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Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is well suited for intraoperative tissue analysis since it requires
little sample preparation and offers rapid and sensitive molecular diagnostics. Currently, intraoperative assessment of the tumor
cell percentage of glioma biopsies can be made by measuring a single metabolite, N-acetylaspartate (NAA). The inclusion of
additional biomarkers will likely improve the accuracy when distinguishing brain parenchyma from glioma by DESI-MS. To
explore this possibility, mass spectra were recorded for extracts from 32 unmodified human brain samples with known pathology.
Statistical analysis of data obtained from full-scan and multiple reaction monitoring (MRM) profiles identified discriminatory
metabolites, namely gamma-aminobutyric acid (GABA), creatine, glutamic acid, carnitine, and hexane-1,2,3,4,5,6-hexol (ab-
breviated as hexol), as well as the established biomarker NAA. Brain parenchyma was readily differentiated from glioma based
on these metabolites as measured both in full-scan mass spectra and by the intensities of their characteristic MRM transitions.
New DESI-MS methods (5 min acquisition using full scans and MS/MS), developed to measure ion abundance ratios among
these metabolites, were tested using smears of 29 brain samples. Ion abundance ratios based on signals for GABA, creatine,
carnitine, and hexol all had sensitivities > 90%, specificities > 80%, and accuracies > 85%. Prospectively, the implementation of
diagnostic ion abundance ratios should strengthen the discriminatory power of individual biomarkers and enhance method
robustness against signal fluctuations, resulting in an improved DESI-MS method of glioma diagnosis.
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Introduction

Glioma is the most common intracranial tumor and it accounts
for more than 50% of all primary brain tumors [1]. Gross total
tumor resection is considered to be the most effective treat-
ment for glioma patients, despite not often being achieved
clinically [2]. Glioma cells are diffusely infiltrative and often
result in residual tumor at surgical margins that may lead to
disease progression and tumor reoccurrence. Currently, neu-
rosurgeries are guided by magnetic resonance imaging (MRI),
which is not sufficiently sensitive to gauge the infiltration of
glioma, especially in regions with low tumor cell density [3].
Moreover, spatial registration between a patient’s brain and

the preoperative MR images may be compromised as brain
shift is common during craniotomies [4]. Consequently, intra-
operative tissue diagnosis increasingly relies on molecular
features assessed from tumor biopsies [5] to locate the tumor
boundary with a higher sensitivity and to provide additional
pathological information, like tumor grade and genetic muta-
tion [6]. Ultimately, this should allow surgeons to maximize
tumor resection and personalize adjunctive therapies.

Several molecular diagnostic techniques have been applied
clinically, including magnetic resonance spectroscopy (MRS)
and fluorescence imaging [7]. MRS is conducted preopera-
tively to assess tumor type and aggressiveness, but it is not
well suited for intrasurgical tissue analysis. 5-Aminolevulinic
acid–induced fluorescence guidance has been used as a surgi-
cal guide to improve glioma resection by identifying tumor
location [8] although it has limited value in accurate tissue
diagnosis [9]. Techniques that rapidly and quantitatively in-
terrogate molecular features of tissue are currently being
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developed. One such technique, Raman spectroscopy, is ca-
pable of providing label-free and molecular-specific informa-
tion of tissue [10]. Raman spectroscopy can be conducted
either in vivo, with a handheld Raman probe placed directly
on the tissue surface for data acquisition [3], or ex vivo to
analyze brain biopsies with little sample preparation, automat-
ic data acquisition and analysis, and near-immediate feedback
[11]. Additionally, ambient ionization mass spectrometry
(MS) has been identified as a potential method for intraoper-
ative tissue diagnosis [5, 12], given its capability of sensitive
and rapid metabolite characterization. MS-based techniques
use various approaches of rapid and simple tissue sampling.
For example, the MasSpec Pen relies on water extraction to
sample analytes from tissue non-destructively [13, 14], pico-
second infrared laser mass spectrometry (PIRL-MS) utilizes
laser ablation to vaporize molecules from the irradiated tissue
[15, 16], SpiderMass uses water as an endogenous matrix to
assist in laser desorption of analytes in tissue [17], and rapid
evaporative ionization mass spectrometry (REIMS) analyzes
electrosurgical vapors [18]. The molecular information of-
fered by MS is typically characterized using relative ion sig-
nals of analytes, without attempting to convert ion abundances
into their concentrations in tissue.

Desorption electrospray ionization mass spectrometry
(DESI-MS), the technique utilized in this work, uses charged
solvent droplets to rapidly extract analytes, including metab-
olites, from the tissue surface [19]. The metabolic profile re-
corded byMS allows differentiation between cancerous tissue
and normal tissue [20, 21] and identification of tumor grade
and subtype [22]. While still an experimental modality, DESI-
MS has been used to distinguish between cancerous and nor-
mal tissue in a variety of human cancers including pancreatic
[23], breast [24], brain [25–27], ovarian [21, 28], and gastric
cancers [29]. To facilitate its potential intraoperative applica-
tion, morphologically friendly spray solvents have been used
so that the same specimen can be subjected to histopathologic
analysis following MS measurement [30]. Intraoperatively,
fresh tissue smears are used for DESI-MS analysis, which
simplifies sample preparation and facilitates the formation of
a homogeneous layer of tissue so that rapid profiling can cap-
ture its overall chemical features [31].

Metabolic (and lipidic) fingerprints, which are unique to
different tissue types, are the fundamental basis of all the
diagnostic methods mentioned above. The altered cellular me-
tabolism of tumors [32–34] has been explored both by in vivo
methods, including metabolic imaging (e.g., MRS) and
isotope-labeled metabolite tracing (using 13C-labeled analogs)
[35], as well as by ex vivo methods including MS and nuclear
magnetic resonance spectroscopy [36]. Several metabolites
involved in various biosynthetic pathways have been reported
to differentiate glioma and other cancer cells from normal
cells. For example, D-2-hydroxyglutarate (D-2HG) is a well-
established biomarker for isocitrate dehydrogenase (IDH)

mutations [35, 37], since the mutated IDH exclusively con-
verts α-ketoglutarate to D-2HG. Increased lactic acid produc-
tion has been reported for several cancer types, including gli-
oma [38, 39], kidney [40], prostate [41], and ovarian cancer
[14], because cancerous cells generally require anaerobic gly-
colysis to sustain energy production in hypoxia [42]. NAA is
synthesized in neuronal mitochondria and hydrolyzed to sup-
ply acetate for acetyl coenzyme A (CoA) synthesis [43, 44].
Its decreased level in glioma [25] may be explained by a lower
neuron density [42] or accelerated utilization of CoA for in-
creased gene transcription and energy metabolism in glioma
cells [35, 44]. Glutamate is the most abundant neurotransmit-
ter, and its extracellular concentration is maintained at low
levels by excitatory amino acid transporters (EAAT) to pre-
vent excitotoxicity [45]. However, glioma cells lose the ability
to absorb glutamate since EAAT is under-expressed, causing
a local downregulation of glutamate [45]. Creatine is involved
in the creatine/creatine kinase (CK)/phosphocreatine system
for adenosine triphosphate (ATP) regeneration [46, 47].
Several studies have reported lower creatine concentrations
in malignant glioma [47–49] and oral [50] and bladder cancer
[51], possibly due to adapted ATP production and increased
phosphocreatine consumption for tumor bioenergetics [47,
52]. Gamma-aminobutyric acid (GABA) signaling has been
reported to lead to membrane depolarization and to result in
cell growth attenuation [53]. Fast-growing glioma tumors
downregulate the GABA signaling pathway, causing the de-
pletion of GABA [53]. Carnitine facilitates the transport of
fatty acids into mitochondria for energy metabolism [54];
therefore, its increased level offers an additional energy source
to promote tumor progression [55]. Mannitol, widely used to
control brain edema in patients by creating an osmotic gradi-
ent across the blood-brain barrier (BBB) [56], is upregulated
in glioma due to the tumor’s defective BBB. Our DESI-MS
method for intraoperative assessment of glioma [26, 27, 37]
presently uses the measurement of a single oncometabolite,
NAA, for estimating tumor cell percentage (TCP) and another,
2HG, for assessing IDH mutation status. The inclusion of
additional glioma biomarkers is worth investigation as it has
the potential to improve differentiation of brain parenchyma
from glioma and so increase diagnostic accuracy.

Here, we report a study which used rapid, comprehensive
metabolic profiling to discover diagnostic metabolites capable
of distinguishing normal human brain and glioma tissue. First,
mass spectra of extracts from 32 human brain samples were
recorded using nanoESI (nESI) for biomarker discovery. To
mine more metabolic information, multiple reaction monitor-
ing (MRM) profiling, which offers a higher sensitivity and
specificity [57], was applied. The diagnostic metabolites un-
covered—GABA, creatine, glutamic acid, carnitine, and hex-
ane-1,2,3,4,5,6-hexol (abbreviated as hexol)—were integrated
into a new DESI-MS method and used to analyze 29 brain
smears, mimicking the intraoperative workflow. In parallel,
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ion abundance ratios of these diagnostic metabolites were
tested for their discriminatory power using known pathologic
information. Their prediction sensitivity (> 90%), specificity
(> 80%), and accuracy (> 85%) show promise for improving
the current DESI-MS method for intraoperative glioma
diagnosis.

Materials and methods

Specimens

A set of 32 frozen and unmodified human brain tissue was
purchased by Purdue University from the Biorepository of
Methodist Research Institute. Extracts were prepared from
these specimens by keeping the aqueous phase of the Bligh
and Dyer extraction [58]. Separately, 29 specimens from this
tissue collection were smeared on glass microscope slides for
DESI-MS analysis using the new multi-metabolite method
(illustrated in Supplementary information Fig. S1).

Pathology

Pathologic evaluations of specimens in the tissue collection
were made in our previous work and are summarized in
Supplementary information Table S1 [25]. Cryo-sectioned tis-
sue was mounted onto glass slides and hematoxylin and eosin
(H&E) stained following the standard protocol. The stained
slides were blindly evaluated by an expert pathologist to pro-
vide pathological information including tissue type (i.e., brain
or subtypes of glioma), tumor grade, and estimated TCP.

MS analysis

MS analysis of brain extracts was performed using a triple quad-
rupole mass spectrometer (TSQ Quantum Access MAX,
Thermo Fisher Scientific) by nESI. The orifice of glass tips
was optimized at 8 μm and the spray voltage was optimized at
1.4 kV for a stable spray. In full-scan MS profiling, the mass
range was set atm/z 50–350 and three replicas were acquired for
one sample in both ion modes. In the discovery phase of MRM
profiling, precursor and neutral loss scans from the scan library
(summarized in Supplementary information Table S2) were ap-
plied to the pooled healthy brain and glioma extracts to discover
informative transitions with abundant and stable signals. In the
subsequent screening phase, individual brain extracts were inter-
rogated for these selected transitions in both ion polarities. To
identify diagnostic molecules, their exact masses were measured
using a high-resolution mass spectrometer (Q Exactive Orbitrap,
Thermo Fisher Scientific) and product ion scans were acquired
using the TSQ. DESI-MS analysis of brain smears was per-
formed with a linear ion-trap mass spectrometer (Finnigan
LTQ, Thermo Fisher Scientific). Methanol was used as the spray

solvent with a flow rate of 3μL/min, nitrogenwas the nebulizing
gas at a pressure of 150 psi, and the spray voltage was 5 kV. The
position of the DESI sprayer was optimized at a sprayer-to-
surface distance of 2 mm, a sprayer-to-inlet distance of 4 mm,
and a spray impact angle of 54°. To support rapid tissue analysis,
brain smears were rastered under the DESI spray to capture
average data from various locations on the tissue surface. The
developed multiple-metabolite DESI method for positive-ion
mode was composed of five segments: full scan over the range
ofm/z 50–350,MS/MS ofm/z 104,MS/MS ofm/z 132,MS/MS
of m/z 162, and MS/MS of m/z 170. Each segment took 1 min,
making the overall analysis time of a smear approximately 5min.
The negative-ion DESI method shared a similar configuration,
covering five segments: a scan over the range of m/z 50–350,
MS/MS ofm/z 146,MS/MS ofm/z 174,MS/MS ofm/z 217, and
MS/MS ofm/z 271. Note that all data discussed in this study was
recorded explicitly for this purpose; no data was re-purposed.

Statistical analysis

In both profiling methods, the raw MS data was normalized,
filtered, and averaged before principal component analysis
(PCA) to show the separation between the two tissue types.
The optimal separating hyperplane in the score plot was de-
termined by the method of soft-margin support vector ma-
chine. The support vectors were identified using the
MATLAB function “fitcsvm” to maximize the soft margin
between the separating hyperplane and data points. The most
discriminatory spectral features were discovered by t tests
based on their p values. For ion abundance ratios in DESI-
MS, discriminatory cutoffs were optimized for maximum
area-under-curve (AUC) in the receiver operating characteris-
tic (ROC) curves. Sensitivity, specificity, and accuracy at the
optimal cutoff were calculated to assess diagnostic perfor-
mances of these ion abundance ratios.

Results and discussion

Spectral features discovered by full-scan MS profiling

As a straightforward and efficient method of discovering bio-
markers, full-scan mass spectra were acquired using nESI for
all brain extracts in the two groups established by pathology as
healthy or glioma. After normalization and filtering (see
Supplementary information section entitled “Experimental
Details”), PCA was applied to the mass spectral data. In the
PCA score plot based on positive-mode spectra (Fig. 1b), the
points representing 14 glioma samples separate well from
those representing the 18 healthy samples. The observation
of two misclassified samples may be because the assumed
glioma tissue is likely to contain significant healthy tissue
and therefore have mixed morphology. Spectral features
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contributing to the separation are shown in the loading plot
(Fig. 1c), where metabolites indicated by m/z 132, 154, and
170 are characteristic of healthy brain tissue. As expected,
signal intensities of these metabolites are lower in glioma
samples, as shown in the representative full-scan spectra
(Fig. 1a) and in their box plots (Supplementary information
Fig. S2a). Conversely, metabolites indicated by m/z 162, 205,
and 211 are characteristic of glioma tissue and exhibit higher
signal intensities in glioma samples (Fig. 1a and
Supplementary information Fig. S2b). Based on their mea-
sured exact masses and fragmentation patterns in tandem
MS (MS/MS) spectra, the spectral features most representa-
tive of healthy tissue were identified as protonated creatine (m/
z 132), its sodium adduct (m/z 154), and its potassium adduct
(m/z 170), while the most characteristic features for glioma
tissue are protonated carnitine (m/z 162), the potassium adduct

of hexol (m/z 221), and an unknown compound (m/z 205). A
complete list of the 20 most discriminatory features in the
positive-ion mode, as well as their identities, is summarized
in Supplementary information Table S3.

After applying PCA to mass spectral profiles acquired in the
negative-ion mode, similar separation between the two groups
was observed in the score plot (Fig. 2b). The loading plot (Fig.
2c) revealed that healthy brain samples are primarily differen-
tiated by m/z 146 and 174, while glioma samples are differen-
tiated by m/z 147, 181, 217, 219, and 271. Signal variations of
these features can be visualized in the representative mass spec-
tra (Fig. 2a) and their box plots (Supplementary information
Fig. S3). After structural identification by exact mass measure-
ment andMS/MS, these discriminatory features were identified
as glutamate (m/z 146), 2HG (m/z 147), NAA (m/z 174),
deprotonated hexol ([M −H]−, m/z 181), its chloride adducts

Fig. 1 Full-scan profiling of brain extracts in the positive-ion mode. a
Representative mass spectra of healthy brain (blue) and glioma extracts
(red) recorded by nESI. b PCA score plot of the 18 healthy and 14 glioma
brain extracts using abundant positive-mode spectral features. The

separating hyperplane (gray dotted line) was optimized by the soft-
margin support vector machine using the circled data as support vectors.
c PCA loading plot showing spectral features which contribute most to
the separation
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([M·35Cl]−,m/z 217; [M·37Cl]−,m/z 219), and the lactate adduct
([M·C3H5O3]

−, m/z 271). Considering that all stereoisomers in
the family of hexols (e.g., mannitol and sorbitol) share the same
exact masses and fragmentation pathways, a more specific
identification was not possible in this case. The observed down-
regulation of NAA and upregulation of 2HG in glioma samples
are consistent with previous reports [25, 37] and confirm the
feasibility of the current DESI-MS method for glioma tissue
diagnosis [26, 27, 37]. A complete list of the 20 most discrim-
inatory features in the negative-ion mode is provided in
Supplementary information Table S4.

Fragmentation features discovered by MRM profiling

Brain extract is a complex biosample with high concentra-
tions of salts, whose interference can attenuate MS signals.
The increased specificity of tandem MS was exploited by

applying MRM profiling to identify additional diagnostic
metabolites not seen in the full-scan spectra. MRM profil-
ing is a two-stage exploratory technique to perform rapid
metabolomics and lipidomics based on chemical function-
alities of small molecules [57]. First, in the discovery
stage, precursor and neutral loss (NL) scans targeting com-
mon functional groups were applied to representative sam-
ples to discover informative precursor-product transitions
(viz. MRMs). The library of precursor and NL scans used
in this study can be found in Supplementary information
Table S2. In total, 953 transitions (573 in the positive-ion
mode and 380 in the negative-ion mode) passed the thresh-
olds set for signal intensity and stability. Second, in the
screening phase, abundances of all informative transitions
were recorded for each of the 32 tissue extracts and statis-
tical analysis was performed to identify the most discrim-
inatory transitions.

Fig. 2 Full-scan profiling of brain extracts in the negative-ion mode. a
Representative mass spectra of healthy brain (blue) and glioma extracts
(red) recorded by nESI. b PCA score plot of the 18 healthy and 14 glioma
brain extracts using abundant negative-mode spectral features. The

separating hyperplane (gray dotted line) was optimized by the soft-
margin support vector machine using circled data as support vectors. c
PCA loading plot showing significant spectral features which contribute
to the separation
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After applying PCA to data for the informative transitions
in both polarities, the resulting score plots (Fig. 3a, b)
displayed good separations between the two groups. A few
misclassified samples were also observed; they were deter-
mined by pathology to have low to medium tumor density,
which explains the similarities of their profiles to healthy tis-
sue. Transitions with the highest discriminatory power (lowest
p values) were identified by t tests and summarized in
Supplementary information Tables S5 and S6. In the
positive-ion mode, the 20 most diagnostic transitions include

those associated with GABA, creatine (protonated and potas-
sium adduct), glutamic acid, homocarnosine, and inosine. The
box plots shown in Fig. 3c exhibit the good discriminatory
power of GABA, glutamic acid, and creatine. The discovery
of diagnostic transitions not only will benefit targeted analysis
using benchtop mass spectrometers, but should also promote
point-of-care analysis using portable instruments where low-
resolution and noisy full-scan spectra are common [59].
Comparing results of the two profiling methods, a few metab-
olites such as creatine and inosine were identified by both.

Fig. 3 a PCA score plot using informative transitions in the positive-ion
mode where blue points represent healthy extracts and red points repre-
sent glioma extracts. The separating hyperplane (gray dotted line) was
optimized by the soft-margin support vector machine using the circled
data as support vectors. b PCA score plot using informative transitions in
the negative-ion mode. c Box plots of transitions associated with diag-
nostic metabolites in the positive-ion mode, including GABA (104→
87), glutamic acid (148→ 84), and creatine (potassium adduct: 170→

152). The y-axis of box plots refers to transition intensities normalized to
that of the internal standard transition (glutamic acid-d3: 151→ 133). The
box represents the interquartile range with a median line, and the maximal
length of whiskers is 1.5 times the interquartile range. d Box plots of
transitions associated with diagnostic metabolites in the negative-ion
mode, including glutamate (146→ 102), NAA (174→ 88), and
deprotonated hexol (181→ 59). The internal standard transition in nega-
tive polarity was glutamate-d3: 149→ 105
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MRM profiling expanded the number of diagnostic metabo-
lites to include GABA, whose full-scan spectral intensity was
not reliable given the presence of an isobaric ion namely cho-
line. In the negative-ion mode, the 20 most diagnostic transi-
tions included those associated with glutamate, NAA, hexol,
inosine, and N-acetylaspartylglutamate, which are consistent
with the full-scan profiling results. Box plots of the character-
istic transitions of glutamate, NAA, and deprotonated hexol
demonstrated good separation between the glioma and healthy
groups (Fig. 3d).

The integration of data from full-scan profiling and MRM
profiling represents a comprehensive screening of potential
glioma biomarkers. Full-scan profiling is easier to conduct
and has a relatively impartial coverage of molecules that ion-
ize well. Conversely, MRM profiling relies on the scan library
to target common functional groups, potentially biasing
against molecules with unusual structures or those that ionize
to form adducts. That said, MRM profiling can facilitate more
sensitive and specific measurements, benefiting from its oper-
ation in the MS/MS mode. This also makes MRM profiling
less vulnerable to matrix effects and better able to distinguish
isobaric ions. Taken together, full-scan and MRM profiling
unveiled several diagnostic metabolites, including GABA,
creatine, glutamic acid, carnitine, hexol, inosine, and N-
acetylaspartylglutamate, in addition to the established 2HG
and NAA. Given that the extraction occurring during DESI-
MS is nearly instantaneous and presumably less efficient than
Bligh and Dyer extraction, only the most abundant features
observed in brain extracts could be interrogated further by
DESI-MS. These are GABA, creatine (protonated and potas-
sium adduct), and carnitine in the positive-ion mode, and glu-
tamate, NAA, and hexol (deprotonated and chloride/lactate
adducts) in the negative-ion mode.

Translation to DESI-MS analysis

The discriminatory power of the metabolites selected in the
previous section was further tested using smeared brain tissue
to mimic a multi-metabolite-based extension of intraoperative
DESI-MS analysis [26, 27, 37]. Methanol was selected as the
spray solvent of DESI due to its morphologically friendly
nature and the ability to provide rich metabolic information
withminimal background noise.More detailed information on
the DESI instrumentation and optimized parameters is includ-
ed in the “Experimental Details” section of the Supplementary
information. Supplementary information Fig. S1 is a schemat-
ic illustration of rapid DESI-MS analysis, showing the
smearing of brain tissue (ca. 30 s operation time) and rastering
of smears under the DESI spray (5 min data-acquisition time).
Unlike DESI-MS imaging, this experiment records the aver-
age chemical features of the entire sample rather than being
used to provide spatially resolved information.

DESI-MS is a semi-quantitative technique unless internal
standards are used [60]. In order to deploy the diagnostic
power of identified markers in DESI-MS without the use of
an internal standard, we used ion abundance ratios, rather than
absolute peak intensities, to enhance the method’s robustness
against signal fluctuations or background noise. Additionally,
by using abundance ratios, the discriminating power can be
strengthenedwhen the numerator and denominator of the ratio
show opposite variations. For example, in the positive-ion
mode (Figs. 1 and 3), carnitine is upregulated in glioma sam-
ples while creatine is downregulated, making the ratio be-
tween neighboring peaks of m/z 162 (protonated carnitine)
and m/z 170 (potassium adduct of creatine) highly diagnostic
of the tissue disease state. This was experimentally confirmed
by the representative DESI-MS spectra recorded in the posi-
tive mode (Fig. 4a) and by the box plot of this ratio (Fig. 4c).
Further, the peak atm/z 175, identified as protonated arginine,
displayed weak if any discrimination based on its intensity in
the full-scan mass spectra (Supplementary information Fig.
S4a) or its MRM transitions (Supplementary information
Fig. S4b). Therefore, arginine can be treated as an endogenous
internal standard for creatine, causing the signal ratio m/z
170:175 to decrease in glioma samples. Protonated GABA
has an isobaric ion, choline, whose presence makes the full-
scan intensity data unreliable. However, the isobars give dif-
ferent fragment ions in the MS/MS mode. The transition as-
sociated with choline shows a relatively constant level
(Supplementary information Fig. S4c), making it an endoge-
nous standard for GABA. In other words, when fragmenting
the peak of m/z 104 (Fig. 4b), choline (MS/MS: 104→ 60)
and protonated GABA (MS/MS: 104→ 87) each produce
their respective fragments simultaneously making the frag-
ment ratio m/z 87:60 diagnostic. Figure 4c–e show box plots
of these three ion abundance ratios with good separation be-
tween the two tissue types. The marked cutoff in the plots was
optimized for a maximum area under the curve (AUC) in the
receiver operating characteristic (ROC) curve. Based on the
optimal cutoff, values for sensitivity, specificity, and accuracy
were calculated. The three ion abundance ratios all display
sensitivities > 90%, specificities > 80%, and accuracies >
85%. Wilcoxon rank-sum tests were also applied for these
ratios; all ratios display p values < 0.001. Based on these sta-
tistical results (summarized in Supplementary information
Table S7), the three ion abundance ratios are sufficiently pow-
erful to discriminate between the healthy and glioma samples.
Note that two are determined from the single-stage MS while
the third is an MS/MS measurement.

In the negative-ion mode, the ratio between downregulated
NAA and upregulated hexol in glioma tissuewas investigated.
Representative full-scan spectra (Fig. 5a) show that hexol is
detected by DESI-MS primarily as its chloride adducts
([M·35Cl]−,m/z 217; [M·37Cl]−,m/z 219) and its lactate adduct
([M·C3H5O3]

−, m/z 271), rather than as the deprotonated
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Fig. 4 a Positive-mode DESI-MS mass spectra for a representative
healthy (blue) and glioma (red) tissue smear. b Product ion scans of m/z
104 for a representative healthy and glioma tissue smear. The choline-
associated transition (104→ 60) is used as the endogenous standard for
the GABA-associated transition (104→ 87). c Box plot using MS abun-
dance ratio m/z 162:170 as a discriminator: m/z 162 indicates protonated
carnitine and m/z 170 indicates creatine K+. The ROC cutoff was opti-
mized at 0.11, with a sensitivity, specificity, and accuracy of 92, 94, and
93%, respectively. Wilcoxon rank-sum test indicated a statistically sig-
nificant variation between the two groups (p value < 0.001). d Box plot

using MS abundance ratio m/z 170:175 as a discriminator: m/z 170 indi-
cates creatine K+ and m/z 175 indicates protonated arginine. The ROC
cutoff was optimized at 2.56, with a sensitivity, specificity, and accuracy
of 92, 81, and 86%, respectively. Wilcoxon rank-sum test indicated a
statistically significant result (p value < 0.001). e Box plot using the
fragment ion ratio m/z 87:60 as a discriminator, comparing the GABA-
associated transition to that of choline. The ROC cutoff was optimized at
0.26, with a sensitivity, specificity, and accuracy of 92, 88, and 90%,
respectively. Wilcoxon rank-sum test indicated a statistically significant
result (p value < 0.001)

Fig. 5 a Negative-mode DESI-MS mass spectra for a representative
healthy (blue) and glioma (red) tissue smear. b Box plot using the inten-
sity percentage of hexol (as defined in Eq. 1) as a discriminator. The ROC

cutoff was optimized at 0.67, with a sensitivity, specificity, and accuracy
of 92, 100, and 97%, respectively. Wilcoxon rank-sum test indicated a
statistically significant result (p value < 0.001)
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molecule ([M −H]−,m/z 181). To better characterize the abun-
dance ratio between all hexol-related species and NAA, the
intensity percentage of hexol is used. (1)

%Intensityhexol ¼
I total hexol

INAA þ I total hexol

¼ I181 þ I217 þ I219 þ I271
I174ð Þ þ I181 þ I217 þ I219 þ I271ð Þ *100%

ð1Þ

Figure 5b shows the box plot of this intensity percentage
with good separation between the two tissue types. Similarly,
the optimal cutoff was determined based on ROC, yielding a
sensitivity, specificity, and accuracy of 92, 100, and 97%,
respectively. Wilcoxon rank-sum test showed that hexol-
related species were significantly upregulated in glioma sam-
ples (p value < 0.001). NAA intensities were also calculated to
allow comparison with the performance of the current intra-
operative DESI method. Illustrated in Supplementary infor-
mation Fig. S5, NAA alone is powerful enough to distinguish
glioma from normal tissue with sensitivity, specificity, and
accuracy values of 100, 88, and 93%. The improved diagnos-
tic accuracy obtained by characterizing hexol intensity per-
centage (96%), compared to NAA measurement (93%), sug-
gests that the inclusion of an inversely related metabolite can
increase diagnostic power over that for a single biomarker.
While the three diagnostic ratios in the positive-ionmode have
comparable accuracies to the existing NAAmeasurement (93,
86, 90%, respectively), their inclusion in the new method of-
fers multiple diagnosis channels to ensure a robust prediction.
This expectation remains to be tested on a large number of
samples and in an intraoperative setting where a wider range
of tissue types is likely to be encountered.

Conclusions

The inclusion of additional biomarkers in a DESI-MS method
will likely improve the diagnostic accuracy and method ro-
bustness of distinguishing brain parenchyma from glioma. In
this study, metabolic biomarkers of healthy brain tissue and
glioma have been discovered by both full-scan MS profiling
and MRM profiling using nESI. The most diagnostic and
abundant are GABA, creatine, glutamic acid, carnitine, and
hexol. Good separation between the two tissue types has been
observed in PCA score plots and box plots. With the goal of
using these metabolites for rapid tissue diagnosis, new DESI-
MS methods (taking 5 min) have been developed and tested
using brain smears. Several diagnostic ion abundance ratios,
generated both from intact ions in full-scan mass spectra and
from fragment ions in MS/MS spectra, have been identified.
The positive-mode abundance ratios (full-scan MS and MS/
MS) related to GABA, carnitine, and creatine all display >

90% sensitivities, > 80% specificities, and > 85% accuracies
for tissue diagnosis at their optimized ROC cutoffs. Further,
the negative-mode abundance ratio of hexol shows good dis-
crimination, with a sensitivity, specificity, and accuracy of 92,
100, and 97%, respectively.We envision that integrating these
discriminatory metabolites into the current intraoperative
DESI-MS methodology will provide a more sensitive detec-
tion of glioma near infiltrative margins and ultimately assist
the achievement of gross total tumor resection during
surgeries.
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