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Abstract
Meliaceae plants have been extensively used in agriculture, folklore, and traditional medicine. They are the major storehouses 
for structurally diverse limonoids (meliacins) possessing various bioactivities like antifeedant, insecticidal, antimicrobial, etc. 
However accurate detection of these tetranortriterpenes from the vast pool of metabolites in plant tissue extracts or biological 
sample is a crucial challenge. Though the mass spectrum (MS) provides the molecular mass and the corresponding elemental 
composition, it cannot be relied precisely. The exact identification of a specific metabolite demands the MS/MS spectrum 
containing the signature product ions. In the present study, we have developed the UHPLC Q-Orbitrap–based method for 
identification, quantification, and characterization of limonoids in different plant tissue extracts requiring minimum plant 
material. Using this method, we carried out the limonoid profiling in different tissue extracts of sixteen Meliaceae plants and 
the identification of limonoids was performed by comparing the retention time (RT), ESI-( +)-MS spectrum, and HCD-MS/
MS of the purified fifteen limonoids used as reference standards. Our results revealed that early intermediates of the limo-
noid biosynthetic pathway such as azadiradione, epoxyazadiradione, and gedunin occurred more commonly in Meliaceae 
plants. The MS/MS spectrum library of the fifteen limonoids generated in this study can be utilized for identification of these 
limonoids in other plant tissue extracts, botanical fertilizers, agrochemical formulations, and bio pesticides.
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Introduction

Limonoids are plant specialized metabolites exhibiting a 
wide spectrum of biological activities important for ani-
mal, plant, and human welfare. They belong to a class of 
tetracyclic triterpenoids which are formed by loss of four 
terminal carbons of the side chain in the apotirucallane 
(C30) skeleton and then cyclized to form the 17α-furan 
ring, which is also known as tetranortriterpenoids (C26). 
Limonoids are majorly present in Meliaceae and Rutaceae 
family plants [1, 2]. Among different members of Meli-
aceae, neem/Azadirachta indica (AZI) has been the subject 
of intense investigation throughout these years [3, 4] and uti-
lized for its eco-friendly biopesticide containing azadirachtin 
A (a key limonoid). It almost took 22 years to complete the 
chemical synthesis of azadirachtin involving 71 steps by Ste-
ven Ley and group [5, 6]. The high structural complexity of 
azadirachtin and low yield make the chemical synthesis not 
feasible for large-scale production.
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Limonoids exhibit significant insecticidal activity, of 
which azadirachtin is the main component responsible for 
potent antifeedant effects on insects. It exists in different 
forms as A, B, D, E, F, G, H, I, K, M, N, etc. of which 
azadirachtin A is the most abundant. Limonoids have also 
been reported to possess growth-regulating activity [1, 7]. 
Neem limonoid–based biopesticides are widely formulated 
by the agricultural industry. Some of the commercial neem 
products (seed kernel extract of A. indica) such as Mar-
gosan-O, Turplex, and Align have been granted approval 
for pest control usage in the USA by the environmental 
protection agency [8]. At 1 ppm, 17β-hydroxyazadiradione, 
salannin, 6-deacetylnimbin, gedunin, and 7-deacetylgedunin 
showed 100% larval mortality against Helicoverpa armigera 
[9]. Apart from insecticidal activity, limonoids are known to 
possess a broad bioactivity spectrum including anti-inflam-
matory, anti-cancer, anti-malarial, anti-ulcer, anti-microbial, 
hypoglycemic activity, etc. [10–15].

The chemical structures of limonoids used as reference 
standards in this study include azadirachtin A, azadirachtin 

B, salannin, 3-deacetylsalanin, nimbin, 6-deacetylnimbin, 
nimbinene, 6-deacetylnimbinene, nimbanal, salanol acetate, 
azadiradione, epoxyazadiradione, azadirone, gedunin, and 
nimocinol (1–15) which are represented in Fig. 1. These 
limonoids belong to six different limonoid skeletons such 
as azadirachtin, salanin, nimbin, nimbinene, azadirone, and 
gedunin. The accurate identification of these limonoids in 
a huge pool of metabolites such as plant tissue extracts, 
organic fertilizers, agrochemical formulations and bio 
pesticides, etc. is a major challenge. The functional group 
decoration on these limonoids affects their solubility. The 
high structural resemblance of these limonoids results in 
low chromatographic resolution. The high complexity and 
structural similarity in bio analytical samples complicate 
their routine analysis. Therefore, a precise and versatile 
analytical technique is needed for identification of selected 
limonoids. Several analytical methods were developed for 
analysis of limonoids which focused mainly on azadirachtins 
but not other skeletal structures of limonoids [16–18]. In 
some HPLC–MS-MS- or LC–MS-based methods, only 

Fig. 1   Limonoid skeletons and 
chemical structures of 1–15 
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for 4–8 different limonoids of different skeletal structures 
were analyzed [19, 20]. The previously described high-
performance liquid chromatography (HPLC)–coupled UV 
detection method lacks selectivity and sensitivity required 
for their quantification, and efficient separation cannot be 
achieved [21]. Though a good separation was achieved by 
HPLC/tandem mass spectrometry or ultra-high performance 
liquid chromatography (UHPLC)/tandem mass spectrometry 
with improved selectivity, sensitivity, and detection limit up 
to one or two decimal units, these methods still lacked accu-
racy [22–25]. In few other reports with detection limit of up 
to four decimals, a clean separation of limonoids using the 
liquid chromatography program was achieved up to a maxi-
mum of eight limonoids only [26, 27]. This is the first time 
that a UHPLC method for a single shot separation of fifteen 
limonoids in a time frame of 35 min is reported. Another dis-
tinctive component of our method is the high-energy C-trap 
dissociation (HCD) with Orbitrap detection mass spec-
trometry along with detection sensitivity up to four decimal 
units. The method reported in this paper is reliable and easily 
reproducible. This method was validated by identifying the 
limonoids in different tissue extracts such as leaf, fruit, bark, 
and the flower of sixteen Meliaceae plants. In this study, the 
MS/MS product ion library of the fifteen limonoids gener-
ated was utilized for the identification of limonoids in plant 
tissue crude extracts. Also, the abundance of the identified 
limonoids was quantified. The different quantitative param-
eters such as linear range, limit of detection (LOD), limit 
of quantification (LOQ), recovery, repeatability, and repro-
ducibility were determined. This study generated not only a 
coherent, time-efficient HCD-MS/MS (Orbitrap detection) 
method to identify and quantitate the limonoids but also a 
tissue-specific limonoid profile of sixteen Meliaceae plants. 
This limonoid profiling will aid researchers to harness the 
biosynthetic potential to produce limonoids on the industrial 
scale.

Materials and methods

Chemicals

For all HCD-MS/MS experiments, LC–MS-grade solvents 
were procured from Merck, Darmstadt, Germany.

Plant material

Various plant parts such as fruit, flower, leaf, and bark of 
sixteen plant species were collected from Karnataka state in 
India. Aglaia lawii, Aglaia barberi Gamble, Aglaia simplici-
folia, Dysoxylum binectariferum, and Walsura trifolia were 
collected on the way to Bisale forest, Hassan district, Karna-
taka. Aphanamixis polystachya near Balupete, Sakaleshpur 

Taluka, Hassan district; Cipadessa baccifera from Kattaya 
forest, Hassan district; Chukrasia tabularis, Kemmangundi, 
Chikmagalur district; Melia azedarach near Belvathally for-
est, Arasikere, Hassan district; Melia dubia-Dudda, Hassan 
district; Reinwardtiodendron anamalaiense, Bisale forest, 
Hassan district; Soymida febrifuga, on the way to Lak-
kinakoppa junction, Shivamogga district; Toona ciliata, 
Bababudan hills, Chikkamagaluru district; Trichilia conn-
aroides-Sakaleshpur, Hassan district; Dysoxylum malabari-
cum, Agumbe, Shivamogga district, Karnataka; Swietenia 
macrophylla, Hassan (Fig. S1). AZI tissues were collected 
from an identified plant at CSIR-NCL campus.

Extraction of limonoids

Fresh tissues (0.5 g) were extracted with methanol (10 mL) 
thrice, by continuous stirring for 3 h. The pooled methanol 
layer after concentration under reduced pressure at 50 °C 
was partitioned between 20 mL each of ethyl acetate and 
water. The organic layer was separated, passed through 
anhydrous sodium sulfate, and concentrated under similar 
conditions to obtain the triterpenoid extract. Extraction of 
individual tissues was performed in triplicates.

UHPLC Q‑Orbitrap MS/MS profiling of limonoids

HCD-MS/MS analysis was performed on a Q Exactive Orbit-
rap equipped with an Accela 1250 pump (Thermo Scien-
tific). Five microliters of sample dissolved in methanol (con-
centration 0.2 mg/mL) was injected. The chromatographic 
separation of the limonoid mixture was resolved through a 
Waters Acquity BEH C18 UPLC column (2.1 × 100 mm; 
particle size, 1.7 μm) using a methanol–water gradient 
solvent program of 35 min. The gradient program started 
with 40% methanol which was linearly increased to 50% 
at 5 min. From 5 to 10 min, the amount of methanol was 
increased to 60%, from 10 to 25 min to 65%, and from 25 
to 30 min to 90% which was maintained until 32 min. Fol-
lowing this, the amount of methanol was decreased to 40% 
at 34 min and held up to 35 min. The flow rate used in the 
gradient program was 0.3 mL/min. The water used in the 
solvent system contained 0.1% MS–grade formic acid. The 
tune parameters for MS and MS/MS analysis are as follows: 
sheath gas (nitrogen) flow rate of 45 units, auxiliary gas 
(nitrogen) flow rate of 10 units, sweep gas (nitrogen) flow 
rate of 2 units, spray voltage set at 3.60 |KV|, spray current 
of 3.70 μA, capillary temperature set at 320 °C, s-lens RF 
level of 50, heater temperature set at 350 °C, mass resolv-
ing power of 70,000 full width at half maximum (FWHM), 
automatic gain control (AGC) target set at 1 × 106 ions, and 
maximum injection time of 250 ms. The ESI–MS and MS/
MS data were recorded within the mass range m/z 100 to 
1000 in positive ion mode. The MS analysis of limonoids 
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was carried out in full-scan mode, while the MS/MS analysis 
was performed in parallel reaction monitoring (PRM) mode 
with a mass tolerance window of 5 ppm. The NCE of 20% 
and 25% was applied for fragmentation of limonoids 1–10 
and 11–15 respectively. The inclusion parameters such as 
mass (m/z) and retention time for each limonoid are listed 
in Table 1. In this study, MS/MS analysis was investigated 
by employing high-energy C-trap dissociation (HCD) with 
Orbitrap detection. Data was analyzed through Thermo Sci-
entific Xcalibur software.

Method validation and quantification of limonoids 
in different tissues

For each limonoid used as reference standard, the linearity 
of the optimized method ranged between 0.04 and 40 ng/
µl by weighed least squares regression expressed as deter-
mination coefficient (R2) (Fig. S2). The limit of detection 
(LOD) and LOQ values were calculated by the formula 
LOD = 3.3*(SD/S) and LOQ = 10*(SD/S) where “SD” is 
the standard deviation and “S” is the slope. The method 
recoveries for each limonoid were evaluated at three dif-
ferent concentrations of 0.08 ng/µl, 1.6 ng/µl, and 30 ng/
µl (n = 3) by spiking in neem fruit tissue after extraction 
and then calculated by comparing the difference between 
unspiked and spiked samples. The method precision was 
evaluated in terms of repeatability (intra-day) and repro-
ducibility (inter-day) and expressed as the relative standard 
deviation (RSD %, n = 3). In the post-extraction addition 
method, a known amount of each limonoid or a structural 
analog (nimbidinol) which does not occur naturally in plants 
was added to four different matrices (fruit/flower/leaf/bark) 
of AZI and the matrix effect was calculated by dividing the 
analyte response in matrix (after subtracting the background 
endogenous levels of limonoids) with the analyte response in 
solvent at the same concentration. The matrix effect percent-
age was calculated using following equation:

where “A/A′” is the analyte response in spiked matrix/sol-
vent, respectively, at the same concentration and “B” is the 
analyte response in the original (unspiked) matrix. Accord-
ingly, the matrix effect percent higher or lower than zero 
indicates the ion enhancement or suppression, respectively, 
whereas more or less equal to zero indicates no significant 
matrix effect.

Matrix effect (%) =
[{

(A − B)∕A�
}

− 1
]

× 100

Results and discussion

Isolation of neem limonoids and method 
development

To obtain the neem limonoids, the solvent partition tech-
nique was employed in which the methanolic tissue extract 
of AZI (fruit and leaf) containing all the metabolites was 
prepared. To separate the triterpenoids from this pool, the 
methanolic extract was partitioned in equal volumes of ethyl 
acetate and water (1:1). The organic fraction enriched with 
the triterpenoids was then subjected to column chromatog-
raphy which yielded fifteen pure limonoids (1–15, Fig. 1). 
The effect of different solvents on the total limonoid con-
tent per gram of tissue is shown in Fig. 2. The total limo-
noid content in neem fruit tissue was increased by 6% when 
extracted with ethanol and 15% with methanolic extract par-
titioned between ethyl acetate and water when compared to 
the methanolic extract. However, the total limonoid con-
tent was decreased by 14% and 15% in ethyl acetate and 
acetone extract, respectively, when compared to methanolic 
fruit extract. These limonoids were characterized by nuclear 
magnetic resonance spectroscopy and high-resolution mass 
spectrometry (Fig. S3-S62). And each purified limonoid was 
dissolved in LC–MS-grade methanol to yield a stock solu-
tion of 0.02 mg/mL. Now, 50 µL each of this stock solution 
was pooled together and utilized for method development. 
This limonoid mixture (reference standards) was injected 
into the column (Waters Acquity BEH C18 UPLC column, 
2.1 × 100 mm) with a particle size of 1.7 μm. The gradient 
solvent program was developed using water and methanol as 
solvent system. After several trial runs and optimizations of 
various parameters, we finally established the UHPLC-MS 
protocol which could clearly resolve all the fifteen limonoids 
in a time frame of 35 min. The total ion chromatogram of the 
limonoid mixture is shown in Fig. 3. The mass spectrum for 
each of the limonoid in the reference standard mixture was 
obtained in positive ion mode within the mass range m/z 100 
to 1000 Da. The molecular ion for all the thirteen limonoids 
(3–15) was detected in the mass spectra which appeared as 
protonated molecule (M + H)+ and sodium adduct (M + Na)+ 
except for azadirachtin A (1) and B (2) (Fig. S6, S10). Due 
to dehydration in azadirachtin A and B, their molecular ion 
(precursor ion) peak was detected in the mass spectra as 
(M-H2O + H)+ instead of protonated molecular ion. The 
detection sensitivity of these molecular ions (m/z values) 
was obtained to the fourth decimal point with high accuracy 
of less than 5 ppm error (Table 1) along with their elemental 
composition.
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Tandem mass spectrometry of neem limonoids

High-energy C-trap/collisional dissociation (HCD) is a 
contemporary type of fragmentation with high-resolution 
detection of fragment or product ions in the Orbitrap mass 
analyzer (HCD-MS/MS). In HCD, the molecular ion is 
fragmented in a collision cell generating the product ions 
which are then transferred back in C-trap to reach Orbitrap 
for analysis. In comparison with the traditional collision-
induced dissociation (CID), HCD fragmentation generates 
increased product ion fragments, thus yielding high-quality 
MS/MS spectra [28]. Additionally, HCD fragmentation 
offers no low-mass cut-off, thus generating a broader range 

of fragmentation pathways. The MS/MS spectra of the refer-
ence limonoids were recorded in parallel reaction monitoring 
(PRM) mode with a specified mass range using HCD-MS/
MS. The normalized collision energy (NCE) was optimized 
for each limonoid so as to generate a MS/MS spectrum with 
both low and high mass product ions. The NCE of 20% and 
25% was found to be optimal for limonoids 1–10 and 11–15, 
respectively. We identified the product ions with detection 
sensitivity up to the fourth decimal point with high accuracy 
of less than 5 ppm error (Table S1) along with their ele-
mental composition. From our previous studies of structure 
fragment relationships (SFRs), we identified the key mass 
product ions [26, 29, 30] of limonoids (1–15). The struc-
ture of skeleton specific key mass product ions along with 
the m/z value and elemental composition are represented in 
Fig. 4. The identified product ions are the signature ions to 
identify the skeleton type in a complex metabolite pool of 
plant tissue extract or any biological samples or pharma-
ceutical formulations. This information was used to validate 
the above-developed method by identifying the limonoids in 
tissue crude extracts of Meliaceae plants. Apart from this, 
our study also identified the limonoid-specific product ions, 
which is attributed to our high confidence in identifying and 
authenticating the presence of specific limonoids in tissue 
crude extracts of Meliaceae plants. For instance, the struc-
tures of product ions for gedunin-type skeleton represented 
in Fig. 4 will appear for any limonoids belonging to the 
gedunin skeleton. Though gedunin also forms product ions 
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whose structure and m/z value are exactly similar to those 
of the azadirone skeleton type (signature product ions), the 
gedunin skeleton–specific product ions act as markers to dis-
tinguish from that of azadirone skeleton–type limonoids in 
the metabolite pool.

Method validation and limonoid analysis 
in Meliaceae plants

The above-developed method was validated by studying 
the different analytical parameters such as linearity, limit of 
detection (LOD), limit of quantification (LOQ), accuracy 
through recovery studies, precision (repeatability and repro-
ducibility), and matrix effects for identification and quantifi-
cation. The linearity of the developed method for all the fif-
teen reference limonoids ranged between 0.9961 and 0.9993 
indicating the reliability of the method for quantitative anal-
ysis. The LOD and LOQ were calculated for each of the ref-
erence limonoids and are listed in Table 1. The recoveries in 
the low spiking level (0.08 ng/µL) ranged between 100.1 and 
104.8% with RSD of 1.3–3.5% for intraday and 2.8–4.8% 
for interday; those in the medium spiking level (1.6 ng/µL) 
ranged between 101.1 and 105.7% with RSD of 0.3–3.8% for 
intraday and 1.1–5% for interday; and those in the high spik-
ing level (30 ng/µL) ranged between 103.3 and 108.4% with 
RSD of 1–4.8% for intraday and 2.3–6.2% for interday for all 
the reference limonoids. The stable isotope–labeled internal 
standards for quantification of limonoids are not commer-
cially available; therefore, we evaluated the matrix effect by 
post-extraction standard addition method, in which a known 
amount of each limonoid or a structural analog which does 
not occur naturally in plants such as nimbidinol was added 
to four different matrices (fruit/flower/leaf/bark) of AZI to 
study the matrix effect. We did not observe any significant 
ion enhancement or suppression in any matrix for the limo-
noids as well as the structural analog confirming no matrix 
effects (Table S2). This may be attributed to the selective 
limonoid extraction method and also the use of diluted (50-
fold) tissue extract for analysis. The identification and profil-
ing of AZI limonoids in the crude extract of fruit (F), flower 
(FW), leaf (L), and bark (B) tissues from Meliaceae plants 
are based on the comparison of the HCD-MS/MS product 
ion profile. A total of sixteen Meliaceae plants were selected 
for the study, namely Aglaia barberi Gamble (AGB), Aglaia 
lawii (AGL), Aglaia simplicifolia (AGS), Aphanamixis poly-
stachya (APP), Chukrasia tabularis (CHT), Cipadessa bac-
cifera (CIB), Dysoxylum binectariferum (DYB), Dysoxylum 
malabaricum (DYM), Melia azedarach (MEA), Melia dubia 
(MED), Reinwardtiodendron anamalaiense (REA), Soymida 
febrifuga (SOF), Swietenia macrophylla (SWM), Toona 
ciliata (TOC), Trichilia connaroides (TRC), and Walsura 
trifolia (WAT). These plants were authenticated and their 
collection number is mentioned in Table S3. For limonoid 

profiling, the methanolic tissue crude extracts of each plant 
was partitioned between ethyl acetate and water to obtain the 
limonoid-rich organic layer. For identification of limonoids, 
5 µL of the organic extract (0.2 mg/mL) was injected in the 
above-developed method. The limonoid identification in the 
tissue crude extracts involved two major steps. In the prelim-
inary step, the retention time and the mass spectrum of the 
observed peaks were matched with the reference standards. 
After confirming the exact match of RT and mass spectrum, 
the peaks were then shortlisted for further analysis. In the 
secondary step, the selected peaks with their molecular ion 
were subjected to HCD-MS/MS fragmentation to generate 
a product ion profile at the optimal NCE. The comparison 
of product ion profile (MS/MS spectrum) between the ref-
erence standards and the crude tissue extracts leads to the 
identification of limonoids (Fig. S63). Only the exact match 
of RT, the mass of the molecular ion peak with elemental 
composition (< 5 ppm error), and the product ion profile 
with that of reference standards confirms the presence of 
the limonoid in the tissue extract. If there is no match of the 
product ion profile, it declines the presence of the limonoid. 
Also, the error rate (< 5 ppm) is crucial for high reliability 
for the presence of limonoid in the tissue crude extracts. In 
our study, we observed that conclusions based only on the 
exact match of RT and mass of the molecular ion will not 
confirm the presence of limonoid in the pool of metabolites. 
For instance, the molecular ion peaks at RT of limonoid 14, 
2, 6, and 15 were observed in tissue crude extracts of AGL 
(fruit), DYB (bark), SWM (bark), and TOC (fruit), respec-
tively (Fig. S64, S65), which had the same mass as com-
pared to reference limonoid. However, when we subjected 
these for HCD-MS/MS fragmentation, the generated product 
ion profile did not match with the suspected reference limo-
noid (Fig. S64, S65). Therefore this clearly indicates the low 
reliability of the previous methods involving only MS–based 
limonoid tracings. Although there is a previously reported 
UHPLC-MS/SRM method using CID-MS/MS analysis for 
neem metabolites, it lacks reliability and specificity due to 
the lack of identification of limonoid-specific product ions 
along with their elemental composition and error value [25]. 
For instance, a previous study concluded the presence of 
azadirachtin (1, 2) in the leaf extracts of MEA and MED 
without mentioning the elemental composition and the error 
limit [25]. In our investigation, though we found the exact 
match of RT, mass of molecular ion for 1, 2 in leaf extracts 
of MEA and MED, but the expected elemental composi-
tion for the molecular ion was not generated in any given 
error limits (Fig. S66, S67). So this confirms the absence of 
azadirachtin A/B (1/2) in the leaf extracts of MEA and MED 
consistent with previous investigations [31, 32]. Several 
comparative studies on UHPLC coupled to triple quadru-
pole MS/Orbitrap high-resolution MS (HRMS)–based meth-
ods are reported previously for myriad molecules, which 
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conclude the higher confirmatory and quantitative capabili-
ties of Orbitrap HRMS [33]. Furthermore, in other crude 
extracts, even though the mass was found to be the same as 
that of the reference standard, the MS/MS fragmentation 
pattern differed greatly under similar conditions (Fig. S64, 
S65). Therefore, in our study, we have overcome the draw-
backs of previous analysis methods for precise identification 
of fifteen limonoids in a concise time frame.

Application of the developed method 
in tissue‑specific quantitative limonoid profiling 
of Meliaceae plants

Differential levels of limonoids were detected across differ-
ent tissues of the Meliaceae plant. Limonoids such as 14, 
11, 12, 3 and 5 were the most widely distributed among the 
investigated plants (Fig. 5). Among the investigated plants, 
SOF, SWM, TRC, and MED were found to contain high 
abundance of reference limonoids followed by CHT, WAT 

and MEA. No limonoids were detected in AGB, AGS and 
DYB tissue extracts (Fig. 6). We observed that gedunin 
(14) was widely distributed limonoid among different tis-
sues of Meliaceae plants namely CHT, CIB, MEA, MED, 
REA SOF, SWM, and TRC (Fig. S68, Table S4). Azadira-
dione was the second most detected limonoid dispersed 
across twelve different tissues of CHT, DYM, SOF SWM, 
TRC and WAT, followed by epoxyazadiradione in eight 
different tissues of SOF, SWM, TRC and WAT (Fig. S68). 
The quantitative occurrence of limonoids across differ-
ent tissues of Meliaceae plants is represented (Table 2). 
In the quantitative abundance of limonoids, azadirone 
was highest at 1.9047 mg/g tissue followed by salannin 
(1.8595 mg/g), 6-deacetlylnimbiene (0.2876 mg/g), salan-
nolacetate (0.1891 mg/g), gedunin (0.1121 mg/g), nim-
banal (0.0596  mg/g), azadiradione (0.0470  mg/g), and 
epoxyazadiradione (0.0319 mg/g) (Fig. 7). However, neem 
limonoids 1, 2, and 7 were not detected in any tissue extracts 
of other 16 Meliaceae plants. Profiling studies revealed that 

Fig. 5   Distribution of limonoids 
across Meliaceae plants and 
their tissues
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Fig. 6   Tissue-specific abundance of fifteen limonoids in sixteen Meli-
aceae plants. [*Aglaia lawii (AGL), Aglaia barberi Gamble (AGB), 
Aglaia simplicifolia (AGS), Aphanamixis polystachya (APP), Chukra-
sia tabularis (CHT), Cipadessa baccifera (CIB), Dysoxylum binec-
tariferum (DYB), Dysoxylum malabaricum (DYM), Melia azedar-

ach (MEA), Melia dubia (MED), Reinwardtiodendron anamalaiense 
(REA), Soymida febrifuga (SOF), Swietenia macrophylla (SWM), 
Toona ciliata (TOC), Trichilia connaroides (TRC), and Walsura tri-
folia (WAT)]
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the limonoids were mostly found in fruit and bark tissues of 
Meliaceae plants (Table S4). The limonoids (1–15) quan-
tified from tissue extracts were in concentration ranges 
between 1.9047 and 0.00004 mg/g tissue.

Tissue‑specific comparison of limonoid content 
between neem and Meliaceae plants

The tissue-specific comparison of limonoid occurrence 
between AZI and other Meliaceae plants will provide the 
alternative source for harnessing diverse limonoids and 
their biosynthetic route. From the quantitative tissue-spe-
cific limonoid profile, we observed that limonoids with less 
functional group modification (11–14) are widely distributed 
across Meliaceae plants. The other limonoids (1–10) with a 
wide range of skeletal modification/decoration with an array 
of functional groups such as tiglate, acetate, and isovalerate 
are abundant in the AZI fruit. Salannin having a strong anti-
feedant and growth-inhibiting activity on insects was six fold 
higher in MED fruit [34] (Fig. S68) when compared to the 
AZI fruit. Similarly azadirone was three fold higher in the 
AGL fruit when compared to the AZI fruit. However, limo-
noids such as 5, 11, and 12 were high in AZI fruits when 
compared with other Meliaceae fruits (Fig. S68). Gedunin, 
a notable biological therapeutic limonoid, well known for 
its heat shock protein (Hsp) inhibition [35], was more than 
three fold higher in SOF flowers when compared to AZI 
flowers. Also, a high abundance of nimbanal (nine fold in 

leaf and one fold in bark) was observed in SOF tissues when 
compared to AZI tissues. One of the striking observations 
was the 33-fold high abundance of azadiradione in SOF 
bark when compared to AZI bark. Also, an eight fold high 
abundance of epoxyazadiradione in SOF bark was detected 
when compared to AZI bark. Although limonoids of five 
different skeleton types were detected in Meliaceae plants, 
the highly rearranged azadirachtin skeleton-type limonoids 
were not detected. This tissue-specific limonoid profiling in 
Meliaceae plants revealed that the high-value azadirachtins 
are limited to AZI plants only.

Conclusion

In conclusion, we have developed and validated the most 
specific, reliable HCD-MS/MS Orbitrap method for the 
rapid identification of limonoids with ease and requiring 
minimum plant material. The method was validated by 
identifying and quantifying the limonoids in Meliaceae 
tissue extracts. A total of fifteen limonoids belonging to 
six different skeletons such as azadirachtin, salanin, nim-
bin, nimbinene, azadirone, and gedunin were used, and a 
skeleton-specific product ion profile was generated. These 
product ion profiles were used to identify the limonoids and 
confirm their presence in Meliaceae tissue crude extracts 
with high confidence. The study of the botanical distribu-
tion of limonoids in the Meliaceae family can be utilized to 

Table 2   Quantitative abundance of limonoids in Meliaceae plants

Aglaia lawii (AGL), Aphanamixis polystachya (APP), Chukrasia tabularis (CHT), Cipadessa baccifera (CIB), Dysoxylum binectariferum 
(DYB), Dysoxylum malabaricum (DYM), Melia azedarach (MEA), Melia dubia (MED), Reinwardtiodendron anamalaiense (REA), Soymida 
febrifuga (SOF), Swietenia macrophylla (SWM), Toona ciliata (TOC), Trichilia connaroides (TRC), Walsura trifolia (WAT), fruit (F), flower 
(FW), leaf (L), bark (B)

Limonoid Abundance across different tissues of Meliaceae plants (mg/g tissue)

Salannin (3) 0.0100 (APP-F); 0.0010 (MEA-F); 1.8595 (MED-F); 0.0370 (MED-B); 0.0152 (SOF-B); 0.0023 (WAT-L); 0.0012 
(WAT-B)

3-Deacetylsalannin (4) 0.0077 (MED-F)
Nimbin (5) 0.0001 (APP-B); 0.0002 (MEA-L); 0.0017 (MED-B); 0.0003 (TOC-B); 0.0021 (TRC-F); 0.0002 (TRC-B)
6-Deacetylnimbin (6) 0.0040 (TRC-F)
6-Deacetylnimbinene (8) 0.2876 (SOF-F); 0.0064 (SWM-F)
Nimbanal (9) 0.0056 (SOF-FW); 0.0596 (SOF-L); 0.0032 (SOF-B); 0.0147 (SWM-F)
Salannolacetate (10) 0.1891 (MED-F); 0.0026 (MED-B)
Azadiradione (11) 0.0003 (CHT-FW); 0.0001 (CHT-L); 0.0001 (CHT-B); 0.00004 (DYM-B); 0.0259 (SOF-F); 0.0080 (SOF-FW); 

0.0129 (SOF-L); 0.0470 (SOF-B); 0.0024 (SWM-L); 0.0030 (SWM-B); 0.0020 (TRC-B); 0.0039 (WAT-F)
Epoxyazadiradione (12) 0.0164 (SOF-F); 0.0367 (SOF-FW); 0.0123 (SOF-L); 0.0319 (SOF-B); 0.0107 (SWM-F); 0.0017 (SWM-B); 0.0058 

(TRC-F); 0.0047 (WAT-F)
Azadirone (13) 1.9047 (AGL-F); 0.0057 (SOF-F); 0.0017 (TOC-F)
Gedunin (14) 0.0008 (CHT-FW); 0.0006 (CHT-L); 0.0052 (CIB-F); 0.0004 (MEA-B); 0.0280 (MED-B); 0.0043 (REA-F); 0.0044 

(REA-L); 0.1121 (SOF-F); 0.0299 (SOF-FW); 0.0244 (SOF-L); 0.1049 (SOF-B); 0.0237 (SWM-F); 0.0006 
(SWM-L); 0.0013 (SWM-B); 0.0128 (TRC-F); 0.0004 (TRC-L); 0.0014 (TRC-B)

Nimocinol (15) 0.0005 (TOC-F)
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identify the chemotaxonomic markers. These plants have 
potential to be explored in the future for many pharmaco-
logical activities. Most of the putative intermediates of the 
limonoid biosynthetic pathway like azadirone, azadiradione, 
epoxyazadiradione, and gedunin were found to be highly dis-
tributed in the plants such as TRC, WAT, SWM, SOF, CHT, 
and MED. Henceforth, the genomic exploitation of these 
Meliaceae plants will guide the elucidation of the limonoid 

biosynthetic pathway. The method developed in this study 
is highly precise to detect limonoids (1–15) in a metabolite 
pool such as tissue crude extract, organic pesticides, pharma-
ceutical formulations, etc. in a concise time frame.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00216-​022-​04169-2.

Fig. 7   Tissue-specific quantita-
tive analysis of eleven limo-
noids in Meliaceae plants, along 
with their external morphology; 
the color code contains the 
reference limonoid number
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