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Abstract
Breath analysis is a promising method for metabolomics studies and clinical diagnosis, as it enables the observation of metab-
olites in a convenient and noninvasive way. In this work, an atmospheric pressure photoionization (APPI) source was modified
for online analysis of exhaled breath by coupling with quadrupole time-of-flight mass spectrometry (QTOFMS). Three param-
eters, namely, the capillary voltage, the sampling flow and the curtain gas flow of the APPI source, were optimized. Five healthy
volunteers, three males and two females, were enrolled to test the performance of modified APPI-QTOFMS by analyzing their
exhaled breath. A total of 21 compounds were tentatively identified, and four metabolites, namely, dimethyl selenoxide, δ-
valerolactam, hydroxymandelic acid and palmitic amide were detected in the exhaled breath for the first time. The result shows
that modified APPI-QTOFMS can be used for the online study of exhaled breath.
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Introduction

Breath analysis has become an increasingly attractive method
for metabolomics studies, since it provides abundant informa-
tion in a simple and noninvasive way [1, 2]. Human exhaled
breath contains various components [3], most of which are
variable and found in trace concentrations, requiring noninva-
sive and rapid measurement techniques [4]. To date, various
analytical techniques including mass spectrometry, spectros-
copy and sensors have been used for breath analysis [5, 6].
Compared with other techniques, mass spectrometry enables
non-targeted screening, which is more suitable for exploration

of new metabolites in exhaled breath. Gas chromatography
mass/spectrometry (GC-MS), sometimes coupled with pre-
concentration techniques such as solid-phase micro-extraction
(SPME) or needle trap extraction [7], has traditionally been
used in breath gas analysis [8, 9]. However, GC-MS is limited
to offline analysis, which is relatively time-consuming. By
contrast, online breath analysis provides immediate data of
exhalation without sample pretreatment. Proton transfer reac-
tion mass spectrometry (PTR-MS) and selected ion flow tube
mass spectrometry (SIFT-MS) are prominent online tech-
niques [10], which enable online analysis of volatile organic
compounds (VOCs) in exhaled breath. Atmospheric pressure
ionization techniques such as electrospray ionization (ESI)
and atmospheric pressure chemical ionization (APCI) have
also been applied to online breath analysis in combination
with mass spectrometry [11]. In the first decade of the
twenty-first century, techniques based on electrospray ioniza-
tion mass spectrometry (ESI-MS), such as secondary
electrospray ionization mass spectrometry (SESI-MS) and ex-
tractive electrospray ionization mass spectrometry (EESI-
MS), were introduced for real-time breath analysis [12, 13].

Compared with ESI and APCI, atmospheric pressure pho-
toionization (APPI) is less susceptible to ionization suppres-
sion, and more appropriate for nonpolar compounds [14, 15].
It offers an alternative method of ionization for MS. The
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traditional APPI source is for liquid samples. The solvent
containing the analytes is sprayed and vaporized by a heated
nebulizer at a temperature of 400 °C. Dopants such as acetone
and toluene are universally used in APPI to enhance ionization
efficiency [16].

For breath analysis, the analytes are in gaseous form, with
no need for vaporization, while the high content of water
vapor in exhaled breath can act as a solvent during the APPI
measurement. In addition, acetone in exhaled breath can act as
dopant during ionization. Therefore, a commercial APPI
source was modified according to the characteristics of the
exhaled breath sample in this report. The heated nebulizer in
the APPI source was removed, and the solvent for spray was
not used in the ion source in order to avoid exogenous con-
taminants from reagents. Three parameters including the cap-
illary voltage, the sampling flow and the curtain gas flow of
the APPI source were optimized by coupling with quadrupole
time-of-flight mass spectrometry (QTOFMS). Compounds in
exhaled breath were tentatively identified, and some metabo-
lites were observed in the exhaled breath for the first time. The
results indicate that modification of the APPI source is a
promising new method for online breath test by coupling with
mass spectrometry.

Experimental section

Modification of the APPI source A modified APPI source
combined with a quadrupole time-of-flight mass spectrometer
(MicrOTOF-Q III, Bruker Daltonics Inc., Fremont, CA, USA)
was used for breath analysis. The heated nebulizer in the APPI
source was removed, and the subjects were required to breathe
toward the ion source chamber via a T-tube as shown in Fig. 1.
The exhaled breath was then sucked into the chamber from the
bypass through a polytetrafluoroethylene (PTFE) tube 80 cm
long, with an inner diameter of 1.5 mm. In order to avoid the
condensation of exhaled breath, the PTFE tube was heated to a
constant temperature of 100 °C. Neutral molecules were ion-
ized by a krypton-filled vacuum UV lamp with the most in-
tense excitation lines at 10.0 and 10.6 eV. A gas flow control-
ler was employed upstream of the air pump to control the total
pumping flow rate.

The mass spectra were recorded in a mass range ofm/z 20–
1000 in positive-ion detection mode. To assist in the elimina-
tion of fragments and identification of compounds, collision-
induced dissociation (CID) analysis was performed, with col-
lision energy of 20 ± 10 eV. The room temperature in the lab
was maintained at 25 °C to ensure the stability the of mass
spectrometer.

Fig. 1 Schematic of APPI source for detection of exhaled breath
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Ionization mechanism In the breath detection experiment,
most ion signals are protonated ions. Initially, the analyte
(A) is ionized by UV photon energy to form the radical cation
(A+.), as shown in Eq. 1. Compounds with high proton affinity
(PA) may then form protonated molecules by self-protonation
(Eq. 2), or react with water clusters [17]. Additionally, the
acetone contained in human exhalation acts as a dopant (D)
to assist ionization of analytes, as shown in Eqs. 3, 4 and 5.

Aþ hν→Aþ: þ e− ð1Þ

Aþ þ A→ Aþ H½ �þ þ A‐H½ � ð2Þ
Dþ hν→Dþ: þ e− ð3Þ
Dþ: þ H2O→ H2Oþ H½ �þ þ D−H½ � ð4Þ
H2Oþ H½ �þ þ A→ Aþ H½ �þ þ H2O ð5Þ

Subjects Five healthy volunteers in our research group, in-
cluding three male and two female participants, were enrolled
to test the performance of the modified APPI-QTOFMS by
testing their exhaled breath. Subjects were asked to exhale
directly through a disposable mouthpiece after gargling,
which may eliminate the influence of contaminants such as
food debris in the oral cavity.

Data processing All raw spectra were acquired by micrOTOF
control software, and analysis was processed in DataAnalysis
4.0 software (Bruker Daltonics).

Results and discussion

Optimization of the APPI source Three parameters including
the capillary voltage, the sampling flow and the curtain gas
flow were found to significantly affect the ion intensity.
Accordingly, each parameter was individually optimized by
keeping the other parameters at constant values. Since the
conditions of exhalation like humidity may influence ioniza-
tion efficiency of breath components, protonated acetone ion
(m/z 59.049) was selected for optimization. The whole process
was accomplished within 1 h to minimize the influence of
variable acetone concentration.

Capillary voltage significantly influenced the ion transfer
efficiency, and high voltage may lead to in-source collision-
induced dissociation. For the capillary voltage, five different
voltages, viz. 600, 700, 800, 900 and 1000 V, were evaluated
for improving the ion signal. As exhibited in Electronic
Supplementary Material (ESM) Fig. S1a, voltage at 700 V
led to the highest signal.

A high sampling flow rate results in high sample through-
put. However, too high of a sampling flow rate could influ-
ence the efficiency of ionization and ion transport. The

sampling flow rate was set in the range of 1–5 L/min with
an interval of 1 L/min. The effect of sampling flow rate on
the signal intensity level of protonated acetone is presented in
ESM Fig. S1b. The intensity of acetone decreased when the
flow rate was over 2 L/min and. Therefore, 2 L/min was set as
the optimal value for the sampling flow rate.

Curtain gas flow aids in evaporation of a sample and
cleaning of the inlet of the instrument to avoid blocking.
However, if the gas flow is too high, it blows away analytes
in the ionization zone and dilutes the sample. After optimiza-
tion of the curtain gas flow rate, 3.0 L/min was selected as the
optimal value, as shown in ESM Fig. S1c.

Effect of humidity It is well known that human breath contains
a high level of moisture, which may influence the breath spec-
tra. Studies based on APCI-MS have shown the impact of
humidity on ion intensity [18]. Martínez-Lozano et al. also
revealed that breath humidity increases some background
ion signals in ESI-MS [19]. In APPI-MS, the effect of humid-
ity in exhaled breath should be taken into account.

To simulate the humidity of breath, humidification of am-
bient air was performed upstream of the ion source chamber
by passing air through the headspace of a flask containing
pure water at 37 ± 2 °C. And the humidified air showed
~95% relative humidity, which is comparable to breath hu-
midity. The relative humidity was measured by a hygrometer.
As is shown in ESM Fig. S2, after sampling of humidified air,
the air background was changed. This phenomenon indicates
that some ion signals in breath spectra may be attributed to
changes in humidity rather than ionization of analytes. The
direct subtraction of ambient air background is not able to
eliminate these ion signals. To minimize the influence of
breath humidity, subtraction of humidified air background
was carried out for signal correction.

Validation of APPI-QTOFMS The performance of this method
was evaluated using acetone, a typical metabolite in human
breath. Saturated acetone vapor was stored in an airtight syringe
and then injected into the inlet tube using a microsyringe pump.
By controlling the injection flow rate, the acetone can be diluted
in carrier gas air. The limit of detection (LOD) and limit of
quantitation (LOQ) were calculated with Eqs. (6) and (7) [20],
where S is the mean value of ion signals, n is the measurement
times (here n is 8), σ is the standard deviation of the measure-
ment and C is the concentration of acetone (here 500 ppbv).

LOD ¼ C � 3σ
S

ð6Þ

LOQ ¼ C � 10σ
S

ð7Þ

The LODwas calculated to be 1.32 ppbv, and the LOQwas
4.41 ppbv. The repeatability was expressed as relative
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standard deviation (RSD) of 3.4%, indicating that the devel-
oped method has good repeatability.

Online breath analysis Online breath analysis was performed
to test the performance of the modified APPI-QTOFMS. The
typical spectrum of exhaled breath is shown in Fig. 2a. Within
a mass range fromm/z 20 to 1000, many signals were detected
in each breath sample. The high resolution of the TOF ana-
lyzer provides accurate measurement of the m/z value to dif-
ferentiate those chemical compounds with the same nominal
mass. As is shown in the inset of Fig. 2a, the ion signal ofm/z
114.023, 114.063 and 114.091 can be clearly distinguished.

A drawback of APPI is the complex ionization mecha-
nisms, which would produce many fragment ions [21]. As
for unknown mixture samples, these fragment ions disturb
the identification of analytes. To better understand the frag-
mentation of compounds in the APPI source, CID analysis
was carried out with different collision energy. According to
our results, the amounts of fragments generated by the CID
with collision energy of 8~9 eV and their relative abundance

are similar to those compounds detected in the full mass scan
mode. In this case, the fragments in the APPI experiments can
be identified by comparing CID spectra with full-scan mass
spectra. For instance, the ion signal at m/z 279.158 was de-
tected in the full mass scanmode, as shown in Fig. 2a, and was
recognized as a protonated ion with no precursor ions. This
ion was then selected to carry out the CID experiment under
collision energy of 8~9 eV. It was found that this ion yields
fragments of m/z 223.092, m/z 205.083, m/z 167.038, m/z
149.029 and m/z 121.033, with a relative intensity ratio of
13%:133%:32%:87% as shown in Fig. 2b. It is noted that
the m/z 279.158 was set as 100%. Returning to the full-scan
mass spectra, as marked with red lines in Fig. 2a, ion signals at
m/z 223.092, m/z 205.083, m/z 167.038, m/z 149.029 and m/z
121.033 with a similar relative intensity ratio of
24%:122%:36%:75% were also observed. Therefore, ion sig-
nals at m/z 223.092, m/z 205.083, m/z 167.038, m/z 149.029
andm/z 121.033 in the exhaled breath spectra were recognized
as fragments produced from the ion of m/z 279.158.

Using this method, 21 molecular ions were differentiated,
as shown in Table 1, along with their fragment ions. However,
another 39 ion signals with lower intensity could not be un-
ambiguously identified because their fragment ions were dif-
ficult to observe in CID mode.

Tentative identification of components in exhalation The as-
signment of these ions was established based on their exact
formula, ion fragments from CID analysis, a search of open-
access databases (METLIN Metabolomics Database, Human
Metabolome Database, MassBank database, NIST database)
and also referring to previous studies. Twenty-one molecular
ions were tentatively identified, as listed in Table 1. Possible
assignments of 39 ions are also presented in ESM Table S1.

Among these compounds, acetone, isoprene and urea are
known as endogenous metabolites from blood. Acetone can
be converted from acetoacetate via decarboxylation of excess
acetyl–CoA [2, 40], and the breath acetone is related to the
blood glucose level [41]. Breath isoprene is from the meva-
lonic pathway of cholesterol synthesis in the human body [2].
3-Buten-2-one and 2,3-butanedione are also from blood, de-
spite their unclear metabolic pathway [34]. As a catabolite of
protein, urea is formed from ammonia generated by the deam-
ination of amino acids. This compound may also be released
via the airway and mouth [13]. For healthy people, exhaled
propionic acid, pyrroline and trimethylamine may be derived
from the mouth and pharynx. Propionic acid is considered as
the metabolite of oral bacteria [28, 35]. However, compounds
like dihydropyran, pentenoic acid and caprolactam are still
unknown with regard to both origin and metabolic pathway.

Besides the abovementioned compounds, some new com-
ponents were observed in exhaled breath for the first time. As
for the signal atm/z 100.075, it was assigned as the formula of
[C5H10NO]+ which can yield fragments of [C5H8N]+,

Fig. 2 (a) Typical spectrum of exhaled breath from a male subject, and
partial enlargement of the spectrum. (b) Online CID spectrum of m/z
279.158. By comparing with online CID spectra, fragment ions m/z
223.092, 205.083, 167.038 and 148.029 in full-scan mass spectra can
be excluded
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Table 1 Tentative identification of 21 ions and their corresponding fragments

m/z Ion formula CID fragments Tentative assignments Reference reported in
breath

59.049 [C3H6O+H]
+ 43.018[C2H3O]

+ Acetone GC-MS [22],
PTR-MS [23],
SIFT-MS [24],
SESI-MS [25],

60.080 [C3H9N+H]
+ 44.053[C2H6N]

+ Trimethylamine SIFT-MS [26]
GC-MS [27]
SESI-MS [28]

61.040
44.013*

[CH4N2O+H]
+

[CH2NO]
+

*44.013 [CH2NO]
+ Urea EESI-MS [13],

LC-MS [29]
69.068
53.038*

[C5H8+H]
+

[C4H5]
+

53.038[C4H5]
+ Isoprene PTR-MS [30],

SIFT-MS [31],
GC-MS [32]

70.065
53.039*

[C4H7N+H]
+ 53.039[C4H5]

+ Pyrroline SESI-MS [33]

71.048
53.038*

[C4H6O+H]
+

[C4H5]
+,

53.038[C4H5]
+, 43.019[C2H3O]

+ 3-Buten-2-one GC-MS [34]

75.043
57.033*

[C3H6O2+H]
+

[C3H5O]
+

57.033[C3H5O]
+ Propionic acid SESI-MS [35]

85.061
67.053*

[C5H8O+H]
+

[C5H7]
+

67.053[C5H7]
+ Dihydropyran GC-MS [36]

87.041
69.034*

[C4H7NO+H]
+

[C4H5O]
+

69.034[C4H5O]
+ 2,3-Butanedione GC-MS [34]

90.086 [C4H11NO+H]
+ 72.079 [C4H10N]

+, 57.057[C3H7N]
+ N,N-Dimethylethanolamine EESI-MS [37]

SESI-MS [28]
100.075 [C5H9NO+H]

+ 82.064[C5H8N]
+

72.081[C4H10N]
+,

56.051[C3H6N]
+,

55.054[C4H7]
+,

δ-Valerolactam(2-piperidinone) No

101.057
83.047*
55.054*

[C5H8O2+H]
+,

[C5H7O]
+,

[C4H7]
+

83.047[C5H7O]
+,

55.054[C4H7]
+

Pentenoic acid [3]

114.091 [C6H11NO+H]
+, 97.062[C6H9O]

+,
96.076[C6H10N]

+,
79.056[C6H7]

+,
69.069 [C5H9]

+

Caprolactam GC-MS [38]

126.965 [C2H6SeO+H]
+ 111.939[CH4SeO]

+,
109.958[C2H6Se]

+
Dimethyl selenoxide No

184.061
166.050*

[C8H9NO4+H]
+

[C8H8NO3]
+

166.050[C8H8NO3]
+

148.039[C8H6NO2]
+

4-Pyridoxic acid No

256.259
239.233*

[C16H33NO+H]
+

[C16H30O]
+

239.233[C16H30O]
+,

221.224[C16H28]
+,

Palmitic amide (palmitamide) No

279.158
223.092*
205.083*
167.038*
149.029*

[C16H22O4+H]
+

[C12H15O4]
+

[C12H13O3]
+

[C8H7O4]
+

[C8H5O3]
+

223.092[C12H15O4]
+

205.083[C12H13O3]
+,

167.038[C8H7O4]
+,

149.029[C8H5O3]
+

121.033[C7H5O2]
+

93.034[C6H5O5]
+

Dibutyl phthalate No

462.147
445.122*

[C12H36Si6O6+NH4]
+

[C12H36Si6O6+H]
+

445.122[C12H37Si6O6]
+

429.081[C11H33Si6O6]
+

355.063[C9H27O5Si5]
+

324.982[C6H17O6Si5]
+

Dodecamethylcyclohexasiloxane(D6) GC-MS [39]

536.168
519.132*

[C14H42Si7O7+NH4]
+

[C14H42Si7O7+H]
+

519.132[C14H43Si7O7]
+

503.101[C13H39Si7O7]
+

415.069[C10H31Si6O6]
+

Tetradecamethylcycloheptasiloxane(D7) No

610.187
593.149*

[C16H48Si8O8+NH4]
+

[C16H48Si8O8+H]
+

593.149[C16H49Si8O8]
+

577.118[C15H45Si8O8]
+

489.085[C12H37Si7O7]
+

373.108[C10H33Si5O5]
+

371.097[C10H31Si5O5]
+

355.062[C9H27O5Si5]
+

Hexadecamethylcyclooctasiloxane(D8) No

684.198
667.169*

[C18H54Si9O9+NH4]
+ [C18H54Si9O9+

H]+
667.169[C18H55Si9O9]

+

429.082[C11H33Si6O6]
+

355.061[C9H27O5Si5]
+

Octadecamethylcyclononasiloxane(D9) No

*Fragments observed in full-scan mass spectra
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[C4H10N]
+, [C3H6N]

+ and [C4H7]
+. By comparing its CID

spectra with an online spectral database reference (metlin.
scripps.edu), δ-valerolactam was the best-matched candidate,
as shown in Fig. 3.Moreover, the CID spectrum of standard of
δ-valerolactam also agrees well with our result [42], which
further confirmed this assignment. This compound has been
observed in saliva as a metabolite in previous studies [43, 44].

It is noted that two selenium-containing compounds were
observed in the exhalation. The ion signal at m/z 126.965,
which presents a specific isotope ratio (Fig. 4a), was
assigned to [C2H7SeO]

+, which was further confirmed by
the comparison between breath spectra and theoretical stan-
dard spectra (Fig. 4b). In CID analysis, with collision ener-
gy of 10 eV, only one fragment (m/z 111.939) was observed
with a formula of [CH4SeO]

+, with the loss of methyl from
precursor ion [C2H7SeO]

+. Two fragments, [CH4SeO]
+ and

[C2H6Se]
+, appeared when the collision energy was set at

20 eV (Fig. 4c). Therefore, [C2H7SeO]
+ was identified as

having been generated from the ionization of dimethyl
selenoxide [45]. The signal at m/z 110.958 with a formula

of [C2H7Se]
+ was assigned to dimethyl selenide. Although

with low ion intensity, the specific isotope ratio of this com-
pound confirmed assignment. As demonstrated in ESM Fig.
S3, dimethyl selenoxide and dimethyl selenide showed al-
most no signals in laboratory air background and presented
different content in each breath subject, which indicate en-
dogenous compounds with individual differences in metab-
olism. Dimethyl selenide has been reported in exhaled

Fig. 3 (a) CID spectrum of m/z 100.075 in exhaled breath with collision
energy of 20 eV, (b) standard CID spectrum of δ-valerolactam with
collision energy of 20 eV from the METLIN database

Fig. 4 (a) Online breath spectra of m/z 126.965, (b) simulated standard
spectra of [C2H7SeO]+, (c) CID spectrum of m/z 126.965
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breath [46]. It is known as an intermediate metabolite from
the reduction of selenates combined with its methylation in
the human body. The hydrolysis of selenoamino acids and
methylselenoamino acids also contributes to the generation
of this compound [47, 48]. Dimethyl selenoxide was detect-
ed in exhaled breath for the first time. Studies have demon-
strated the oxidation of dimethyl selenide to dimethyl
se lenoxide by microsome and f lav in-conta ining
monooxygenase from the lungs and liver of some mammals
[49]. Observation of dimethyl selenoxide may indicate a
similar oxidation process occurring in the human body.
Both dimethyl selenoxide and dimethyl selenide reflect the
metabolism of selenium in exhaled breath.

The signal at m/z 184.061 with the ion formula of
[C8H10NO4]

+ yields the fragments of [C8H8NO3]
+ and

[C8H6NO2]
+. This compound was identified as 4-pyridoxic

acid, which has been detected in human saliva and blood
[50, 51]. It is the catabolic product of vitamin B6 that can be
formed from the action of aldehyde oxidase I and microbial
enzymes [52].

The signal at m/z 256.259 yields the fragments of
[C16H30O]

+ and [C16H28]
+. It was identified as palmitic

amide and has been found in human blood. This compo-
nent could be from palmitic acid, and palmitic acid is one
of the most common saturated fatty acids observed in
human breath and saliva [53, 54]. Palmitic amide is a
long-chain fatty amide (C16:0) with relatively low polar-
ity; therefore, it can be ionized more efficiently in APPI.
Tian et al. also showed that long-chain fatty amides are
more likely to be detected using an APPI source com-
pared with ESI and APCI sources [55].

The fragmentation of m/z 279.158 has been mentioned
above. This compound was identified as dibutyl phthalate
(DBP). It is a plasticizer commonly used in PVC products
and also can be found in room air [56]. Signals in the mass
range of m/z 400–800 were assigned to a set of cyclic volatile
methylsiloxanes (cVMS) and their adducts from D6 to D10.
These compounds are well known as exogenous contaminants
and exist ubiquitously in breath samples and ambient air [57,
58]. In this work, siloxanes may derive from tubes, pipes and
seals on the experimental device. Both DBP and cVMS are
considered as exogenous inhalations that reflect exposure to
these substances.

It is interesting to note that some breath components like
urea, palmitic amide and dibutyl phthalate are nonvolatile
compounds according to the tentative identifications. This
phenomenon indicates this method is also capable of detecting
some nonvolatile components in breath. This merit may be
attributed to the high sampling flow rate of the modified
APPI, which allows direct sampling of both VOCs and aero-
sols in exhalation. Nonvolatile compounds might be dissolved
in aerosol and then introduced into the APPI source for
ionization.

Conclusion

In this study, APPI-QTOFMS was modified for online analy-
sis of exhaled breath. No chemicals were required during the
sampling and ionizing, which minimizes contamination of
analytes. The capillary voltage, sampling flow rate and curtain
gas flow rate of the APPI source were optimized, and humid-
ified air was employed for background subtraction to elimi-
nate the impact of breath humidity on signal changes. To ex-
clude fragment ions from APPI ionization, online CID analy-
sis with collision energy of 8~9 eV was performed to assist
recognition of molecular ions by comparing CID spectra with
full-scan mass spectra. Twenty-one compounds were tenta-
tively identified, and four of them, including dimethyl
selenoxide, δ-valerolactam, 4-pyridoxic acid and palmitic am-
ide, were observed for the first time as breath metabolites. The
results indicate that this method is suitable for online breath
analysis, and potential for expanding metabolite coverage in
exhalation.
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