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Abstract
Current histology techniques, such as tissue staining or histochemistry protocols, provide very limited chemical information
about the tissues. Chemical imaging technologies such as infrared, Raman, and mass spectrometry imaging, are powerful
analytical techniques with a huge potential in describing the chemical composition of sample surfaces. In this work, three images
of the same tissue slice using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, infrared
microspectroscopy, and an RGB picture from a conventional hematoxylin/eosin (H/E) staining are simultaneously analyzed.
These fused images were analyzed by multivariate curve resolution-alternating least squares (MCR-ALS), which provided, for
each component, its distribution within the tissue surface, its IR spectrum fingerprint, its characteristic mass values, and the
contribution of the RGB channels of the H/E staining. Compared with the individual analysis of each of the images alone, the
fusion of the three images showed the relationship between the different types of chemical/biological information and enabled a
better interpretation of the tissue under study. In addition, the least-squares projection of the MCR-ALS resolved spectra of
components at low spatial resolution onto the IR and RBG images at high spatial resolution, provided a better delimitation of the
sample constituents on the image, giving a more precise description of their distribution on the investigated tissue. The appli-
cation of this procedure can be of interest in different research areas in which a good description of the spatial distribution of the
chemical constituents of the samples is needed, such as in biomedicine, food, or environmental research.
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Histology

Introduction

The examination of histological sections or histology aims to
identify and characterize the different parts of a tissue under
study. In the context of diseases, histopathological studies re-
fer to the microscopic analysis of a biopsy or surgical samples

to determine the presence and the nature of the disease [1]. In
these studies, tissue slides, once frozen or processed by chem-
ical fixation, are stained with different combinations of pig-
ments to reveal the cellular content. One of the most used
methods is hematoxylin/eosin staining (H/E), which stains
the cellular nuclei in blue and the extracellular matrix and
cytosol in pink [2]. In histochemistry, a branch of histology,
the different parts of the tissue are revealed by chemical reac-
tions between the reactant and specific cellular components.
Examples of this are Perl’s reaction to detect the presence of
iron in the samples [3], or the Von Kossa technique, which
uses a solution of silver nitrate to identify deposits of calcium
[4]. Other staining variants include immunohistochemistry,
which distinguishes particular chemical structures using spe-
cific antibodies that are further revealed using additional anti-
bodies detected by chemiluminescence or by fluorescence [5].
Over the decades, the use of these histopathological tech-
niques has contributed to improving our understanding of dis-
eases, leading to the elaboration of more effective treatments.
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Also, their inclusion in routine clinical protocols demonstrates
their usefulness to make diagnosis decisions [1, 6].

The chemical information provided by these staining pro-
cedures remains limited to the detection of a restricted number
of molecules of interest within the tissues. To fill the gap of
chemical information, spectroscopic vibrational technologies
have jumped into the histology scenario. These label-free and
non-destructive techniques such as Raman and infrared (IR)
microspectroscopy are able to provide vibrational spectral fin-
gerprints of all the molecules present in each of the predefined
pixels of the tissue [7]. Usually, their spatial resolution is very
high, enabling the analysis at subcellular level with a high
degree of chemical specificity. These technologies have be-
come a powerful tool in biomedical research, enabling a better
interpretation of microscope tissue images by pathologists [8].
Many reports evidenced the potential of IR and Raman spec-
troscopy for the detection of different types of cancer includ-
ing breast, brain, and colon cancer [9]. In addition to biomed-
ical purposes, these techniques have also been proven to be
useful in microbiology [10], plant [11] and food [12] research
areas.

Although the vibrational fingerprints provided by these
technologies are unique and could be used to detect specific
events in tissues, the molecular identity of the chemical com-
pounds on the surface remains unknown. Mass spectrometry
imaging (MSI) technologies have emerged to solve this issue.
In general terms, in MSI, molecules are desorbed from the
tissue surface, ionized, and sampled using a mass spectrome-
ter while the spatial distribution of each ion is accurately re-
corded [13]. The most commonMSI techniques employed are
matrix-assisted laser desorption ionization (MALDI), second-
ary ion mass spectrometry (SIMS) and desorption
electrospray ionization (DESI). The ability of MSI technolo-
gies to provide molecular information and molecule distribu-
tion within the tissues has opened a wide range of applications
in different research areas. For instance, in biomedicine, MSI
techniques have been applied to biomedical and preclinical
studies as a novel approach to understanding the molecular
mechanisms of disease [14]. In the pharmaceutical industry,
MSI data can be used to study the pharmacokinetics and phar-
macodynamics of drugs [15].

Both vibrational imaging and MSI data can be represented
by a data cube structure, in which the two spatial dimensions
of the sample surface are the x- and y-image pixels, and the
third dimension contains the spectral information. If the inter-
est of the study goes beyond the analysis of specific spectral
bands or m/z values, the study of the whole image data cube
requires the application of chemometric tools. The main data
analysis tools to deal with hyperspectral imaging data are
based on image segmentation, such as hierarchical or K-
means clustering, or factor analysis based methods, such as
principal component analysis (PCA) or multivariate curve
resolution-alternating least squares (MCR-ALS). The MCR-

ALS method [16] has been successfully used to resolve the
main components present in single and multiset hyperspectral
imaging datasets, as well as their spatial distribution and spec-
tral features [17–19].

Despite the importance of molecular identification in tissue
analysis, MSI technologies focus on a subset of molecules at
once (peptides, lipids, metabolites, etc.) detected in a specific
ionization mode, whereas vibrational technologies capture
chemical information about all types of molecules present in
the sample. Therefore, the molecular pictures provided by
both types of techniques are complementary in terms of mo-
lecular characterization of the tissue. In this context, multi-
modal imaging based on image data fusion and analysis of
the same tissue slice using different types of technologies
has been recently addressed. Piqueras et al. have fused mass
spectrometry and Raman images of a green bean tissue and
proposed the use of MCR-ALS for the analysis of incomplete
image datasets [20]. Neumann et al. used a multimodal image
fusion pan-sharpening procedure to combine MSI and IR
microspectroscopy image data at different resolutions. Pan
sharpening is based on the use of a Laplacian pyramid meth-
od, which used high spatial frequency components from the
higher spatial resolution IR image to sharpen chemical images
at lower resolution obtained by MSI [21].

In this work, we propose a multimodal imaging method
based on the data fusion of three imaging modalities:
MALDI imaging-mass spectrometry (from now MALDI-
MS), IR microspectroscopy, and RGB pictures of H/E histo-
logical staining, and their joint analysis using the multivariate
curve resolution-alternating least-squares (MCR-ALS) meth-
od. The combination of the chemical image data provided by
MS and IR imaging techniques and the histological informa-
tion obtained from a classical staining procedure can be ex-
tremely useful to better understand and interpret the tissue
under study. Moreover, we propose a simple method to get
high-resolution distribution maps of the chemical constituents
on high-spatial-resolution IR and RGB images by projecting
the IR and RGB spectra of these constituents obtained in the
multimodal analysis of fused images at the lower spatial res-
olution. In this work, the tissue sample model used to imple-
ment and test the proposed chemometric analysis of the fused
data from multimodal images is a mouse xenograft derived
from a breast cancer patient.

Materials and methods

Tissue sample

Tissue samples of a patient-derived xenograft (PDX) from
primary breast carcinoma implanted in the intramammary fat
path of nude mice were obtained from a previous study [22].
Tumors were cryopreserved at − 80 °C in a TissueTek
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Cryomold Mold using Optimal Cutting Temperature (OTC,
TissueTek). To obtain the sample slice used in this work, one
of the tissues was mounted in a cutting chock using OTC on
the base of the tissue. The tissue slice was made at 12 μm
thickness using a cryostat (Leica CM 3050) and placed direct-
ly onto ITO glass slices (Bruker) to be analyzed.

Generation of imaging data

In the first place, the tissue was subjected to IR imaging using
a Nicolet iN10 MX infrared microscope (Thermo Fischer) in
the reflectance mode. IR spectra were acquired in the spectral
range between 700 and 4000 cm−1 with 427 points spaced at
7.7 cm−1 and 8 accumulated scans. The number of pixels
collected for this image was 55,685 (185 × 301), with a pixel
size of 25 μm. The second step was the acquisition of
MALDI -MS image s . The MALDI ma t r i x 2 , 5 -
dihydroxybenzoic acid (DHB, Merck) was first applied by
sublimation as described in previous work [18]. The
MALDI-MS image was acquired in negative mode in the
400–1200 m/z range, in which the detected molecules were
mostly lipids. The acquisition was performed using an
Autoflex III MALDI-TOF/TOF instrument (Bruker) equipped
with a Smartbeam laser operated at a 200-Hz laser repetition
rate at the “large focus” setting. The size of the pixel was set to
150 μm, and the final size of the image was 1550 pixels (50 ×
31).

Once the MALDI-MS imaging data was acquired, the tis-
sue was subjected to hematoxylin/eosin staining, a widespread
method used in histology that displays a broad range of nu-
clear, cytoplasmic, and extracellular matrix features of tissues
[2]. First, the DHB matrix was washed off in 70% EtOH in
water (v/v) for one minute. After dip-washing in deionized
water, the tissue was stained for 10 min in Mayer’s hematox-
ylin solution (Sigma). The excess of solution was then dip-
washed in deionized water, and further washed for 1 more
minute. The slide was then put into Eosin working solution
(0.25%) for 1 min. Eosin stock solution 1% (w/v) was pre-
pared in 75% EtOH in water (v/v). To prepare the eosin work-
ing solution, the stock solution was diluted with 80% EtOH in
water (v/v). The slide was then washed in deionized water and
2 min each in 70% EtOH, 80% EtOH, 90% EtOH, 100%
EtOH, and 100% EtOH again, all prepared in Histo-clear so-
lution (v/v) (National diagnostics). Finally, the slide was
washed 2 min with Histo-clear solution. A drop of mounting
medium was put onto the slide and a coverslip was placed
onto the tissue for microscope examination. Several × 4 pic-
tures were taken to cover the area of the stained tissue using a
microscope (Nikon SMZ 1500 Stereo Microscope) fitted with
a digital camera (NikonDS-Ri1). Pictures were put together to
have a high-resolution RGB image of the tissue. This picture
provided the information of the red, green, and blue intensity
of each of the pixels, on a scale from 0 to 255.

The workflow of the different steps followed in the analysis
of the different image data sets is given in Fig. 1.

Data pre-processing

IR image IR spectra of the image were opened in the OMNIC
TM Picta software (Thermo Fischer) and exported as csv ex-
tension files. These files were loaded into the MATLAB (The
Mathworks Inc.) environment and converted to a data matrix
of 55,685 rows and 427 columns, the former value corre-
sponding to the number of pixels of the IR image and the latter
to the number of IR wavelengths measured. Baseline correc-
tion was performed on this matrix using the asymmetric least-
squares algorithm applying the smoothness parameter lamb-
da = 1000 and the asymmetry parameter p = 0.001), see refer-
ence [23].

MALDI-MS image. The raw data file obtained in MALDI-
MS imaging was opened in SCiLS Lab Software (version
2014b, SCiLS GmbH) and exported to an imzML format file,
the standard mass spectrometry data format. The file was
imported to theMATLAB environment using the imzML con-
verter tool. Then, the most relevant m/z values of data were
selected using the Regions of Interest (ROI) procedure [24], a
compression method that only selects the mass values whose
signal intensities are above a predetermined threshold value,
within a predefined mass error accuracy and are detected a
minimum number of times. This procedure has been previous-
ly shown to be useful to select relevant m/z values from single
and multiple MSI datasets [18, 25]. In the present work, the
threshold value was set to 1 (0.5% of the maximum spectra
intensity), the mass error was set to 0.55 Da, and the minimum
number of times to be considered as a relevant signal was set
to 15 (1% of the total image pixels). As a result and after one-
by-one inspection of the ROIs selected, the number of m/z
values was reduced to 102. The mean spectrum of raw MSI
data and the representation of the selected ROI values are
available in Electronic Supplementary Material (ESM) Fig.
S1. MSI intensities of each pixel were normalized using the
probabilistic quotient method (PQN) [26], using as a reference
the median spectrum.

RGB picture A total of 16 pictures were combined to pro-
duce a 13,423,200-pixel image (4512 × 2975) of the H/E
stained tissue. This image was loaded into the MATLAB
environment and converted to a data matrix of 13,423,200
pixels and 3 columns. Each pixel of the RGB picture is
described by a combination of three variables (red, green,
blue) with values that range from 0 to 255. In order to
normalize the values to the lightness, which is the sum of
R, G, and B values in one pixel, each of the RGB values
was divided by the lightness value of the corresponding
pixel.
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Image resizing and alignment

The experimental data from the images acquired in the analy-
sis of the tissue using the three analytical methodologies were
arranged in a data cube using the reshape function. Then,
these data cubes were loaded into the multivariate image anal-
ysis software (MIA, PLS toolbox, Eigenvector Inc.) which
provides many tools for multivariate image management.
Using MIA, the x-y orientation of the images was initially
corrected, and the images were cropped so that the three tissue
images were adjusted to the borders. The modified images
were then loaded into the MATLAB workspace and the IR
and RGBmatrices were resized to the same spatial dimensions
of the MALDI-MS image (31 × 50), which had the lowest
spatial resolution. To resize the IR and RGB images to the

same size as the MALDI-MS image, the imresize function
from the Image Processing Toolbox of MATLAB was used.
These images were then loaded again in the MIA image anal-
ysis interface to be further aligned. The alignment tool inter-
face of MIA allows aligning two images using user-
preselected points of both images helped by a guided user
interface (GUI). Three variables of each image are initially
chosen to guide the alignment process. Once the variables of
each image are chosen, the GUI plots the two images side by
side and represents the intensity of the variables selected with-
in the tissue using different colors. This eases the next step,
which is the selection of coincident points in the two images.
Once two points are identified and selected in both images, the
second image is shifted accordingly. Four pairs of points were
selected to align first MALDI-MS and IR images, and

Fig. 1 Workflow of the single image and multimodal image data fusion analysis steps followed in this work
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afterwards, the IR and the RGB images were aligned follow-
ing the same procedure. The three new aligned images were
then saved and loaded into the MATLAB workspace. The
same procedure was followed to resize the RGB image to
the higher spatial resolution of the IR image (301 × 185) and
to align both images at this higher resolution.

Multimodal image data fusion

In order to perform the fusion of the imaging data, the three
cube datasets were first unfolded to three augmented data
matrices with the same number of rows (total number of im-
age x-y pixels) and different number of columns depending on
the spectroscopic technique (m/z ROI values, IR wavelengths,
and RGB channels). Since the rows (x-y pixels) of these three
augmented data matrices were already aligned and at the same
spatial resolution, a new data matrix can be obtained by their
row-wise matrix augmentation. In order to give the same im-
portance to the three imaging data blocks (MS, IR, and RGB),
prior to this fusion, eachmatrix was scaled by the first singular
value of the corresponding data block. The row-wise aug-
mented data matrix at low spatial resolution has a total number
of 1450 rows (31 × 50 pixels) and 532 columns (102 m/z ROI
+ 427 wavelengths + 3 RGB channels). In the case of high-
spatial-resolution IR and RGB matrices, their data fusion re-
sulted in a matrix with 55,685 (301 × 185 pixels) rows and
430 columns (427 wavelengths + 3 RGB channels).

The dimensions of the image datasets used in the present
work can be found in Table 1.

Multivariate curve resolution-alternating least
squares

In this work, the MCR-ALS [16] method was applied to the
analysis of the realigned and preprocessed image data matri-
ces described above. MCR-ALS performs a bilinear decom-
position of the image data matrices (D) into the product of two
factor matrices (see Eq. 1), one factor matrix (C) providing the
information about the relative concentration and spatial image
distribution of the chemical constituents (distribution maps)

present in the analyzed sample tissue, and another factor ma-
trix (ST) related with the spectra of these sample constituents,
respectively, according to the following equation:

D¼CSTþE ð1Þ
where E accounts for the variance not explained by the bilin-
ear model CST, which should be related to the experimental
error in the raw measurements. The E distribution maps of the
MCR-ALS analyses performed in this study can be consulted
in ESM Fig. S2. The MCR-ALS bilinear decomposition is
performed for a number of components (number of columns
ofC and of rows of ST) that explain optimally the data matrix
D and diminished the error matrix E. MCR-ALS was applied
using a different number of components. After results inspec-
tion, this number of components was selected as the one that
explained most of the data variance and enabled their simplest
interpretation. In MCR-ALS, the bilinear decomposition giv-
en in Eq. 1 is solved using an alternating least-squares opti-
mization under constraints. In this work, the ALS optimization
was performed under the constraints of non-negativity for the
distributionmaps (C) and spectra (ST) of the components. The
quality of the model MCR-ALS is measured with parameters,
such as the percentage of variance explained (R2) and the lack
of fit (lof).

Explained variance:

R2 %ð Þ ¼ 100� 1−
∑i; je

2
ij

∑i; jd
2

ij

 !
ð2Þ

Lack of fit (lof):

lof %ð Þ ¼ 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i; je

2
ij

∑i; jd
2

ij

vuut ð3Þ

where eij are the elements of the E matrix and dij are the
elements of the raw dataset D. Subindexes i and j refer to
the pixel and the wavenumber, respectively. Further details
about the MCR-ALS method can be found in previous works
[16, 27]. After the image data matrix bilinear decomposition

Table 1 Pixel dimensions of the
data cubes and matrices of the
hyperspectral images used in this
study. *The first image data
resizing is for the three-block data
fusion at low resolution. The sec-
ond image data resizing is for the
fusion of IR and RGB images at a
higher resolution

MALDI IR RGB

x-pixel 50 301 4512

y-pixel 31 185 2975

total pixels 1550 55,685 13,423,200

hyperspectral dimension 102 ROI 427 wavelengths 3 channels

Data cube dimensions 50 × 31 × 102 301 × 185 × 427 4512 × 2975 × 3

Data matrix dimensions 1550 × 102 55,685 × 427 13,423,200 × 3

Resizing for fusion 1* 50 × 31 × 102 50 × 31 × 427 50 × 31 × 3

2* – 301 × 185 × 427 301 × 185 × 3
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by MCR-ALS, each of the C matrix columns are refolded
according to the original image size (x-y pixels), which re-
covers the spatial information about the distribution of each
of the resolved components on the image (distribution map) of
the analyzed sample (tissue). Each of these components can be
simultaneously identified from the counterpart row spectra in
matrix ST, containing information about MS, IR, or RGB con-
tributions. MCR-ALS has already demonstrated its ability to
deal with IR and MS imaging data, and also for multiset im-
ages, in which different image data matrices are column-wise
augmented [18]. In this work, MCR-ALS has been applied to
the analysis of the images of the same tissue acquired by
different spectroscopic techniques, MS, IR, and RGB, in what
is named multimodal imaging or image data fusion. MCR-
ALS was applied first to the individual MALDI-MS and IR
images separately, and then to the fused multimodal images.
In the case of the 3-multimodal images fused dataset, the fi-
nally selected number of components was set to 6.

Lipid identification and IR band assignment

The peaks of the mean spectrum ofMSI data were fragmented
in the MALDI-TOF instrument (liftmethod) to obtain charac-
teristic fragments of each compound and perform tentative
identification. For each MCR-ALS resolved component, lipid
compounds with mass intensities higher than the 25% of the
maximum intensity were considered relevant and therefore
identified. The fragment peaks of the phospholipid
headgroups and acyl chains were obtained by negative ion
collision-induced dissociation (CID), and compared with the
fragments and mass values found in the literature [28] and
public online databases such as LipidMaps [29]. The assigna-
tion of IR bands was done using public databases and avail-
able literature [30].

High-resolution distribution of MCR-ALS–resolved
components

As said before, MSI data could only be obtained at lower
spatial resolution than IR and RGB. Therefore, in order to
correlate the information among the different spectroscopies
and exploit the higher resolution of IR and RGB images, a
new augmented image data matrix (DH) was obtained using
the IR and RGB images at their maximum IR resolution, as
depicted in Fig. 2. Thus, the RGB image was resized to the
resolution of the IR image (301 × 185), and both images were
aligned and fused, as performed before for the three-low spa-
tial resolution images above. Then, the IR-RGB information
of ST matrix obtained in the analysis of the fused low-
resolution imaging data matrices (see below in the Results
section) was projected by least-squares on to the high-
spatial-resolution IR and RGB new fused data matrix, DH,
to calculate the new CH matrix giving the sought information

about the distribution maps of the different components at
higher spatial resolution.

K-means of resolved components

To improve the visualization and interpretation of the results,
the CH matrix, corresponding to the high-resolution distribu-
tion of the MCR-resolved components, was subjected to K-
means segmentation, as implemented in the MIA Toolbox.
The number of clusters was set to 6, the same number of
components previously resolved using MCR-ALS.

Software and computer specifications

The calculations performed in the present work were carried
out using MATLAB R2018a (The Mathworks Inc.), PLS
ToolBox (Eigenvector Inc.), and MIA software (version
3.0.7, Eigenvector Inc.) running on a Fujitsu Celsius R940n
workstation equipped with two Intel Xeon CPU E5-2620v3
processors and 128 Gb RAM using Microsoft Windows 7.
MCR-ALS analysis was performed using theMCR-ALS tool-
box freely available at http://www.mcrals.info/

Results

MCR-ALS analysis of single technology images

Prior to the multimodal analysis of three fused images, each of
the individual images was first analyzed by MCR-ALS. In
Fig. 1, a schematic view of the different image data analysis
steps is given.

BeforeMCR-ALS analysis, each of the images was unfold-
ed to the corresponding data matrix and preprocessed as de-
scribed in the methodology section and in Fig. 1. The MCR-
ALS distribution map and mass spectra of the MCR-ALS
components in the analysis of each of these individual images
are given in Fig. 3. The four components resolved in the anal-
ysis of the MALDI-MS image revealed different molecular
distributions within the analyzed sample tissue. The total var-
iance explained by the model was 98.2% with a lof of 13%.
The components 1 and 3 (31% and 11%of explained variance,
respectively) occupied the central part of the tissue with dif-
ferent distributions, whereas component 2 and 4 (23 and 59%
of explained variance) were located in the lateral outer parts of
the tissue with distinct patterns (Fig. 3a). Each of these com-
ponents had a specific chemical identity. Component 1 was
mostly composed by a phosphatidylcholine plasmalogen
(PC(P-30:1)) and phosphatidic acid (PA(30:2)), whereas com-
ponent 3, which shared some regions of the tissue surface with
component 1, presented a very diverse composition including
several species derived from the phosphatidic acid (PA), phos-
phatidylethanolamine (PE), phosphatidylglycerol (PG), and
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phosphatidylinositol (PI). Components 2 and 4, located in the
sides of the tissue image, had different compositions and
shared strong signals of different PI species. Detailed infor-
mation about the lipidm/z values and fragments is available in
ESM Table S1. The sum of explained variances of the indi-
vidual resolved components is 124%. This is due to the non-
orthogonality of the overlapped MCR-resolved components
(e.g., PI (38:3) appears in components 2, 3, and 4 in combi-
nation with other different lipids).

Regarding the resolution of the IR image, six components
were resolved (95.1% of explained variance, lof of 14%), as
shown in Fig. 3b. Two of the six components resolved were
not relevant to the tissue description since they were only
located in the outer part of it. This is due to the data acquisition
mode of the IR equipment, which records a squared area of the
surface to analyze, in contrast to MALDI-MS acquisition, in
which the borders of the tissue can be delimited before acqui-
sition. IR signals from the slide surface and the OCT polymer
present in the sample were resolved using other separate com-
ponents (for more clarity, the results of these two components
are available in ESM Fig. S3). Component 1 (24% of ex-
plained variance) was more present in the central part.
Components 2 and 4 (12% and 10% of explained variance,
respectively) were more abundant in the lateral parts of the
tissue, and component 3 (41% of explained variance) had a
wide distribution over the whole tissue image with a higher
contribution in its right side (Fig. 3b). As previously men-
tioned for MALDI-MS image, the sum of the explained vari-
ance of each of the resolved components (126%) indicates that
the information they provide is overlapped. The IR spectra
resolved represent the sum of all the functional group signals
of the compounds present in each of the components.

Component 1 was mainly constituted by protein and ester
lipids, component 2 by alcohols and alkyl chains, component
3 by alkyl chains and proteins, and component 4 mainly by
proteins and carboxylic acids. The RGB image of the same
tissue sample confirmed the main differences observed in the
MALDI-MS and IR images (Fig. 3c). The central part of the
tissue was clearly redder than the lateral parts, which were
prominently stained in a dark blue color. In the H/E staining,
hematoxylin stains in dark blue the nuclei of the cells whereas
eosin stains proteins, cytosol, and extracellular matrix in pink
color. Hence, two main differentiated histological areas were
present in the tissue analyzed, which were clearly recognized
by the MS and IR imaging techniques, indicating the different
chemical composition of each of these areas. However, the
correlation between the MALDI-MS and IR chemical signals
in these different areas cannot be assessed when images are
analyzed separately. Therefore, in order to have a more ex-
haustive and reliable chemical description about the different
areas described by H/E staining, the multimodal analysis of
the fused data information provided by the three imaging
modes was performed.

MCR-ALS analysis of multimodal fused imaging
datasets

The next step leading to the multimodal image data fusion was
to convert the IR and RGB image data blocks to the same
spatial resolution of the MALDI-MS image. Then, images
were aligned and data matrices were normalized by the first
SVD value, as explained in the methodology section.
Multimodal image fused data were then analyzed by MCR-
ALS [31] to resolve the different components of the image

Fig. 2 Least-squares projection of ST obtained by MCR-ALS of multimodal low spatial resolution images on high-spatial-resolution image data
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defined by their specific spatial distributions and spectra, giv-
ing the three types of chemical/biological information: MS
lipid content, IR profile, and histological staining. The best
resolution of the fused images was obtained using 6 MCR-
ALS components (98.8% of explained variance, lof of 11%), 2
of which were discarded as they described mostly the surface
outside the tissue, as it already happened previously in the
individual resolution of the IR image. The homogeneous dis-
tribution observed in the E error matrix (see ESM Fig. S2)
indicated that the difference between the calculated and the
experimental data was not significant. The distribution maps
of the informative four components resolved by MCR-ALS
together with their chemical information and tissue staining
patterns describing the analyzed tissue are given in Fig. 4. The
complete information about the six components resolved is
available in ESM Fig. S4.

The distribution patterns of these four components was
clearly different, although two of them had a distribution in
the side parts of the tissue (1 and 2) and the other two in the
central part (3 and 4). A common feature in all the components
is that their IR spectra share the same characteristic amide
bands, which reflect that proteins are all over the tissue sam-
ple. Component 1 (19% of explained variance) and 2 (30%)
had common lipids (PI(38:3) and PI(38:4) among other pos-
sible chemical constituents observed in the m/z values of the
resolved mass spectra. In contrast, these two components had
distinct IR spectra and different RGB contributions. The IR
spectra of component 1 presented intense alcohol bands and
an exclusive blue contribution in the RGB channels.
Component 2 presented alkene bands and a more balanced
contribution of red and blue colors on RGB. On the other
hand, component 3 (17% of explained variance) and 4

a

b

c

Fig. 3 Results of MCR-ALS of individual image datasets. Distribution
maps and spectra of the different MCR-ALS resolved components from
the aMALDI-MS image and b IR image. c Distribution of the red, green
and blue channel intensities within the tissue. The mass spectrometry and
IR MCR-ALS resolved spectra include the identification of the main

lipids and the main chemical structures and functional groups, respective-
ly. PC: phosphatidylcholine; PA: phosphatidic acid; PE: phosphatidyleth-
anolamine; PG: phosphatidylglycerol; PI: phosphatidylinositol. The num-
bers in brackets indicate the number of carbons and the total number of
chain unsaturations
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(16%) presented a rather similar IR spectrum with the pres-
ence of protein and ester lipids bands. However, their lipid
composition was very different (component 3 had PA, PC,
and PGs in its composition, and component 4 presented PEs
and PIs). RGB contribution of component 3 was exclusively
represented by red, whereas component 4 had also some con-
tribution of blue.

Finally, the spectra of the different components resolved by
MCR-ALS in the analysis of the multimodal analysis of the
images at low spatial resolution can be used to resolve the
distribution maps of the same components at higher spatial
resolution IR and RGB images. As said before, MSI data
could only be obtained at lower spatial resolution than IR
and RGB. However, since the spectral resolution (not the spa-
tial) is the same in the images at low spatial resolution as in the
images at high spatial resolution, the IR and RGB spectral
information in the ST matrix obtained in the multimodal anal-
ysis at low spatial resolution can be easily projected on the IR
and RGB fused matrix at higher spatial resolution, DH, to
calculate the new CH matrix at the higher spectral resolution
(see Fig. 2). The resulting CH matrix can be then refolded to
give the high spatial resolution distribution maps of the MCR-
resolved components. As a result, even if the chemical and
biological information was the same in the images at low and
high spatial resolution, the new CH matrix, once refolded,
provided higher resolution and more precise information
about the localization of the resolved components (chemical

constituents) in the image or tissue sample, as shown in
Fig. 5a.

To increase the interpretability of the resolved components,
K-means segmentation was performed on the CH matrix [32].
As a result, a new distribution map with the overlapped local-
ization of the components was obtained, enabling the visual-
ization of the distribution of the different chemical constitu-
ents in one single image (Fig. 5b).

Discussion

The aim of histology, either in biomedical or environmental
toxicology studies, is to achieve the best characterization of
the tissues under study. The characterization by histopatholo-
gy techniques is often limited to general staining such as H/E
or targeted staining performed using immunohistochemistry
or immunofluorescence. Thus, the incursion of other imaging
approaches more focused on tissue chemistry, such as vibra-
tional and MSI techniques, represents a step forward in many
research areas and clinical applications in which tissue inter-
pretation is an essential issue.

In this work, the simultaneous analysis of two completely
different types of chemical imaging techniques such as
MALDI-MS and IR, together with an RGB image using a
classical H/E staining of the same tissue slice from PDX is
presented for the first time. The results obtained here indicated

Fig. 4 Results of MCR-ALS analysis of the multimodal MS, IR, and RGB fused image data sets
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that, compared with the MCR-ALS analysis of the two
MALDI-MS and IR images individually, the MCR-ALS ap-
plied to the multimodal fused images give more and better
information about the characteristics of the analyzed tissue.
The multimodal resolution of the three fused images revealed
the different lipid compositions associated with specific IR
fingerprints, their particular localizations, and their correlation
with specific H/E staining color pattern. For instance, compo-
nent 1, represented by 100% blue contribution in the RGB, is
related to the presence of PI and PE lipid species. In addition,
this external region of the image which is more stained in blue
color, and therefore more associated with living cells in pro-
liferation, is also related to an IR fingerprint with intense al-
cohol group absorption bands. This is in accordance with the
probable presence of PI lipidic molecules, since they have five
alcohol groups in their structure. In contrast, component 3,
present in the central part of the imaged tissue, is mainly
represented by the red RGB color, corresponding to the eosin
staining of proteins, cytosol, and extracellular matrix. This
fact, together with the low hematoxylin staining in this local-
ization, indicated that the surface occupied by this 3rd com-
ponent was a necrotic area. Therefore, the specific IR signa-
ture and the lipid profile found for this component should be
associated with tissue necrosis. To illustrate the usefulness of
applying the combination of multimodal chemical imaging
with conventional histology, in a hypothetic study about the
effectiveness of a cytotoxic compound, the IR results and the
lipid profiles obtained by MSI could be useful to characterize
and distinguish the cells that are still proliferative from the
cells that undergo necrosis under a particular treatment.

Indeed, the use of high-resolution chemical imaging instru-
mentation is desirable to enhance the spatial correlation and
overlapping of specific chemical signatures and discover char-
acteristic distributions of the chemical constituents within the

tissue. Nowadays, MALDI-MS imaging instruments can al-
ready reach rather small pixel sizes (10 μm) and spectroscopic
vibrational technologies can attain subcellular pixel sizes (be-
low 1 μm). Also, high-resolution mass spectrometers coupled
to the imaging desorption and ionization sources (MALDI,
DESI, SIMS, etc.) enable reliable identification of the chem-
ical constituents of the analyzed sample, which is extremely
useful to characterize the tissue and to ease the biological
interpretation of the particular case under study. The combi-
nation of higher spatial resolution and higher spectral resolu-
tion instrumentations will provide more accurate information
about the correlation between chemical and histological stain-
ing features. However, higher spatial resolution images re-
quire longer acquisition times and increased more expensive
computer resources in order to handle and analyze the big data
generated in multimodal hyperspectral imaging. Depending
on the purpose of the study, a balance between resolution, time
of acquisition, computer resources, and data management and
analysis should be taken into consideration.

In this work, the limitation of the low spatial resolution of
MALDI imaging instrumentation has been compensated
using the higher resolution images obtained by the other two
imaging techniques (IR and RGB). The spectra resolved dur-
ing the analysis of the low spatial resolution images can be
used in a second step to recover the distribution maps of the
constituents at high spatial resolution by spectral projection. In
this way, more detailed spatial information about the distribu-
tion of the chemical constituents within the analyzed tissue is
achieved.

When the aim of the study is to compare and correlate the
spectral features of the different tissues related to different
treatments on healthy and diseased tissues, the analysis of
the proposed multimodal data fusion strategy can be also used
in the simultaneous analysis of images. In this way, the

a

b

Fig. 5 Least-squares projection of ST matrix on IR and RGB high-resolution fused data. a Distribution maps, CH, of the four components resolved by
MCR-ALS projected on the high-spatial-resolution image data. b Graphical representation of the K-means segmentation performed on CH data
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specific spatial distribution and composition of the different
chemical constituents and staining patterns can be correlated
across the different tissue samples that are being compared.
This methodology can be very useful to elucidate the relation
between the chemical composition and staining signatures of
diseased tissues and also to investigate the response of a tissue
to specific treatments or environmental stressing conditions.
The signatures and features resolved by the proposed multi-
modal image data fusion methodology can be extremely use-
ful to understand the processes studied from the chemical and
biological points of view, and also to identify the events oc-
curring in different type of situations and experiments.

The methodology described in this work was applied using
hyperspectral chemical imaging coupled to H/E staining, but
this chemical information can also be coupled to other histo-
logical analysis techniques, such as immunohistochemistry,
immunofluorescence, or other specific staining protocols of
interest. Imaging data blocks containing tissue information
can be added successively as long as their image pixels have
been previously properly aligned. As more information is
available in the new multimodal image, more precise and ac-
curate will be the correlation between the chemical signatures
to the histological stained features.

Conclusions

In this work, a new analytical procedure based on the multi-
modal fusion of images from different spectroscopy methods
such as IR, MALDI-MS, and RGB is presented. On the one
hand, the multimodal fusion of images at low resolution and
their simultaneous MCR-ALS resolution provided informa-
tion about the common localization of lipids, IR fingerprints,
and H/E staining of each of the chemical constituents of the
analyzed tissue sample. This type of multimodal fusion of
images provides information about the correlation of specific
lipids and chemical signatures with precise histological infor-
mation defined by conventional and routine imaging proce-
dures, such as H/E staining. On the other hand, the projection
of the spectra of the sample constituents obtained in the anal-
ysis of multimodal images at a low spatial resolution on high-
spatial-resolution IR and RBG images provide a more defined
spatial delimitation of them on the investigated tissue. This
procedure can be applied using different chemical imaging
technologies, and to analyze one image or several images at
once, as long as the pixels of the images of the same tissue
sample obtained by the different hyperspectral imaging tech-
niques are correctly aligned. The increase of knowledge about
the tissue molecular composition and morphology provided
by the proposed multimodal analysis can be important in
many different research areas, such as in biomedicine, to bet-
ter understand a disease and the response to treatments, in
food research, or in environmental sciences, to analyze the

effects of environmental stressors on different organisms at
molecular, cellular, and tissue levels.
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