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Abstract
Intense label-free surface-enhanced Raman scattering (SERS) spectra of serum samples were rapidly obtained on Ag plasmonic
paper substrates upon 785 nm excitation. Spectra from the hepatocellular carcinoma (HCC) patients showed consistent differ-
ences with respect to those of the control group. In particular, uric acid was found to be relatively more abundant in patients, while
hypoxanthine, ergothioneine, and glutathione were found as relatively more abundant in the control group. A repeated double
cross-validation (RDCV) strategy was applied to optimize and validate principal component analysis-linear discriminant analysis
(PCA-LDA) models. An analysis of the RDCV results indicated that a PCA-LDA model using up to the first four principal
components has a good classification performance (average accuracy was 81%). The analysis also allowed confidence intervals
to be calculated for the figures of merit, and the principal components used by the LDA to be interpreted in terms of metabolites,
confirming that bands of uric acid, hypoxanthine, ergothioneine, and glutathione were indeed used by the PCA-LDA algorithm to
classify the spectra.
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Introduction

Surface-enhanced Raman scattering (SERS) spectroscopy is
an analytical technique based on the inelastic scattering of a
laser by analytes adsorbed on nanostructured metal surfaces
with adequate plasmonic properties [1, 2]. As for normal
Raman spectroscopy, bands in SERS spectra are related to
the different vibrational modes of the analyte molecules.
Different molecular structures will yield different spectra,
making vibrational spectroscopies as Raman and SERS very

structure-specific. However, SERS benefits from a much
greater sensitivity than Raman, due to the intensity enhance-
ment granted by its interaction with the plasmonic surface.
These characteristics, together with the availability of relative-
ly inexpensive and portable instrumentation, as well as a fast
analytical response, make SERS extremely appealing for
bioanalytical applications, many of which are listed in recent
reviews [3, 4].

One of the simplest approach used when applying SERS to
bioanalysis, usually referred to as label-free SERS, consists of
putting a biofluid containing the analyte or a mixture of
analytes in contact with a nanostructured metal surface (such
as metal nanoparticles) for direct detection of the target mol-
ecule(s). While in some cases a specific analyte is sought, in
many cases, especially when developing a diagnostic method,
an untargeted approach is adopted. By using this strategy, the
rich biochemical complexity of biofluids such as blood plas-
ma or serum is explored, and not just one but several metab-
olites are considered in a multi-marker approach to diagnosis.
Thus, in a study where label-free SERS is used to characterize
biofluid samples for diagnostic or prognostic purposes, spec-
tra become a sort of metabolic fingerprints, in which bands
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originate from those narrow subset of metabolites with a
higher affinity for the nanostructured metal surface [5].

Label-free SERS of biofluids such as plasma, serum, urine,
or saliva is rapidly emerging as a promising method for the
diagnosis of several pathologies [3–5], especially by using
multivariate data analysis and predictive modelling methods
to fully exploit the intrinsic multivariate information present in
the spectral dataset. By using multivariate prediction algo-
rithms [6–8], even what are usually considered extremely
small spectral differences can be exploited for classification
purposes. However, multivariate methods are a two-edged
sword, and while being extremely powerful tools to exploit
the information contained in SERS spectra, they should be
carefully validated and the results correctly presented. To
avoid overfitting, and thus a gross over-estimation of the clas-
sification performance of a method, a careful approach should
be adopted when trying to optimize and validate a model.
Another issue in predictive models is the estimation of the
uncertainties of figures of merit (FOM, also addressed as
“quality performance metrics”) such as accuracy, sensitivity,
specificity, NPV, PPV, and AUC, often used [9] to express the
performance of a classificationmodel. The uncertainty about a
model performance can be conveyed by specifying confi-
dence intervals for FOM. However, such confidence intervals
cannot be derived from a single model, but require an ade-
quate number of different models.

Among the different strategies available for optimization
and assessment of models, the repeated double cross-
validation [6, 10] (RDCV, see Methods and Discussion for
details) has one advantage it automatically optimizes model
parameters, thus avoiding arbitrary choices by researchers,
while keeping train and test data sets for optimization and
validation well separated. These features help to minimize
the possibility of overfitting. Moreover, the repeated cross-
validation generates many different models that can be used
to calculate confidence intervals for FOM.

This paper aims to apply RDCV for classification, using a
“principal component analysis - linear discriminant analysis”
approach (PCA-LDA [6], see Methods and Discussion for
details) on a label-free SERS dataset. RDCV has been origi-
nally proposed and used for regression [10], and although a
number of studies applied this approach to classification as
well on several types of spectroscopic data [11–15], to our
knowledge, it has never been applied with this purpose to
SERS data. As a case study to assess the use of RDCV, we
use a dataset of label-free SERS spectra of serum of two
groups of subjects: patients with hepatocellular carcinoma
(HCC) and a control group.

The focus on HCC derives from the evidence that early
diagnosis for this cancer still represents an unmet clinical
need. HCC is the most common type of primary liver cancer,
represents the seventh most frequent cancer and the fourth
leading cause of cancer-related death worldwide in 2018

[16]. The late diagnosis has a negative impact on patients’ life
expectancy since it lowers the chances of effective treatment
options. HCC is the only cancer diagnosed through imaging
techniques without the need for histological confirmation.
However, imaging techniques have some limitations in terms
of sensitivity, costs, and patient’s compliance. Short-term sur-
veillance with these techniques is still considered not clinical-
ly efficient and cost-effective. New non-invasive tools are thus
needed to for early HCC detection, and label-free SERS of
serum or other biofluids might be a viable candidate.

Materials and methods

Materials and chemicals

All chemicals used for the SERS substrate fabrication were
purchased from Merck and used as received. Pure cellulose
qualitative filter paper (grade 410, 2 μm average pore size)
was purchased from VWR International Srl (Milano, IT).
Ultrapure water (Milli-Q) was used for preparing all solutions.

Human serum samples

Fasting blood samples were collected at time of diagnosis
from 72 consecutive male subjects with HCC referring to
the Liver Center of the University Hospital of Trieste
(Italy) and from 72 consecutive healthy blood donors re-
cruited in 2018 at the Transfusion Clinic of the University
Hospital of Trieste (Italy) (Table 1, and Table S1 in the
Supplementary Information (ESM)). All the patients pro-
vided written informed consent and patient anonymity has
been preserved. The investigation was conducted accord-
ing to the principles expressed in the Declaration of
Helsinki. The study was approved by the regional ethical
committee (Comitato Etico Regionale Unico del Friuli
Venezia Giulia, Prot. No. 2018 Os-008-ASUITS,
CINECA no. 2225). HCC was diagnosed according to
the EASL criteria and staged according to the Barcelona
Clinic Liver Cancer (BCLC) [17].

Table 1 Characteristics of the study populations. Age expressed as
median (1st quartile–3rd quartile). For more characteristics, see
Table S1 in ESM

Number of samples Age

Controls (CTR) 72 56 (52–60)

Hepatocellular c. (H0T) 72 69 (64–74)

TOTAL 144 61 (55–69)
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Sample collection and storage

Serum samples were obtained from 6 mL of whole blood
collected in Vacuette® serum separating tubes (Greiner Bio-
One International GmbH, Kremsmünster, Austria) and centri-
fuged at 3500 rpm for 10 min. Supernatants were transferred
in 1-mL Eppendorf tubes and subsequently frozen at − 80 °C
for long-term storage (until SERS analysis). For HCC, pa-
tients’ samples were collected at the time of diagnosis before
any treatment.

SERS substrate fabrication

The plasmonic paper substrates in use were fabricated accord-
ing to an in-house developed procedure, following a dip-
coating of filter paper with citrate-reduced silver nanoparticles
[18]. The synthesis of the colloidal nanoparticles follows the
recipe of Lee and Meisel [19]. Briefly, 10 mL of sodium
citrate 1.1% w/w has been added dropwise to 500 mL boiling
solution of AgNO3 1.1 mM under magnetic stirring for 1 h
and kept at dark. All glassware used for this synthesis was
previously cleaned with nitric acid and Nochromix solutions
(GODAX Labs Inc.), and thoroughly rinsed with Milli-Q wa-
ter after each cleaning step. The resulting nanoparticles have
been concentrated 10 times in volume with an ultra-centrifuge
(60 min at 45000 rpm). Afterward, 1 cm2 filter paper squares
were placed well-wise in a 24 multi-well plates with 3 mL of
the concentrated Ag colloid. The addition of 62 μL of 1 M
sodium citrate tribasic allowed NP aggregation and precipita-
tion on the paper. After 7 days of incubation, the supernatant
was removed and the substrates were transferred and stored in
Milli-Q water, in dark and at room temperature, until use. The
substrates prepared as described were stable for 3 months.

SERS instrumentation

The spectra collection has been performed in air at room tem-
perature with an i-Raman Plus portable system (BWS465-
785S) through a compatible Raman video microscope
(BAC151B) and with the BWSpec software (version
4.03_23_c), by B&W Tek (Newark, DE). Excitation was ob-
tained with a 785-nm laser with an output power of about
400 mW. Laser light delivery to the sample and scattering
collection occurred through an optical fiber probe connected
to a compatible Raman video microscope. The instrument
spectrograph had an average spectral resolution of 2.4 cm−1.
The laser spot diameter at the sample was of 105 μm, obtained
by using a × 20 Olympus objective (N.A. 0.25, working dis-
tance 8.8 mm). Spectra collection was performed with a single
accumulation of 10 s CCD exposure, and with a laser power at
the sample of 38 mW (10% of the maximum laser output).
Using these experimental conditions, no substrate photo-
degradation was reported. Paracetamol samples were used as

standard reference samples during every measurement session
to check spectrometer wavelength calibration.

Sample preparation and SERS measurement

Serum samples were immediately analyzed after thawing.
Five microliter drops of serum were dropped on the surface
of the plasmonic paper substrates and let dry for 20min. Later,
the plasmonic paper substrates were placed under the i-Raman
plus portable microscope objective on a glass microscope
slide, and spectra were collected at room temperature
(25 °C) in three technical replicas for each sample, which were
averaged before further preprocessing and analysis. Data was
collected on 5 different days and over 3 different batches of
substrates. Sample collection was stratified over the different
batches of substrates and over various days, so that on each
day, an equal number of samples from both H0T and CTR
classes and from each substrate batch was measured. This
way, differences observed between classes cannot be related
to the measurement day or to the substrate batch used. Also,
measurements were randomly collected by two different
operators.

Data preprocessing, analysis, and visualization

Spectra have been entirely processed using the R environment
for data analysis [20]—version 3.6.2 (2019-12-12). In partic-
ular, the package hyperSpec [21] was used for data import and
visualization. The preprocessing steps included (i) Raman
shift range selection (400 to 1800 cm−1) and data interpolation
by local polynomial regression fitting (loess) to a new wave-
length axis with a spacing of 2 cm−1, (ii) baseline correction
(package baseline [22], method modpolyfit, polynomial de-
gree = 4), (iii) vector normalization. Examples of baselines
are shown in Fig. S1 of the ESM. After baseline correction,
the Raman shift range was further cropped from 430 to
1730 cm−1 to delete possible artifacts due to the baseline sub-
traction present at the borders of the spectral range. A PCA-
LDA prediction algorithm was used, in which a number of
principal components (PC) were selected for a linear discrim-
inant analysis (LDA). Principal components analysis (PCA)
was performed using the prcomp function, centering but not
scaling data. The cumulative proportion of explained
Variance for the first 20 principal components of the dataset
is available as ESM (Fig. S2A). The function lda from the
MASS package [23] was used for the LDA. A RDCV [10]
was chosen as validation strategy, in which the number of
PC to be used in each LDA model was iteratively optimized
using independent portions of the dataset in an “inner k-fold
cross-validation loop” (k = 7), while an “outer k-fold cross-
validation loop” (k = 3) is used to cross-validate the optimized
models on independent folds of the dataset. Data partitions in
both loops were created using the createFolds function of the

1305Repeated double cross-validation applied to the PCA-LDA classification of SERS spectra: a case study with...



caret package [24]. Data partition was stratified, so that each
fold contained the same proportions of the classes considered.
Note that the PCA was performed for each loop only for the
train set, so that train and test sets were kept well separated and
no information from the test set was introduced in the PCA-
LDA model. The double cross-validation was repeated n
times (n = 100), generating 300 optimized partial models
(each from k-1 folds). For the RDCV, functions were also
used from packages chemometrics [25], e1071 [26], and
ROCR [27].

Confusion matrices were obtained for each of the 100 rep-
etitions of the cross-validation by summing the partial confu-
sion matrices of each fold. Quality performance metrics (sen-
sitivity; specificity; accuracy; PPV—positive predicted
values; NPV—negative predicted values; and AUC—area un-
der the curve) for each repetition were calculated then from
these confusion matrices, yielding a distribution of 100 values
for each metric. The confidence intervals (95%) for sensitivi-
ty, specificity, accuracy, PPV, and NPVwere calculated using
the binom.confint function of the binom package [28], assum-
ing binomial distributions. ROC curves for each repetition
were generated by summing the prediction probabilities of
each fold obtained with the ROCR package [27]. The confi-
dence intervals for the AUC were calculated using the cvAUC
package [29], according to LeDell et al. [30].

All figures were prepared using the R environment for data
analysis [20]. Boxplots have been produced using the ggplot2
[31] package, and the ggsignif [32] package was used to cal-
culate and display significant differences between
distributions.

Results and discussion

Median SERS spectra of serum from the two classes consid-
ered, i.e., patients diagnosed with hepatocellular carcinoma
(H0T) and controls (CTR) are reported in Fig. 1, along with
the median difference spectrum. For the first time, a large
dataset of SERS spectra of serum has been collected using
Ag “plasmonic paper” substrates, i.e., paper coated with Ag
nanoparticles, previously described and characterized by our
group [18]. The spectra in Fig. 1 display the characteristic
purine bands of label-free SERS of serum and plasma previ-
ously reported for other substrates [5]. The main advantage of
using such paper-based solid substrates, with respect to col-
loidal substrates, is that an intense SERS spectrum can be
rapidly obtained without the need to de-proteinize serum sam-
ples to promote aggregation [33], as the nanoparticles on the
plasmonic paper are already aggregated. Simply depositing
few microliters of serum directly on the plasmonic paper,
without the need of any sample preprocessing or mixing with
metal colloids, allows the collection of an intense SERS spec-
trum. The SERS spectra in Fig. 1 present some similarities

with those recently reported from plasma on a slightly differ-
ent plasmonic paper [34], where purine bands still dominate
the spectrum. As SERS spectra of plasma and serum are not
expected to show marked differences [33], the differences
between these two spectral datasets could be due to still un-
known differences in the physicochemical characteristics of
the two surfaces (arising from different preparation protocols),
or perhaps to the different population characteristics of the
subjects involved in the study (only obese subjects were en-
rolled for the other study).

SERS spectra from the two classes present some dissimi-
larities, as evidenced by the difference spectrum represented
in the lower part of Fig. 1. A cursory inspection of positive and
negative bands in the difference spectrum suggests that uric
acid [33] (positive bands at 594, 638, 812, 888, and
1132 cm−1) is relatively more abundant in the sera of HCC
patients than in those of controls, whereas hypoxanthine [33]
(negative bands at 724 cm−1), ergothioneine [35] (negative
bands at 480, 1220, 1442, 1582 cm−1), and perhaps glutathi-
one [36] (negative bands at 664 and 912 cm−1) are relatively
less abundant in HCC patients.

Similar differences involving an increase in the uric acid-
hypoxanthine SERS band intensity ratio were reported for
liver diseases in general by Shao et al. [37], and more specif-
ically for different fatty liver stages (NASH vs. NAFL) in a
recent paper by our group [34]. As hypoxanthine is ultimately
converted to uric acid by xanthine oxidase, these reports seem
to suggest a role of the purine metabolism, and in particular of
xanthine oxidase, as a general marker for liver function. Such
conjecture has been recently supported by other papers as well
[38].

On the other hand, a relative decrease in the SERS in-
tensity of ergothioneine bands for liver cancer patients
with respect to controls has been also reported (although
with a different band interpretation) by Xiao et al. [39] and
Liu et al. [40]. Ergothioneine, a natural amino acid that we
assume with the diet and that has been found in high con-
centrations in the liver [41], appears to be often observed in
SERS spectra of various biofluids, including serum and
plasma [35]. Although its role is still not known, one of
the most often cited hypotheses is its possible role as a
potent antioxidant [41]. The fact that bands tentatively
assigned to glutathione were also found to be less intense
in HCC patients, consistently with those of ergothioneine,
indicates a different oxidative status in HCC patients com-
pared to controls. Interestingly, oxidative stress has been
indeed suggested to play a relevant role in liver carcino-
genesis from different etiologies [42].

Building upon these spectral differences, a predictive mod-
el can be trained to classify SERS spectra of serum collected
on plasmonic paper as belonging to subjects with (i.e., posi-
tive class, labeled as H0T) or without HCC (i.e., negative class
or controls, labeled as CTR). A RDCV strategy [10] has been
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adopted to optimize and evaluate the performance of a PCA-
LDA model to classify the SERS spectra of serum.

The RDCV generated optimized models differing one an-
other by the composition of train and test segments for the
outer RDCV loop, and for the number of PC used in the
LDA algorithm, as resulting from an optimization indepen-
dently performed in the inner RDCV loop. RDCV is struc-
tured so that each optimization and validation step is per-
formed on an independent test set. Thus, overfitting is avoided
by eachmodel, since no information from the test set is used to
build the model used to predict it.

The only information needed as external input is the max-
imum number of PC to be considered for the inner loop. In this
study, the maximum number of PC for the optimization loop
was set to 7, as the first 7 PC calculated from the PCA of the
entire dataset explained up to 90% of the spectral variance (see
Fig. S2A in the ESM). A visual inspection of the loadings of
PC7 (Fig. S2B in ESM) indicates that relevant spectral infor-
mation is still present, ruling out the possibility of including
just noise.

In the inner loop, the optimal number of PC is chosen by
applying the so-called one-standard-error rule [6, 43]. The
cross-validation error curves for all the models obtained by
the RDCV are reported in Fig. 2a, showing that the models do
not improve by including more than 4 PC. Consistently with
this picture, Fig. 2b shows that most of the models were opti-
mal when up to 3 or 4 PC were included as variables for the

LDA, whereas a negligible fraction retained more than 4 PC.
These results are suggesting that the PC after the 4th are not
meaningful in differentiating between the two classes, al-
though we still do not know which ones, among the first four,
are the most relevant.

In the studies reported so far dealing with the classification
of label-free SERS spectra of biofluids [3, 5], the value of the
parameter for the classification algorithm (e.g., number of PCs
or latent variables for PCA-LDA or PLS-DA) was arbitrarily
selected on the basis of the information available from the
whole dataset (e.g., the cumulative variance explained by a
PC or the p value for a statistical test); this was not the case for
RDCV. Conversely, in the present study, the use of a RDCV
ensured an automated parameter selection for each model
based on cross-validation, without using any information from
the spectra to be predicted in the outer loop, thus avoiding the
risk of overfitting during model optimization.

The performance of each optimizedmodel generated by the
RDCV was validated in the outer RDCV loop by comparing
the predictions to the actual classes of an independent test set.
Each iteration of the RDCV produced a confusion matrix (also
known as error matrix), and the statistics of all the confusion
matrices thus obtained is summarized in Fig. 3. The medians
of the distributions for true positive, true negative, false pos-
itive, and false negative values give a first estimation on the
overall performance of the PCA-LDA algorithm when up to 4
PCs are used (e.g., on a total of 72 spectra from sera of HCC

Fig. 1 Comparison between the
medians of SERS spectra of
serum from H0T (n = 72) and
CTR groups (n = 72).
Interquartile ranges of the SERS
intensity for the two groups are
shown as shaded areas. Medians
and interquartile ranges were
calculated from intensity
normalized spectra. The intensity
difference between H0T and CTR
is reported in the lower part of the
figure
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patients, 62 are correctly predicted while 10 are misclassified
as controls).

FOM such as accuracy, sensitivity, and specificity were
calculated from the confusion matrix of each optimized mod-
el, yielding a distribution of values for each FOM from which
confidence intervals were calculated (Table 2). Being able to
estimate confidence intervals for these FOM is another advan-
tage of using a repeated cross-validation strategy, as it allows
an uncertainty estimation of the predictive capabilities of the
model.

The average FOM and the corresponding confidence inter-
vals suggest that a PCA-LDA model can distinguish between
the two groups with an overall accuracy of about 80%, favor-
ing model sensitivity (86%) at the expenses of specificity
(76%). Another perspective on the performance of the PCA-
LDA model can be gained by inspecting the LD scores
(Fig. 4a) and the ROC curves (Fig. 4b) for each model

generated by the RDCV. To further assess the statistical sig-
nificance of these results, they were compared to those obtain-
ed from a validation of permuted data (i.e., permutation test
[12]) in which the class labels were randomly assigned (Fig.
S3 in the ESM). The permutation test confirmed the signifi-
cance of the results obtained from the RDCV validation from
the dataset with the correct class labels.

While an analysis of the optimized models (Fig. 2) illus-
trates the most frequent number of optimal PC (i.e., 3 or 4), it
does not provide information about which components are
most important for the performance of the PCA-LDA model.
This information can be gained by looking at the medians of
the PCA scores for each class, for each PC (Fig. 5). While PC
1, 3, and 4 all seems to be useful to distinguish between the
two classes, the second PC seems to be irrelevant.

The question arises about a biochemical interpretation of
these PC: what metabolites allow the distinction between the
two groups? An inspection of the loadings of PC 1, 3, and 4
(Fig. 6) can help in answering this question, by interpreting
the loadings in terms of spectral bands. The negative peaks in
the loadings of PC1 can be interpreted as hypoxanthine bands,
whereas the positive loadings seem to be correlated with the
uric acid bands, corroborating the impression that these two
metabolites are important in discriminating between the two
groups (with uric acid relatively more abundant and hypoxan-
thine less abundant in the H0T group). The positive peaks in
the loadings of PC3 are less easy to interpret than those of
PC1, but negative peaks can be interpreted as bands due to

Fig. 2 Characterization of the
PCA-LDA models produced by
the RDCV. a Curves for the inner
cycle of the RDCV, showing the
cross-validation error (CVerr)
when using a different number of
PC. b Frequency plot for opti-
mized models, showing the num-
ber of models generated (i.e., fre-
quency) using a specific number
of PC, as a consequence of model
optimization

Table 2 Figures of merit
calculated from the
optimized models
generated from the
RDCV

Figure of merit Average (95% CI)

Accuracy 81.1 (74.7–87.3)

Sensitivity 85.9 (77.8–93.4)

Specificity 75.9 (66.1–85.4)

PPV 78.2 (68.5–87.4)

NPV 84.3 (74.6–93.3)

AUC 87.6 (87.0–88.2)Fig. 3 Statistics for the confusion matrices resulting from the predictions
of the RDCV optimized models. Median values are shown in red
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hypoxanthine, ergothioneine, and (tentatively) glutathione,
confirming the role of these substances in distinguishing be-
tween H0T and CTR classes, being relatively less abundant in
the H0T class. Ergothioneine bands (especially the intense
band at 480 cm−1) can be also identified in the positive peaks
of the PC4 loadings, endorsing the hypothesis that this metab-
olite is relatively more abundant in the CTR group. In general,
the information in Figs. 5 and 6 is corroborating the picture
given by Fig. 1, suggesting that the PCA-LDA models are
indeed using these spectral differences to discriminate be-
tween classes.

The possibility of checking the workings of the classifica-
tion model in terms of biochemical information given by the
loadings is a further advantage of the PCA-LDA (but also of
the PLS-LDA) models with respect to other less transparent
algorithms (e.g., non-linear models such as support vector
machines [10]) working more like “black boxes” concerning
spectral interpretation. The fact that the model is based on real
spectral differences (and not just noise or artifacts) is an indi-
cation that overfitting is less likely, while a biochemical inter-
pretation of the differences used by the model can be exploited
to gain a better insight into the biochemistry of the disease.

The clinical relevance of uric acid in relation to cancer risk,
recurrence, and mortality has been suggested since many

years [44] and it has been extensively reviewed, among others,
by Fini et al. in 2012 [45], and more recently by Battelli et al.
[46]. The association of hyperuricemia with cancer occurrence
and recurrence has been reported in various cancer types, in-
cluding HCC. More recently, high levels of serum uric acid
were specifically suggested as risk factor for recurrence of
HCC [47]. Hypoxanthine is metabolically related to uric acid
via the xanthine oxidoreductase enzyme. Unfortunately, no
information exists about a possible correlation of
ergothioneine to HCC or to any cancer. However, we consider
this as an interesting finding that has to be further explored in
relation to HCC, especially when considering the antioxidant
potential of this molecule. The unbalanced redox state is one
of the drivers of hepatic carcinogenesis, as oxidative stress
induces genomic damage and genetic instability leading to
mutations.

Conclusions

Label-free SERS spectra of whole serum can be rapidly
obtained from Ag plasmonic paper substrates. Spectra
from the HCC and CTR groups showed consistent differ-
ences, which were exploited by the PCA-LDA models for

Fig. 4 Medians of the LD scores
(a) for each sample, calculated
over the optimized models from
the RDCV; ROC curves (b) of the
optimized models from the
RDCV. The average ROC is
shown as non-transparent, black
trace

Fig. 5 Medians of the PCA
scores for the first 4 principal
components, grouped according
to class, calculated over the
optimized models from the
RDCV; the significance with
respect to the Mann-Whitney U
test for the 2 classes is reported for
each component
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classification purposes, with satisfying results in terms of
performance. The use of a RDCV approach for the PCA-
LDA applied to label-free SERS data allowed to automat-
ically determine the number of PC to be used in LDA, and
to calculate confidence intervals for FOM. Most impor-
tantly, the analysis of the RDCV results allowed to pin-
point which are the most relevant PC for the LDA model,
and to interpret their loadings in terms of metabolites.
This analysis confirmed that uric acid, hypoxanthine,
ergothioneine and possibly glutathione, which were re-
sponsible for most spectral differences observed, have
been effectively used by the PCA-LDA algorithm for
classification. These metabolites are thus possible candi-
dates as HCC markers, and might be investigated in fur-
ther studies.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00216-020-03093-7.
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