemometric model. Moreover, if an adulterant was not used 
in the training dataset but is detected in test data, then the 
sample might be misclassified by the PLS-DA model. In 
this context, one-class chemometric models are particularly 
useful, as the certification model relies solely on the charac-
teristics of the desired product, regardless of the impurities 
or adulterants [38, 39].

More specifically, data-driven soft independent mod-
eling of class analogy (DD-SIMCA) may be explored for 

one-class classifiers, being an ideal solution for food supple-
ment (e.g., fish oil) authentication resulting in a binary deci-
sion. In other words, the model output informs the analyst 
if the sample is authentic or not — regardless of the reason 
why the adulterated exhibited a different chromatographic 
profile. If discriminant analysis was used, the number of 
classes being modeled likely would increase with the num-
ber of adulterants being addressed by the investigation [40, 
41]. To accomplish this goal, authentic samples are graphi-
cally assigned within a statistically relevant acceptance area, 
while the model rejects non-authentic samples, as described 
in the “DD-SIMCA” section.

In this study, we evaluated an alternative method for fish 
oil authentication according to the IFOS certification. The 
thirty-two selected brands were the most popular fish oil 
supplements sold through e-commerce in Brazil. The experi-
ments were carefully designed for the use of one-class clas-
sifiers using DD-SIMCA chemometric modeling [38, 39]. A 
pixel-based data analysis approach was employed using the 
GC×GC chromatograms as chemical fingerprints (i.e., untar-
geted analysis) for the classification model [42–45], followed 
by orthogonalized partial least squares discriminant analysis 
(OPLS-DA) with the sole purpose of generating a loading 
tensor to validate the findings of the DD-SIMCA. Finally, 
important figures of merit for the DD-SIMCA classification 
model were determined during method development, includ-
ing sensitivity, specificity, and accuracy [46]. It is hoped that 
this report will highlight the potential application of one-
class classifiers to authentication studies with chemometrics 
in the field of GC×GC.

Materials and methods

Materials and samples

The chemicals used during the derivatization process were 
sodium methoxide, formic acid, dichloromethane, and 
sodium sulfate (Sigma-Aldrich, St, Louis, MO, USA). The 
2-mL tubes were purchased from Eppendorf (São Paulo, SP, 
Brazil). Methanol and methylene chloride were purchased 
from Synth (Diadema, São Paulo, Brazil), and sodium sul-
fate was purchased from CAQ (Diadema, São Paulo, Bra-
zil). A set of 2-mL screw-top glass vials with PFTE/PDMS 
septum was purchased from Nova Analítica (São Paulo, São 
Paulo, Brazil). The samples consisted of 32 brands of com-
mercial fish oil supplement capsules purchased from e-com-
merce (Table 1). The experiments were performed with true 
replicates (N = 3). Peak identification was confirmed using 
the Supelco 37 Component FAME Mix (Sigma-Aldrich), 
alongside confirmation with mass spectral library search 
(Wiley and NIST) and selected references [36, 47].
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Derivatization method

The procedure was adapted from Bogusz et al. [48]. An ali-
quot of 200 mg of fish oil sample was weighted in a 2 mL 
tube. An aliquot of 200 μL of saturated sodium methoxide 
in methanol was added. The reaction proceeded at 70ºC for 
5 min using a MULTI REAX vortex mixer (Heidolph Instru-
ments GmbH & Co. KG, Schwabach, Germany). Next, an 
aliquot of 100 μL of formic acid solution (0.5 mol  L−1) was 
added to neutralize the basic catalyst. To remove all remain-
ing water, sodium sulfate was added to the tube. Then, 1 mL 
of methylene chloride was added and vortexed for 15 s. The 
tubes containing the samples were centrifuged (ROTANTA 
460R, Hettich, Beverly, MA, USA) for 5 min at 9056 × units 
of gravity (g). Finally, 600 μL of the supernatant was col-
lected and transferred to a 2-mL screw-top glass for GC×GC 
analysis.

Instrumentation

Comprehensive two-dimensional gas chromatography 
coupled with mass spectrometry (GC×GC–MS) was 
used to obtain the FAME profile of the 32 fish oil sup-
plements. The system consisted of a TRACE 1300 GC 
coupled to an ISQ single transmission quadrupole mass 
spectrometer (ThermoFisher Scientific, Waltham, MA, 
USA). A TriPlus RSH autosampler (ThermoFisher Scien-
tific) was used to inject 1 µL of the liquid sample with a 
60:1 split ratio at 280 °C. The non-polar × mid-polar col-
umn configuration consisted of a first 20 m × 0.18 mm-ID 
(0.18  µm film thickness) SLB-1  ms column (100% 
poly(dimethylsiloxane)) (Supelco, Bellefonte, PA, USA) 
and a second 2.5 m × 0.25 mm-ID (0.25 µm film thickness) 
MEGA-17 column (poly(diphenyl-dimethylsiloxane) with 

Table 1  Description of the fish 
oil supplements evaluated in 
this study

Sample ID EPA (mg) DHA (mg) Batch Certification Ingredients

A1 840 521 51,666 IFOS Fish oil and alpha tocopherol (vitamin E)
A2 600 400 206,373 IFOS Fish oil
A3 1080 720 21,040,232 IFOS Fish oil and alpha tocopherol (vitamin E)
A4 867 512 61,252,020 IFOS Fish oil and alpha tocopherol (vitamin E)
A5 720 480 63,102,113 IFOS Fish oil and alpha tocopherol (vitamin E)
A6 840 521 55,611 IFOS Fish oil and alpha tocopherol (vitamin E)
A7 1048 424 2,120,103 IFOS Fish oil and alpha tocopherol (vitamin E)
B1 160 100 25,087 - Fish oil, linseed oil, and borage seed oil
B2 540 360 P210581 - Fish oil
B3 360 240 3,201,085 GOED Fish oil
B4 540 360 159,400,220 - Fish oil
B5 360 240 24,183 - Fish oil
B6 360 240 6416 - Fish oil
B7 360 240 2,010,542 - Fish oil
B8 530 360 2145 - Fish oil
B9 400 200 72,021 - Fish oil
B10 540 360 2146 - Fish oil
B11 540 360 P210386 - Fish oil
B12 540 360 A213671 - Fish oil
B13 270 180 15,024/2 - Fish oil
B14 270 180 2186 - Fish oil
B15 540 360 2,113,003 - Fish oil
B16 540 360 1754 - Fish oil
B17 540 360 P200522 - Fish oil
B18 360 240 61 - Fish oil
B19 540 360 210,413 - Fish oil
B20 540 360 491,212 - Fish oil
B21 540 360 2669 - Fish oil
B22 540 360 P210003 - Fish oil
B23 390 244 12,602 - Fish oil
B24 270 180 40,621 - Fish oil
B25 540 360 A214025 - Fish oil
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50% diphenylsiloxane monomer incorporation) — adapted 
from [49].

The flow modulation was performed using the reverse 
fill/flush configuration [50] employing three-port and four-
port SilFlow GC splitters (Trajan Scientific and Medical, 
Melbourne, Australia) [51, 52]. A 50-µL sampling loop 
comprising a 23 cm × 0.53 mm-ID MXT deactivated guard 
column (Restek Corporation) and a bleed capillary of 
2.5 m × 0.10 mm-ID were employed for flow modulation 
[53]. A three-way miniature diaphragm isolation valve (The 
Lee Company, Westbrook, CT, USA) was used to actuate the 
auxiliary gas during flow modulation. A modulation period 
of 4 s with a flush period of 250 ms was used. For flow split-
ting, an unpurged 3-port SilFlow GC splitter (Trajan Scien-
tific) and two 5.0 m × 0.18 mm-ID and 5.0 m × 0.32 mm-ID 
fused silica capillaries (Restek Corporation) were used 
for passive division of the 2D flow. The 0.18 mm-ID and 
0.32 mm-ID capillaries were used as the transfer line to the 
MS and FID, respectively.

The oven temperature was programmed from 160 °C 
to 290 °C at 3 °C  min−1. The transfer line and ion source 
temperatures were set at 280  °C and 250  °C, respec-
tively. Helium was used as carrier and auxiliary gas at 
0.5 mL  min−1 and 25 mL  min−1, respectively. EI was per-
formed at 70 eV. Full MS (centroid mode) was used for data 
acquisition (25.60 Hz) with a spectral range of 50 to 400 u at 
nominal mass resolution. Blank runs were performed every 
5 injections for quality assurance.

Xcalibur (ThermoFisher Scientific) software was used for 
instrument control and data acquisition. ChromSpace (Sep-
Solve Analytical, Waterloo, ON, Canada) was employed to 
control the flow-modulator and synchronize the GC run. GC 
Image (GC Image, LLC, Lincoln, NE, USA) was used for 
qualitative analysis using the template matching feature for 
batch processing. The “*.RAW” Xcalibur files were con-
verted to “*.CDF” ANDI/netCDF format using the file con-
verter plug-in. Chemometrics was performed on MATLAB 
R2021a (MathWorks, Natick, MA, USA) environment. The 
netCDF files were imported to MATLAB to generate three-
way data tensors. DD-SIMCA was performed using a modi-
fied algorithm from Pomerantsev et al. [38, 39].

Data preprocessing

A pixel-based approach was selected for multivariate 
data processing [54, 55]. The interested reader is directed 
elsewhere for more information on handling non-integer 
acquisition rates [56]. The GC×GC chromatograms were 
imported to MATLAB as three order tensors (i.e., data 
cube) (1D by 2D by m/z). The augmented matrices were 
prepared by unfolding them to a matrix (1D by 2D × m/z) 
for one-class analysis using DD-SIMCA [38, 39]. The 
peaks from the blank runs were removed from the dataset 

prior to chemometrics. Next, intensities of all ions in the 
corresponding mass spectra (i.e., belonging to the same 
scan) were summed up to create the total ion chromato-
grams (TIC), which were organized into a matrix (samples 
by TIC). Finally, chromatograms were normalized, Pareto-
scaled, and mean-centered before the modeling step. The 
interested reader is directed elsewhere for more informa-
tion on the preprocessing steps [57]

DD‑SIMCA

Classification is a statistical problem that aims to answer to 
which class an unknown object belongs, based on a model 
that contains objects whose categories are well-established 
[41]. A category or class is a group of objects that can be 
defined by common properties shared among all its mem-
bers. Therefore, classification methods will differ from each 
other on how to statistically estimate the class limits in a 
multivariate space.

Pomerantsev et al. [38] proposed in 2008 an algorithm 
that uses distances based on leverage and residual vari-
ance from principal component analysis (PCA) to assort 
unknown objects. The method named DD-SIMCA is based 
on SIMCA, which is a multiclass well-established classifi-
cation algorithm proposed by Wold [58]. In DD-SIMCA, 
score distance (SD) and orthogonal distance (OD) standard-
ized by a chi-squared (χ2) distribution are used to describe 
a function that delimits a single-class acceptance area with 
a significance level (e.g., 95%). To calculate these limits, 
scaling factors ( h0 and v0 ) and the number of degrees of 
freedom ( Nh and Nv ) are needed. These parameters can be 
estimated from a training dataset (X). The first step consists 
in the decomposition of X (I × J), as in PCA:

where T (I × A) is the score matrix, with A being related to 
the used number of principal components (PC), P (J × A) is 
the loadings matrix, and E (I × J) is the residuals matrix. In 
the second step, the calculated scores (T) and loadings (P) 
enable the extraction of hi and vi for score and orthogonal 
distances, respectively:

where λa, a = 1, …, A are the diagonal elements of the matrix 
TtT:

When both OD and OS are calculated, the total distance 
c can be calculated for each sample:

(1)X = TPt
+ E

(2)hi = tit
(

TtT
)−1

ti =
∑A

a=1

t2
ia

�a

(3)�i =
∑J

j=1
e2
ij
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where Nh , h0 , Nv , and v0 are unknown at first but are esti-
mated by a data-driven approach [38, 59]. Thus, based on a 
ccrit value, we can develop the acceptance area for a given 
value α [59]. So, from now on any, new sample will be con-
sidered authentic, or otherwise, it will be classified as unau-
thentic — regardless of the features responsible for such 
differentiation:

This binary decision rule is what delimits objects consid-
ered authentic and non-authentic. This characteristic is what 
differentiates DD-SIMCA from discriminant analysis, such 
as PLS-DA. In DD-SIMCA, only one well-known class of 
authentic objects (X, target class) is necessary to allocate 
news samples as being authentic (or not). Conversely, PLS-
DA intrinsically needs predefined classes to do the classi-
fication task, which makes it difficult to classify an object 
that does not belong to any of the pre-established specific 
classes. In summary, a PLS-based discriminant model will 
classify a new sample only if this sample is a member of one 
of the predefined classes, which makes such methods not the 
most suitable for authentication investigations [41].

OPLS‑DA

In this study, OPLS-DA modeling was performed only to 
obtain the loading array to evaluate the features and ascer-
tain the results obtained with DD-SIMCA [60–62].

Results and discussion

Sample discussion

Fish oil supplement may be considered a complex sample 
due to the occurrence of many critical pairs of positional 
isomers of the polyunsaturated fatty acid methyl esters. 
The successful use of GC×GC was reported to improve 
the chromatographic resolution of such challenging peak 
clusters [36, 47]. In addition to the enhanced separation, 
qualitative analysis also benefited from the ordered and 
structured GC×GC chromatograms, which evidenced the 
elution patterns of the FAME peaks. For example, using 
a non-polar × mid-polar column configuration, it was 
possible to establish elution regions for the peaks of sat-
urated, mono-, di-, tri-, tetra-, penta-, and hexa-unsatu-
rated FAMEs. This pattern alongside the use of authentic 
standards enabled the identification of the peaks detected 
in the GC×GC chromatograms. Interestingly, the number 

(4)c = Nh

h

h0
+ Nv

v

v0
∝ �2

(

Nh + Nv

)

(5)c ≤ ccrit = �−2
(

� − 1,Nh + N�

)

of detected peaks in the fish oil supplements seemed to 
exhibit fewer peaks than those found in biological sam-
ples, like fresh herring oil [47]. Furthermore, the current 
method was capable of distinguishing between triglyc-
erides and free fatty acids that composed the fish oil 
supplements — as the evaluated products did not specify 
the type of lipids used in the formulation. Since transes-
terification was used for analyte derivatization, it can be 
stated that the FAMEs originated from triglyceride-like 
structures due to the nature of the base-catalyzed reac-
tion. However, such reaction does not methylate free fatty 
acids, so it was possible to detect the free fatty acids as 
well. While this condition allowed profiling the composi-
tion of triglyceride-based fatty acids and the actual free 
fatty acids, it was observed some tailing in the 2D for the 
hydrogen-bonding analytes. However, such tailing did 
not cause any peak overlap in the GC×GC chromato-
grams. For most samples, the relative abundance of free 
fatty acids was found between 0 and 2%. Conversely, the 
relative concentration was 23 to 69% for the samples A6, 
A7, B3, and B20.

The average composition (N = 3) of the 10 most repre-
sentative samples is shown using a heatmap plot (Fig. 1). 
Interestingly, there were no clear patterns among the sam-
ples, as the fish oil supplements seemed to be composed 
of triglycerides and free fatty acids arbitrarily with respect 
to the IFOS certification. In addition, it was seen that the 
intra-group compositional variation was significant, as 
highlighted by the hierarchical cluster analysis (HCA) 
(Fig. 1), which supports the use of a one-class classifier 
model like DD-SIMCA. The assigned classes 0 (red) and 
1 (green) in Fig. 1 represent the samples with and without 
IFOS certification, respectively.

Noteworthy, the most important fatty acids in fish oil 
supplements are C20:5 n-3 (EPA) and C22:6 n-3 (DHA). 
Correlation analysis of the composition of all the samples 
(Fig. 2) shows that the peak intensities of EPA and DHA 
are negatively correlated within the samples evaluated in 
this study. In other words, when the concentration of DHA 
is high in a particular brand of fish oil, there is less amount 
of EPA in the same product. Conversely, positive correla-
tions were observed between DHA with shorter chain fatty 
acids, like C16 and C18, while the same was not be seen 
for EPA (Fig. 2).

The chemometric approach selected herein was a 
pixel-based approach for one-class classification using 
DD-SIMCA. It must be stated that the DD-SIMCA algo-
rithm is suitable for both peak table and pixel-based 
multivariate data analysis. Particularly, this pixel-based 
approach was interested in evaluating how the DD-
SIMCA algorithm handled chromatograms (Fig. 3) with 
peak intensities that varied over a wide dynamic range, 
including column overloading — as highlighted in Fig. 4. 
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Fig. 1  Hierarchical cluster-
ing heatmaps of the fatty acid 
composition of representa-
tive fish oil supplements. The 
peak areas were normalized 
and autoscaled. The distance 
measured was Euclidean. The 
clustering method used was 
Ward. The dendrogram illus-
trates the large intra-class vari-
ation among the two evaluated 
classes, namely, IFOS-certified 
supplements (class 0, red) and 
IFOS-non-certified (class 1, 
green). Abbreviations: free fatty 
acids (FA), fatty acid methyl 
esters (FAME)

Fig. 2  Correlation heatmaps of 
the fatty acid composition of fish 
oil supplements. The data input 
was the peak areas of the free 
fatty acids (FA) and the fatty 
acid methyl esters (FAME). The 
distance measured was Pearson 
r. The cell color indicates the 
correlation coefficient between 
the two selected variables (or 
features). Caption: positive cor-
relation values (red), negative 
correlation values (blue)
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This specific broad dynamic range problem is already 
known to be challenging for peak table processing, as 
overloaded peaks generally cause peak splitting during 
integration, resulting in a single feature being described 
with two peak apexes [63].

DD‑SIMCA

The first and most important step in creating one-class mod-
els is to establish a well-describe class — named target class 
— in this case, samples with IFOS certificate.

Next, the model was tested against non-certified sam-
ples to estimate the figures of merit to evaluate this proof 
of concept.

All supplements were used for modeling and evaluation, 
totalizing 7 certified and 25 non-certified samples. The 31 
and 72 chromatograms were used for calibration and exter-
nal validation of the one-class model, respectively. Each 
chromatogram exhibited 48,123 variables (i.e., pixels). 
To build the model, the calibration data were normalized 
and Pareto-scaled. Chi-squared-type acceptance areas were 
determined, and the number of PCs of the model was set to 
five  the leave-one-out cross-validation method. Outlier sig-
nificance was set to 0.01, and type I error (α) was calculated 
as approximately 0.04. The classic estimation method [64] 
was chosen for the final model (Fig. 5).

The one-class model was mathematically successful 
as there were no extreme or outliers found in the training 
dataset (green markers, Fig. 6), corroborating the expected 
value of 4% type I error (reference value). In the external 
validation step (blue markers, Fig. 6), only one sample was 
misclassified, resulting in a type 2 error of 1.4%, which is 
three times less than the 4.3% calculated for this data set 
[38, 65]. Important figures of merit like sensitivity (Eq. 6), 
specificity (Eq. 7), and accuracy (Eq. 8) were calculated for 
this model by considering the occurrence of true positive 

Fig. 3  Total ion GC×GC chromatograms of fatty acid methyl esters 
(FAME) from fish oil supplements, namely, samples A2 (A), A5 (B), 
B3 (C), and B18 (D)

Fig. 4  Expanded total ion chromatogram (TIC) obtained by GC×GC–
MS of fish oil supplements. The peaks of the C18:1 isomers exhib-
ited a broad range of intensities in the evaluated fish oil supplements 
yielding no column overloading (A), column overloading (B), and 
excessive column overloading (C). As a consequence, the automated 
peak integration resulted in split peaks (multiple apexes/features for 
the same compound). This finding motivated the evaluation of pixel-
based multivariate data processing to handle the wide dynamic range 
problem

Fig. 5  Leave-one-out cross-validation sensitivity values according to 
the number of principal components (PCs)
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(TP), true negative (TN), false positive (FP), and false nega-
tive (FN) [46]. This model achieved a sensitivity value of 
100%, specificity of 98.6%, and accuracy of 99.0%, which 
suggests an excellent performance for fish oil authentication, 
due to a single misclassification. However, when assessing 
which sample was mismatched, only the second replicate of 
sample B1 was found. Accordingly, no further actions were 
necessary.

Remarkably, despite the significant intra-class composi-
tional variation and occurrence of non-linear chromatogra-
phy (i.e., overloaded peaks in some samples), the one-class 
DD-SIMCA model was performed adequately for fish oil 
authentication. This pixel-based chemometric protocol is an 
interesting alternative for routine studies as all steps involved 
in data processing can be readily automated and parameters 
are not subjective. For instance, this pixel-based approach 
successfully bypassed the need for peak integration, which 

(6)Sensitivity =
TP

TP + FN
× 100

(7)Specificity =
TN

TN + FP
× 100

(8)Accuracy =
TP + TN

TP + TN + FP + FN
× 100

may require analyst intervention to address split peaks (i.e., 
one feature and two apexes).

The output differences between DD-SIMCA and PLS-DA 
must be highlighted to showcase the benefits of one-class 
classifiers for authentication studies. It is clear from Fig. 6 
that the non-certified samples are comprised by more than 
one class of external objects, above and below log (1 + v

v0
 ). 

This means that in terms of multiclass classification (e.g., 
PLS-DA), more than one class (at least 2) of non-certified 
samples was needed to allocate all possibilities of the 
accredited samples. Furthermore, even if it was beforehand 
possible to prepare such sub-classes, a discrimination model 
will likely provide a wrong answer to the authenticity ques-
tion, once any new object must be attributed to one of the 
predefined classes. The reason for this limitation is that the 
analyst must know exactly which adulterants or ingredients 
differ in the formulations to estimate the number of classes. 
This procedure is important for multiclass models to mini-
mize the intra-class variation.

Loadings assessment using OPLS‑DA

Lastly, the features were evaluated to ascertain the chemical 
validity of the DD-SIMCA model. Considering that DD-
SIMCA does not report loadings arrays, OPLS-DA was 
used to generate results as similar as possible to the DD-
SIMCA model. The interested reader should keep in mind 
that the classification model used a linear combination of the 
original pixels to perform the one-class predictions. In other 
words, the entire chromatogram is used as an input for che-
mometric modeling, instead of only a handful of “markers”.

OPLS-DA was applied to determine which variables are 
responsible for distinguishing between certified and uncer-
tified samples. Training and validation sets consisted of 
both IFOS certified and uncertified samples, which were 
randomly divided to contain 75 and 25% of the samples of 
each class in those sets respectively, i.e., 23 certified and 
54 uncertified chromatograms in the training set and 8 cer-
tified and 18 uncertified chromatograms in the validation 
set. Three latent variables (LV) were selected based on the 
lowest values of venetian-blind cross-validation average 
errors. It was found that the first latent variable (LV) was 
responsible for the discrimination between IFOS-certified 
and uncertified samples. The certified samples were found in 
the negative region and the latter in the positive region of 
the scores plot. Accordingly, the same is valid for the load-
ings (Fig. 7), since negative loadings are related to the cer-
tified samples, whereas the positive loadings are related to 
the uncertified ones. The peaks in the negative region are 
related to peaks of C20:5 n-3 (EPA) and C22:6 n-3 (DHA). 
Conversely, peaks in the positive region are related to other 
fatty acids (C16 and C18), which was consistent with the 

Fig. 6  Acceptance log-chart for IFOS-certified (green squares) and 
IFOS-non-certified (blue circles) fish oil supplements obtained using 
DD-SIMCA (one-class classifier). Thirty-two samples were evaluated 
using true replicates (N = 3). One replicate of sample B1 was misclas-
sified (orange circle)
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compositional analysis reported in Fig. 2. Interestingly, 
compositional analysis can lead to misunderstandings in 
the interpretation of the loadings, as EPA and DHA are not 
correlated to each other, but might be correlated to C16 and 
C18 fatty acids (Fig. 2). However, it is important to keep in 
mind that loadings are coefficients of the linear combination 
of the variables from which the principal components were 
constructed. Therefore, higher loading values do not neces-
sarily mean higher peak intensities (or areas for the peak 
table approach), but rather more importance to the chemo-
metric model.

Conclusion

The proposed method combining GC×GC–MS and one-
class classifiers was shown to be interesting alternative for 
automated authentication of fish oil supplements. The chro-
matographic method was able to distinguish between the 
types of lipids that that composed the fish oil supplements, 
like free fatty acids and triglycerides. Also, it was found 
that EPA and DHA were negatively correlated within the 
evaluated samples. In other words, it was found that when 
DHA is present with higher peak areas, less amount of EPA 
was found in the same product. In terms of authentication, 
the chemometric model was considered successful with only 
one replicate misclassified. Therefore, the final DD-SIMCA 
model presented a type 2 error of 1.4%, 100% of sensitivity, 
98.6% of specificity, and 99.0% of accuracy. Lastly, load-
ings obtained by OPLS-DA confirmed the findings of DD-
SIMCA, wherein the peaks of C20:5 n-3 (EPA) and C22:6 
n-3 (DHA) were important to build the chemometric model 
used for fish oil authentication. However, this task is not to 
be taken lightly as there was significant intra-class varia-
tion, as shown by the HCA dendrogram. Finally, we hope to 
illustrate the interesting opportunities of one-class classifier 

models for GC×GC-based chemometrics, as this approach 
is still incipient in the separation community.
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