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Abstract
Despite the recent advances in the standardization of untargeted metabolomics workflows, there is still a lack of attention to specific
data treatment strategies that require deep knowledge of the biological problem and need to be applied after a well-thought out
process to understand the effect of the practice. One of those strategies is data normalization. Data-driven assumptions are critical
especially addressing unwanted variation present in the biological model as it can be the case in heterogeneous tissues, cells with
different sizes or biofluids with different concentrations. Chronic kidney disease (CKD) is a widespread disorder affecting kidney
structure and function. Animal models are being developed to be able to get valuable insights into the etiopathogenesis of the
condition and effect of the treatments. Moreover, diagnosis and disease staging still require defining appropriate biomarkers.
Untargeted metabolomics has the potential to deal with those challenges. Renal fibrosis is one of the consequences of kidney injury
which greatly affects the concentration of metabolites in the same quantity of sample. To overcome this challenge, several data
normalization strategies have been applied, following a multilevel normalization method with the overall aim of focussing on the
relevant biological information and reducing the influence of disturbing factors. A comprehensive evaluation of the performance of
the normalization strategies, both on methods assessing the intragroup variation and on the impact on differential analysis, is
provided. Finally, we present evidence of the importance of biological-model-driven guided normalization methods and discuss
multiple criteria that need to be taken into consideration to obtain robust and reliable data. Special concern is transmitted on the
misleading conclusions that might be the consequence of inappropriate data pre-treatment solutions applied for untargeted methods.
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Abbreviations
BCA Bicinchoninic acid assay
BGE Background electrolyte
CE-MS Capillary electrophoresis–mass spectrometry
CKD Chronic kidney disease
CTMOD Control genetically modified with the FAO

gain-of-function group
CTWT Control wild-type group
ECM Extracellular matrix
ESI Electrospray ionization
FAO Fatty acid oxidation
FC Median fold change
HCA Hierarchical cluster analysis
IS Internal standard
JK Jack-knifing uncertainty measures
OBSMOD Obstruction genetically modified with FAO

gain-of-function group
OBSWT Obstruction wild-type group
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OPLS-DA Orthogonal partial least squares discriminant
analysis

PBS Phosphate-buffered saline
PCA Principal component analysis
PLS-DA Partial least squares-discriminant analysis
PQN Probabilistic quotient normalization
QC Quality control
Q C -
SVRC

Quality control samples and support vector
regression correction

RLA Relative log abundance
RLE Relative log expression
RSD Relative standard deviation
TOF Time of flight
TUS Total useful signal
UUO Unilateral ureteral obstruction
VIP Variable importance in projection
WT Wild type

Abbreviations related to the tested data matrix
All+QC Complete data matrix, all samples from experi-

mental groups, QC samples included
All-QC All samples from experimental groups, QC sam-

ples excluded
QC Matrix associated only with QC samples
2Gr Matrix divided into two groups, (1) control group:

CTWT and CTMOD; (2) obstruction group:
OBSWT and OBSMOD

4Gr Matrix divided into four groups: (1) CTWT; (2)
CTMOD; (3) OBSWT; (4) OBSMOD

Introduction

Chronic kidney disease (CKD) is estimated to be one of the
major global health challenges. The worldwide burden of
CKD has increased rapidly during the last few years, and its
prevalence is still progressing. It is an independent risk factor
for cardiovascular disease and one of the causes of premature
mortality. Moreover, the majority of the CKD cases is asymp-
tomatic and not diagnosed until late stages, with limited ther-
apeutic options available [1, 2]. The state-of-the-art metabo-
lomics technologies are considered as one of the most power-
ful analytical approaches with a big impact on the understand-
ing of the molecular changes and pathogenesis of the disease.
Untargeted metabolomics gives the ability to measure thou-
sands of small molecules, also referred to as metabolites, that
are important components of the cellular metabolism and pro-
vides a direct functional description of cellular activity and
physiological status of the cell, tissue, organ, and entire organ-
ism. These molecular signatures have already made signifi-
cant breakthroughs in discovering multiple biomarkers and
predicting the progression of the disease. Therefore,
untargeted metabolomics has been already widely applied to

study CKD on different biological samples originating both
from in vitro and in vivo settings [3–6]. Although this ap-
proach has great potential and capacity to investigate and
solve relevant clinical issues, it also represents certain chal-
lenges that need to be overcome, namely the considerable
level of unwanted variation that enhances systematic bias
and could lead to spurious correlations. In identifying sources
of such variation associated with both biological and experi-
mental factors, pre-analytical, analytical and post-analytical
phases of untargeted metabolomics workflow should be con-
sidered [7, 8]. Experimental variation can appear from human
error, within and between batch instrumental variation or var-
iation due to the metabolite extraction protocols, that leads to a
lack of precision which can significantly impact the quality of
metabolomics data. It is only biological variation that reflects
true variability among experimental cases that should be cap-
tured, and only such variation is of main interest to investiga-
tors. Therefore, when an unwanted biological variation is not
recognized and removed or reduced, it could be easily con-
founded with the biological factor of interest. Some of the
most common confounders are associated with the loss of
sample integrity due to multiple freeze-thaw cycles or a vari-
ation of the sample weight, volume or the differences in the
size or number of cells [8, 9]. Another source of unwanted
biological variation is attributed to the complexity and hetero-
geneity of tissues and to the amount of extracted tissue, which
finally get reflected in variations in metabolite concentration.
Such a specific type of unwanted biological sample-driven
variability is addressed by our research paper, and the amount
of published studies that do not give any information about the
normalization strategies employed is striking. It will be dem-
onstrated that this fact can completely modify the biological
meaning. Herein, we have studied mouse kidney tissue sam-
ple in an animal model of CKD, with and without a gene
modification with protect role in CKD.

Data normalization aims to eliminate unwanted variations.
It is considered a fundamental step in metabolomics data pre-
processing. Several normalization methods have been already
described, compared and discussed [8–11]. However, an ade-
quate choice of a normalization method or strategy to remove
overall undesired variations in a particular data set is still con-
sidered a challenging task. Many researchers have been fo-
cused on correcting technical variations, signal drift within an
analytical batch or between batches [12, 13]. Some studies
have compared the best strategies to normalize acquired data
from urine analysis, a type of sample that possesses high nat-
ural variability in metabolite concentration mostly dependent
on the organism’s hydration and physiological status [14, 15].
However, there is still lack of deep evaluation of biological
model-driven normalization strategies to minimize the level of
unwanted biological variation associated with the analysis of
tissue-derived samples, emphasizing that data normalization
cannot be treated in an automated manner and it should be
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carried out according to the biological model. In our study, we
estimated that both factors together, CKD-associated
tubulointerstitial fibrosis and the genetic modification intro-
duced in the animal model, are prominent sources of nuisance
variation in experimental results. Therefore, we are conscious
that these variations might either bias experimental results,
produce significant background noise or even mask differ-
ences arising from study questions and significantly affect
research outcomes and data interpretation [16]. On these pre-
mises, we have performed data quality evaluation as an inher-
ent part of our quality assurance protocol [7], following sev-
eral normalization procedures that aim to reduce or eliminate
unwanted variations in the data acquired by capillary electro-
phoresis mass spectrometry metabolomics analysis. We have
applied a multilevel normalization method considering pre-
acquisition and post-acquisition levels [14]. Finally, we have
demonstrated that the data pre-treatment step has a significant
impact on the reliability of reported results.

Materials and methods

Chemicals and reagents

All chemicals were of analytical or reagent grade and were
purchased from Sigma-Aldrich (Germany). Reference mass
solution was obtained from Agilent Technologies. Deionized
water (Milli-Q) was used throughout the study (Millipore,
Billerica, USA).

Experimental design

All experimental procedures involving the use of animals
were performed according to the Guide for the Care and Use
of Laboratory Animals contained in Directive 2010/63/EU of
the European Parliament [17]. Approval was granted by the
local ethics review board of Centro de Biología Molecular
“Severo Ochoa” (CBMSO) Madrid, Spain, after complying
with the legal and ethical requirements relevant to the proce-
dure for animal experimentation established by the
Comunidad deMadrid and current Spanish legislation regard-
ing employment, protection and care of experimental animals
(RD 53/2013), taking into account the consideration of the 3 R
and the Helsinki regulations in force for animal experimenta-
tion. The study was approved by the Committee and all pro-
cedures with animals and sample collection and pre-treatment
were performed at CBMSO Center.

This study was performed in a conditional transgenic
mouse model for kidney fatty acid oxidation (FAO) gain-of-
function, 8-week-old wild-type (WT) and transgenic male
mice (n = 8 in each group) with C57BL6J genetic background
subjected to 7-day unilateral ureteral obstruction (UUO), a
model for tubulointerstitial fibrosis development [18, 19].

Control and obstructed kidneys were harvested after perfusion
with phosphate-buffered saline (PBS). A quarter piece of each
kidney sample (obtained after dissection in half both length-
wise and crosswise) was immediately frozen in liquid nitrogen
and stored at − 80 °C until analysis. Kidney samples were
classified into four experimental groups: control wild type
(CTWT), obstruction wild type (OBSWT), control genetically
modified (CTMOD) and obstruction genetically modified
with FAO gain-of-function (OBSMOD). Figure 1 presents
the general workflow of the presented study.

Sample preparation

Tissue disruption and homogenization as well as metabolite
extraction was carried out by following our previous protocol
[20] with minor modifications [21]. In brief, cold
methanol:water (1:1, v/v) at a tissue weight to volume ratio of
1:10 was used for tissue homogenization (TissueLyser LT
bead-mill homogenizer (QIAGEN, Hilden, Germany). The
weight range of the kidney tissue varied from 20 to 45 mg
(CTWT, 25–45 mg; OBSWT, 19.5–39.4 mg; CTMOD, 24–
42.6 mg; OBSMOD, 20.6–37 mg, respectively). The homog-
enization process was performed by using 2.8-mm (mean di-
ameter) steel beads, vibrating at 50 Hz for 5 min, 4 repeated
cycles with a 1-min break between cycles during which sam-
ples and TissueLyser adapter were cooled on ice.
Subsequently, 100 μL of the kidney homogenate was vortex-
mixed with 100 μL of 0.2 M formic acid, centrifuged
(16,000×g 10 min, 4 °C) and transferred to a Centrifree ultra-
centrifugation device (Millipore Ireland Ltd., Cork, Ireland)
with 30-kDa protein cutoff filter for deproteinization through
centrifugation (2000×g, 70 min, 4 °C). The filtrate was then
transferred to the chromacol vial, evaporated to dryness using a
SpeedVac Concentrator (Thermo Fisher Scientific, Waltham,
MA, USA) and resuspended in 50 μL of 0.1 M formic acid
containing 0.2 mM methionine sulfone (IS). Before the analy-
sis, the samples were centrifuged at 4000×g for 20min at 4 °C.

Quality control samples (QC) were prepared by pooling
equal volumes (10 μL) of each homogenized tissue following
the same procedure applied for the experimental samples.
Extraction blank samples (without analyte of interest) were
also considered for their preparation. All experimental sam-
ples were randomized before sample preparation and their
analytical run.

Capillary electrophoresis-time of flight-mass
spectrometry (CE-TOF-MS) analysis

The experiment was carried out using a 7100 capillary elec-
trophoresis system (Agilent Technologies) coupled to a 6224
TOF Mass Spectrometer (Agilent Technologies), equipped
with an electrospray ionization source (ESI). A fused-silica
capillary (Agilent Technologies; total length, 96 cm; i.d.,
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50 μm) was used for metabolite separation. Before each anal-
ysis, the capillary was flushed for 5 min with background
electrolyte (BGE) containing 1 M formic acid solution in
10% methanol (v/v). Sample injections were performed over
50 s at 50 mbar, and to improve the reproducibility of the
analysis, the BGE was injected for 20 s at 100 mbar after the
injection of each sample. The sheath liquid consisted of
methanol/water (1/1, v/v), formic acid (1.0 mM) and two ref-
erence masses: purine (m/z 121.050873) and HP-0921 (m/z
922.009798). Flow rate was 0.6 mL/min and split was set to
1/100. The separation was performed at a pressure of 25 mbar
and a voltage of + 30 kV, in positive ionization mode. The total
time of the analytical run was 23 min. TheMSwas operated in
positive polarity, with a full scan range fromm/z 70 to 1000 at a
rate of 1.36 scan/s. The drying gas was set to 10 L/min, neb-
ulizer to 10 psi, voltage to 3.5 kV, fragmentor to 125 V, drying
gas temperature to 200 °C and skimmer to 65 V. Data acquisi-
tion was performed with Mass Hunter Workstation Software
(Ver. B.06.01, Agilent Technologies) [21].

All samples were randomized before the analytical run.
Blank samples were analysed at the beginning and at the end
of the worklist. To achieve fully reproducible conditions, QC
samples (QCs) were used to equilibrate and condition the

system, then QCs were analysed after every 5 samples to mea-
sure the stability and performance of the analysis. Quality con-
trol and quality assurance procedures were applied according
to published guidelines [7]. A representative total ion electro-
pherogram obtained from the CE-MS analysis in positive ion-
ization mode of a kidney-derived QC sample is presented in
Electronic Supplementary Material (ESM), Fig. S1.

Data processing

Data pre-processing

MassHunter Qualitative analysis (Ver. B.08.00, Agilent
Technologies) was used to examine the quality of acquired
electropherograms. Raw data were pre-processed with
Agilent MassHunter Profinder Software (Ver. B.08.00,
Agilent Technologies) which performs batch molecular fea-
ture extraction on each data file that reduces data complexity
by removing redundant and non-specific information and
identifying important features (variables) associated with data.
Related co-eluting ion signals (isotopes, common adducts,
detected dimers or those with neutral loss of water) were
summed and grouped into one metabolic feature. Features

Fig. 1 Flowchart illustrating the general workflow of the study
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were aligned (by mass and migration time) across all the sam-
ples to create an average consensus spectrum for each com-
pound group, enabling a recursive re-extraction of the batch
data files to eliminate false-positive and false-negative results.
The datamatrix was extensively cleaned bymanual inspection
of the quality of each metabolic feature, including peak area
and migration time integration with Mass Hunter Profinder
Software (Ver. B.08.00, Agilent Technologies). The raw data
matrix consisted of 4 extraction blanks, 6 QCs and 32 exper-
imental samples with the 334 aligned metabolic features.

Data pre-treatment

The obtained data matrix was imported into Microsoft Excel
(Microsoft Office 2016) for further calculations. Blank sub-
traction and removal of detected salt clusters was applied to
eliminate irrelevant information, and the curated data matrix,
with 199 reported features, was used for further evaluation. In
the data pre-treatment workflow, metabolic features detected
in less than 50% of QC samples are considered to be excluded
from the data matrix. That was not the case for our data, as we
did not observe any missing values in analysed QC samples.
Systematic variation of the instrument’s response was evalu-
ated by plotting the sum intensity of all metabolic features
over the acquisition time as well as considering the group
index, as shown in ESM, Fig. S2. Unsupervised principal
component analysis (PCA) was applied to detect patterns,
trends and outlying observations according to Hotelling’s T2
Range Plot (SIMCA-P+ 15.0, Umetrics, Umea, Sweden). A
presented PCA scatter plot (ESM, Fig. S2) represents a sample
that is outside of the confidence ellipse range, and indeed, it
was identified as a strong outlier (T2 range value > 99%) and
removed from further data treatment. Inspection of the origi-
nal electropherogram additionally confirmed that the metabo-
lome of the indicated sample was significantly different as
compared to others. Quality control samples, and support vec-
tor regression with a radial basis function kernel (QC-SVRC)
was applied to correct analytical signal drift, as described else-
where [22]. The ε-insensitive loss parameter was selected for
each metabolic feature as 1.5% of the median peak area value
in QCs. The error penalty C was expressed as a percentile of
intensity of QCs (C = 50), the kernel parameter γ was in in-
terval log-space (0, 3, 20) and k-fold cross-validation (10-fold
CV) was applied. QC-SVRC function used in this work was
performed using MATLAB scripts (Matlab R2015,
Mathworks) kindly provided by Dr. Julia Kuligowski
(Neonatal Research Unit, Health Research Institute Hospital
La Fe, Valencia, Spain).

The RSD (expressed as a percentage) for each metabolic
feature present in QCs was calculated, and the metabolic fea-
tures with RSD in QC > 20% were considered to filter out.
The RSD values in QCs for metabolic features in our data

did not exceed 20%. Missing values were imputed by k-
nearest neighbours’ algorithm (k = 3).

Metabolite identification

For tentative identification, the accurate m/z of the metabolic
features were searched against online databases as Kegg,
Metlin, LipidMaps and HMDB using the advanced CEU
MassMediator tool [23]. Matched compounds were identified
by using the accurate mass and isotopic distribution. An in-
house-developed CE-MS standards library was used to com-
pare relative migration time if data were available.

Normalization strategies

This paper aims to evaluate representative post-acquisition
normalization methods, with a different statistical or chemical
base, namely normalization by (1) total protein content [24],
(2) total useful signal [25], (3) internal standard [26], (4) prob-
abilistic quotient normalization [27], (5) median fold change
[15] and (6) quantile normalization [28], which are one of the
most widely applied to mass-spectrometry-based untargeted
metabolomics data.

A pre-acquisition normalization considering the weight of
samples was applied to adjust individual dilution factors by
which samples are diluted to a common concentration regard-
ing mass/volume. The analytical variability was corrected
using quality control samples and support vector regression
(QC-SVRC) strategy for the signal drift [22]. Six different
post-acquisition normalization methods specified herein were
applied to CE-MS data to eliminate or reduce the remaining
analytical variability and the unwanted model-driven biologi-
cal variation.

– Normalization by total protein content, a method based
on the measurement of the total amount of protein in each
sample. The area of each peak in each sample was divided
by the amount of protein measured in that sample [24, 29,
30]. The protein was measured by bicinchoninic acid as-
say (BCA) [31]. The general advantage of this strategy is
the high linear correlation between the metabolite abun-
dance and protein amount in the tissue, which permits
comparisons between samples with different cellular
masses. However, this method is not efficient when we
consider highly heterogeneous samples like in our case,
samples with fibrosis with a high amount of connective
tissue in which proteins are not measured in the BCA
assay. In such case, less cellular mass is considered; how-
ever, the weight of the samples is comparable. As a gen-
eral recommendation, normalization by the total protein
content is not preferred for metabolomics studies because
of the relatively large errors introduced associated with
poor protein recovery in the solvents used for metabolite
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extraction and incomplete protein re-solubilization from
the pellet [29, 32].

– Total useful signal (TUS) assumes that changes in the
metabolic signals are stable across the data set which
therefore forces all samples to have equal total intensity.
The TUS normalization uses the total abundance of each
metabolic feature that is present in all samples as the
normalization factor. The abundance of each metabolic
feature is divided by this factor in a given sample [11,
25]. Considering statistical assumptions of TUS normal-
ization, large changes in the peak intensity of high-
concentrated metabolites will have a substantial contribu-
tion to total peak intensity and can compromise remark-
ably this normalization procedure. The validity of this
approach is questionable, as an increase in one metabolite
concentration may not necessarily be accompanied by a
decrease in another [10]. Despite that, it is a simple nor-
malization method that has been commonly used in meta-
bolomics studies.

– Internal standard (IS) normalization is based on a known
compound added to each biological sample. The area of
this compound in each sample is used to normalize the
feature signals in that sample. The variation captured by
IS normalization depends on its chemical properties, and
such a strategy of data normalization is not able to handle
unwanted biological variability, only useful to remove
analytical variation [11, 16, 26].

– Probabilistic quotient normalization (PQN) method is
based on the calculation of the most probable dilution
factor by comparing the distribution of quotients between
samples and a reference spectrum, followed by sample
normalization using such dilution factor. For this strategy,
it is fundamental to proper selection of the reference spec-
trum, and that should be dependent on the data-driven
case. It is a robust method, although it presents some
limitations when there are essential differences between
experimental groups. The PQN method is considered as
the optimal for multidimensional data sets [9, 27, 33].

– Median fold change (FC) is similar to TUS, in the as-
sumption that measured peak intensities are directly pro-
portional to concentrations of metabolites in solution.
However, the influence of high-intensity metabolites is
reduced because FC considers that the intermediate-
intensity metabolites are those that will be constant across
the data set. The method adjusts the median of log FC of
peak intensities between samples in a set of experiments
to be approximately zero. FC is more useful and practical
than TUS when saturated metabolite abundances are re-
lated to the interest factor and has relaxed assumption
with regard to the proportion of asymmetrical metabolite
changes [9, 15, 34].

– Quantile normalization considers the metabolic feature
peak intensity-dependent scaling factor and transforms

the intensity distributions of variables to be equal between
all samples in a data set. Therefore, all the samples will
have the same intensity values, although distributed oth-
erwise according to the different variables. It is consid-
ered as a simple and effective method to reduce system-
atic variation, revealing the biological variation [27].
However, this approach can pose some problems with
high-intensity values with considerable changes between
samples [28, 34].

Further details and comprehensive information on the
abovementioned normalization methods can be found in
[9–11, 26, 27, 29, 35, 36].

In the case of median FC, PQN and quantile normalization,
several additional strategies referred to the model-driven in-
formation were evaluated. This strategy assumed the differ-
ences in metabolite concentrations between specified cases
and in our previous observations where data matrix composi-
tion could affect the results of normalization. Therefore, the
aim was to evaluate the performance of selected normalization
methods in the settings where (i) all analysed samples were
considered simultaneously (All+QC); (ii) QCs samples were
excluded from the data matrix (All-QC); (iii) the normaliza-
tion was performed separately considering 2 groups, one with
all control cases (CTWT and CTMOD) and the other with all
cases with renal obstruction (OBSWT and OBSMOD); and
(iv) the last strategy treated all experimental groups in a sep-
arate manner and the normalization was applied independent
for each one of four experimental groups (CTWT, CTMOD,
OBSWT, OBSMOD).

The same strategy was applied to select the reference spec-
trum in case of PQN normalization. Taking into account het-
erogeneity of our experimental groups, we tested different
procedures that refer to the reference spectrum selection.
Therefore, for the data matrix All+QC as reference, we used
the distribution of metabolites across all experimental and QC
samples; in the case of the data matrix All-QC, QC samples
were not counted for the reference spectrum; for matrix QC,
the distribution of metabolites in the QC sample was consid-
ered as the reference spectrum; in case of 2Gr, the reference
spectrum was chosen separately from control cases (CTWT
and CTMOD) and groups with obstruction (OBSWT and
OBSMOD); in the last case 4Gr, the reference spectrum was
based on the individual sample distribution in each experi-
mental group CTWT, CTMOD, OBSWT and OBSMOD. In
consequence, this work not only addresses the evaluation of
the distinct normalization algorithms but also tackles the assay
problems associated with the biological model.

Methods to evaluate normalization performance

Multiple quantitative and qualitative statistical approaches
were considered to choose the optimal normalization strategy,
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including (i) RSD calculations; (ii) RLA plots; (iii) PCA and
PLS-DA multivariate analysis; and (iv) HCA-heatmap plots.
Multivariate statistical methods based on orthogonal projec-
tions to latent structures discriminant analysis (OPLS-DA)
were further applied to identify metabolites with a differential
presence between specified interpretations. Differential me-
tabolites were considered significant when VIP ≥ 1 with
jack-knifing (JK) confidence intervals at the 95% level.
Multivariate analysis applied sevenfold cross-validation of
the model. Relative standard deviation (RSD%= standard de-
viation/mean × 100%) was calculated to characterize mea-
surement variability and was used to estimate data dispersion
among different normalization methods. Such calculation of
data uncertainty was proposed by Persons et al. [37] as a
practical benchmark for metabolomics studies. Intragroup rel-
ative log abundance RLA plots were obtained by standardiz-
ing each metabolite by subtracting the median from each me-
tabolite within each group. The scaled variables are illustrated
as boxplots and demonstrate a median centred at zero and low
variability [16].

Results and discussion

There is a relationship between a specific biological sample
and the unwanted biological variation affecting samples.
Because normalization methods cannot be used with default
parameters and performed automatically, it is necessary to
study each biological model carefully and evaluate the suit-
able fit for the corresponding data pre-treatment strategy.
Normalization is one of the most important procedures for
handling untargeted metabolomics data and can completely
transform their value and biological meaning as illustrated in
Fig. 2. Data normalization can correct aspects that hinder the
biological interpretation only when its application is driven by
a deep knowledge and serious concern on the total unwanted
variation originating from uninduced biological and analytical
variation.

In Fig. 2, it can be observed that the magnitude of the signal
for a set of selected metabolites distributed along the profile
and their regulation (positive or negative) significantly vary
according to different normalization strategies applied. Data
normalization not only modifies the level of changes, as ex-
pected, but also, what is more important, it can also complete-
ly modify the directions from positive to negative, which has a
definitive influence in the interpretation of the results. In this
research paper, we have proven that in the biological model
studied, data normalization by the total amount of protein, a
common strategy, is not suitable. That is illustrated in Fig. 2,
especially in the comparisons where obstruction-associated
changes are addressed (OBSWT vs. CTWT and OBSMOD
vs. CTMOD). We have observed cases where some com-
pounds could be up- or downregulated depending on the

chosen data normalization strategy. Selected metabolites like
glutamic acid, tryptophan, hypoxanthine and uracil have been
described in the literature to be related to kidney disease [38].
The others like dimethylallyl pyrophosphate, L-asparagine, 2-
aminoadipic acid and ValPhe were chosen randomly but cov-
ering the whole profile. In the cases of normalization based on
protein content, TUS or PQN, those metabolites were in-
creased while in raw data they were decreased. We could also
see that this effect was data matrix-dependent and it did not
normalize equally when all experimental samples together
with or without QCs (All+QC or All-QC) were considered.

Following the idea of a sequential normalization recently
reported by Gagnebin et al. [14], we adapted the proposed
strategy to the specific case described in this study, with the
aim of removing or reducing unwanted variability related to
the analytical signal drift and the observed sample concentra-
tion fluctuations. Pre-acquisition sample normalization was
performed based on the tissue weight and a specific dilution
factor for each sample to level concentrations. After acquisi-
tion, raw data were evaluated according to quality assurance
protocols to estimate the quality of the analytical procedure
(ESM, Fig. S2). Analysis of QC samples indicated a slight
level of analytical variations arising from signal drift which
was then corrected by QC-SVRC algorithm, commonly en-
countered in untargeted metabolomics workflows [22].
Furthermore, the drift in the response was evaluated before
and after applying the correction on selected metabolites
(spermidine, tryptophan, guanidinoacetate and carnitine) that
have been previously described to be altered due to the onset
and evolution of renal fibrosis (ESM, Fig. S3) [38].
Application of that method of data normalization decreases
technical variance, increases the number of metabolic features
that meet the QC criteria and, what is more important, en-
hances overall data quality without affecting true biological
variability.

Evaluation of normalization performance

Relative standard deviation (RSD) was applied to compare the
uncertainty level between different measurements for each
dataset as well as for each experimental class. These results
are summarized in Fig. 3. RSD is considered a good measure
of the reliability of these results, where the lower the RSD
value, the higher the data reliability. According to the distri-
bution of RSD values, there is no doubt that both normaliza-
tion algorithms and the data matrix composition itself affect
overall data dispersion. It is especially evident in the case of
data normalization by protein content and by an internal stan-
dard (methionine sulfone). When we compare calculated total
average RSD values, a reduced RSD is observed after PQN,
median FC and quantile normalization. Furthermore, consid-
ering the experimental sample classification, we can observe
differences in inter-individual variations between the cases
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with kidney obstruction and controls, where RSD in OBS >
CT. In these cases, it is remarkable that variance is even higher
in CT and OBS cases with genetic modifications. The general
trend referred to the observed variance in RSD according to
the experimental group order: CTWT < CTMOD < OBSWT
< OBSMOD could be highlighted and is illustrated in Fig. 3.
That observed trend does not depend on the type of the nor-
malization algorithm or the normalization strategy used, ex-
cept when normalization by protein content is applied. The
results of normalization by protein content, shown in Fig. 2
(changes in the observed regulations between cases and con-
trol) and Fig. 3 (changes in the pattern of RSD according to the
group), indicate that it is necessary to take into account the
biological model. It is important to highlight that considering
analysis of tissue, which is subject to superior homeostatic
control than other biofluids, we could expect relatively low
inter-individual deviations. However, metabolic variability in-
creases when the tissue exhibits considerable heterogeneity.
Kidney fibrosis is characterized by the loss of renal cells and
their replacement by excessive formation and deposition of
extracellular matrix (ECM) proteins, mostly collagen, in the
kidney interstitium, resulting in structural damage, loss of re-
nal function and end stage of chronic kidney disease [39].
Thus, this tissue sample will be prone to manifest significantly
higher biological variation [37]. Moreover, in the same
amount of sample, cells are replaced by collagen which is

not measured in the protein assay. Therefore, when the sam-
ples from fibrotic tissue are divided by lower amounts of pro-
tein to normalize, results are biased towards higher abun-
dances. This observation is not biologically real because the
total weight of the kidney does not change. Although unwant-
ed biological variation, especially related to the specificity of
tissue-derived samples, should raise serious concerns, this is-
sue remains underestimated and is rather poorly or not ad-
dressed at all in many untargeted metabolomic experiments.

Moreover, this fact is not only related to the use of an
untargeted metabolomics strategy, as it could affect in the
same way to any targeted analysis where proteins are used to
normalize results.

We use within-group relative log abundance (RLA) plots
(Fig. 4) to reveal unwanted variations in experimental data.
RLA plots are a powerful tool with a great ability to detect and
visualize unwanted variation in a metabolomics data matrix.
As recommended by De Livera et al., RLA plots are particu-
larly useful to assess whether a normalization procedure has
been successful [16]. Recently, Gandolfo et al. have provided
a detailed examination and critical discussion about the rela-
tive log expression RLE plots, performed as RLA and their
application in high-dimensional data [40]. We have observed
that the RLA plot for raw data shows substantial unwanted
variation between samples. This variation is still visible when
data are normalized by protein content and an internal

Fig. 2 Differences in changes of direction of selected metabolites
dimethylallyl pyrophosphate, L-asparagine, 2-aminoadipic acid,

L-glutamic acid, L-tryptophan, ValPhe, hypoxanthine and

uracil, for each normalization method (lavender, beige and green panels
represent the results of PQN, median FC and quantile normalization
respectively) and specified interpretation
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Fig. 3 Distribution of total average RSD values expressed in percentage (%) calculated for QC, CT, CTWT, CTMOD, OBSWT and OBSMOD data
following different normalization strategies. The data indicates the impact of different normalization on the metabolite variation

Fig. 4 Within-group RLA plots of the raw data (Raw), data normalized
by protein content (Protein), data normalized by total useful signal (TUS),
data normalized according to internal standard (IS). a Lavender panel, b

beige panel and c green panel represent RLA plots obtained after PQN,
median FC and quantile normalization, respectively, together with the
evaluation of data normalization performance on the specified data matrix

6399Data-dependent normalization strategies for untargeted metabolomics—a case study



standard, while it is reduced for matrix normalized by the total
useful signal. Normalization with PQN, median FC and
quantile successfully removed observed variations, leading
to tight clustering of biological replicates. Nevertheless,
Gandolfo et al. pointed out that RLA plots only give strong
evidence that a normalization procedure has failed, but they
are not capable of diagnosing whether the factor of interest has
been retained [40]. Therefore, further careful evaluation of
reported data reliability needs to be taken into consideration.

Multivariate models, principal component analysis (PCA)
and partial least-squares-discriminant analysis (PLS-DA)
were constructed for further evaluation of normalization strat-
egies. Unsupervised PCA approach is commonly applied to
reduce data dimensionality and to extract relevant information
from a given data set. Figure S4 (see ESM) shows the
resulting PCA score plots for each normalization strategy ap-
plied to this study. In all models, it can be seen that the first
component of the sample scores captures the variation associ-
ated with kidney obstruction. Considering the disease severity
and fibrotic remodelling of the kidney tissue, such differences
are expected. Nevertheless, no clear separation attributed to
gene modification was observed. In addition, an interesting
performance was observed on PLS-DA-based analysis
(Fig. 5). Herein, the X-matrix is connected to the Y-data matrix
characterizing class membership considered following the

classification: CTWT—control wild type, CTMOD—control
genetically modified, OBSWT—obstruction wild type and
OBSMOD—obstruction genetically modified. This method
aims to maximize the covariance between the independent
variables (metabolic features) and the corresponding depen-
dent variables (classes) by finding a linear subspace of the
independent variables. The first component from all PLS-
DA models indicates the discrimination between the cases
with renal obstruction (OBSWT and OBSMOD) and control
group (CTWT and CTMOD). Moreover, a clear tendency to
separate the experimental groups due to the gene modification
can be observed except in raw data, data normalized by pro-
tein content and an internal standard. For other cases, the
second component was able to discriminate between control
samples and those with genetic modification (CTWT vs.
CTMOD). We have already commented the higher variation
associated to obstruction and gene modification that hinder
data interpretation. Indeed, in most cases, analysis cannot dis-
criminate samples from the OBSWT and OBSMOD groups.
Only the PLS-DAmodels derived from themedian FC and the
quantile normalization method performed for each of experi-
mental group (CTWT, CTMOD, OBSWT, OBSMOD) sepa-
rately were able to reduce within-group variation. As a conse-
quence, we were able to capture between-group variation and
moreover, what is particularly interesting, the variation

Fig. 5 Supervised PLS-DA comparing normalization strategies for raw
data (Raw), data normalized by protein content (Protein), data normalized
by total useful signal (TUS) and data normalized according to internal
standard (IS). (a) Lavender panel, (b) beige panel and (c) green panel

represent PLS-DA plots obtained after PQN, median FC and quantile
normalization, respectively, together with the evaluation of data normal-
ization analysis based on the specified data matrix
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attributed to gene modification. Such strategy of normaliza-
tion results in not only increased homogeneity of the within-
group data but also a benefit on the more efficient experimen-
tal cases discrimination. Both median FC-4Gr and quantile-
4Gr PLS-DA models were characterized with a significant
CV-ANOVA p value (5.6E−10 and 2.74E−10, respectively),
good model parameters for explained variation (R2 0.6 and
0.8, respectively) and variation predicted (Q2 0.5 and 0.6,
respectively). It is important to highlight that the PLS-DA
model based on the 4Gr quantile normalization strategy dem-
onstrates the shortest distance between samples within the
same experimental group (reduced within-group variation)
and the greatest separation between samples from different
groups (enhanced between-group variation). The heatmaps
presented in ESM, Fig. S5, based on relative signal intensities
of the metabolic features, confirm the observations derived
from the interpretation of PLS-DA models. Moreover, the
misclassification between control and obstruction cases could
be noticed in the case of a heatmap that represents raw data,
protein and internal standard normalized data.

The rapid emerging and global interest in untargeted
metabolomics research caused the difficulties with the adap-
tation of analytical procedures and challenges for large-scale
data analysis. Therewas a lack of standardized protocols and
consensus on the general metabolomics workflow.
Therefore, some issues especially related to metabolomics
data processing, e.g. sample normalization, have been some-
times ignored. Normalization according to TUS was one of
the most common methods applied. Although TUS is still in
use, many researchers recognize that it can pose problems in
case of samples with considerable differences in their con-
centrations. Some authors, e.g. Filzmoser & Walczak or
Walach et al., focus to evaluate the performance of TUS nor-
malization, among other methods in terms of the size effects
that refer to the samples that vary in the range of concentra-
tion [41, 42]. Indeed, those studies and other authors [10, 26]
are aware that TUS normalization, if not properly justified,
can lead to misleading conclusions. The sample concentra-
tion as, e.g. samples derived from the tissue, can vary from
one to another, and the amount of metabolites depends on
several factors as sample weight, cell density or the number
of cells. Therefore, the selection of a normalization method
and normalization strategy should depend on the type of bi-
ological sample and should also assume the size effect. Over
the past few years, we have seen a great effort to evaluate
normalization protocols, especially for the analysis of urine
samples. However, there is still an urgent need to evaluate
normalization for highly heterogeneous samples like tissue
that could have a different sample-to-sample total amount of
metabolites. The assumptions of TUS normalization could
be violated in a specific sample set, especiallywhen compar-
ing normal tissue with cancerous or tissue with fibrotic
changes.

The questions arise on how to proceed with normalization.
This approach in such cases is not straightforward and re-
quires careful evaluation.

Furthermore, previous studies support the idea of group-
dependent normalization. Those studies, e.g. Paulson et al. or
Hicks et al., emphasize that most normalization methods gen-
erally make assumptions that are valid in consistent samples;
however, those assumptions are violated in heterogeneous da-
ta sets, such as tissue samples. In those cases, conducting
normalization is more challenging, even when comparing re-
lated samples as each of them may have different metabolite
concentrations. The authors claim that in such cases global
normalization methods have the potential to remove biologi-
cally driven variation [43, 44]. Therefore, Hicks et al. pro-
posed an alternative strategy called smooth quantile normali-
zation, based on the assumption that the statistical distribution
of each sample should be the same within biological groups,
but allowing that they could differ between groups. Moreover,
the authors emphasize that the proposed method does not
require any external information other than sample group as-
signment and it is not specific to one type of high-throughput
data [44].

Differential multivariate analysis

Orthogonal partial least-squares discriminant analysis (OPLS-
DA) was used to assess the variance in each specified inter-
pretation (OBSWT vs. CTWT, CTMOD vs. CTWT,
OBSMOD vs. CTMOD, OBSMOD vs. OBSWT). Models
were constructed with one predictive and one orthogonal com-
ponent, and a detailed description of this analysis including
quality parameters of the model (R2, Q2 and p value) is pre-
sented in ESM, Tab. S1. Estimation of levels from statistically
significant data was measured by VIP (≥ 1) and JK (95%
confidence) uncertainties calculated for each data matrix and
is presented in Fig. 6. It is not surprising that the most prom-
inent differences were observed in the case of levels derived
from metabolic changes provoked by the obstruction
(OBSWT vs. CTWT). Both the quality of OPLS-DA models
and the number of significant compounds were comparable in
all normalization strategies.

Addressing the effect triggered by the genemodification on
the control group (CTMOD vs. CTWT), when normalization
was performed by median FC and quantile with respect to the
experimental group (4Gr based) showed better outcome. The
model constructed for OBSMOD vs. CTMOD, in which both
cases display gene modification, and when control cases are
compared with their associated obstruction cases give compa-
rable results. One of the most challenging tasks was to evalu-
ate the effect of the gene modification on the metabolite pro-
file in the obstruction cases, OBSMOD vs. OBSWT.
Although all the OPLS-DA models present a large R2 value,
it cannot be considered reliable due to the poor predictive
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Fig. 6 Cumulative chart displaying the total count of metabolic features
reported as non-significant (NS), significant according to VIP, JK and the
combination of VIP + JK with respect to the normalization strategy tested.

The grey colour indicates non-statistically significant data, dark blue datawith
VIP ≥ 1, light blue data passing JK uncertainty level and finally, the level of
statistically significant data (VIP ≥ 1 with JK) is marked on red colour

Fig. 7 Venn diagram representing
the number of statistically
significant features, considering
the median FC (beige) and
quantile (green) normalization
methods (4Gr based)
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(negative) Q2 parameter and, what is important, due to the
lack of modelling significance for the observed group separa-
tion according to CV-ANOVA.

However, a remarkable improvement of the overall model
(OBSMOD vs. OBSWT) quality and the satisfactory perfor-
mance with CV-ANOVA 3.4E−02 and 9.4E−03 was achieved
with the data matrix normalized by median FC and quantile
(4Gr based) with explained variation R2 0.87, 0.95 and vari-
ation predicted Q2 0.62, 0.72, respectively. Although there is a
similarity in the quality of both models, we could observe the
higher number of statistically significant features reported
when the quantile normalization was applied. Moreover, the
superior output of median FC and quantile normalization (4Gr
based) over the other strategies could be observed in the case
of the predictive component extracted from the OPLS-DA
model for the interpretation OBSMOD vs. OBSWT, focusing
into the variance which is critical for the defined group sepa-
ration (ESM, Fig. S6). Both normalization strategies give a
comparable number of statistically significant features which
could be seen in Fig. 7. However, the fact of a better statistical
performance was reported when the model related solely to
the effect of genemodification in the cases of renal obstruction
(OBSMOD vs. OBSWT), let us to conclude a slightly better
overperformance of quantile (4Gr based) normalization over
median FC.

Further, cross-validated OPLS-DA models performed for
quantile normalized data (4Gr based) gave another evidence
on data reliability. Therefore, we can conclude that this strat-
egy is the best choice for this specific model-driven metabo-
lomics data set adjustment (ESM, Fig. S7). Finally, it is wor-
thy to comment that the description of compounds and their
biological interpretation is beyond the scope of this paper.

Conclusions

A biological model-driven normalization strategy can sig-
nificantly decrease unwanted analytical and biological
variation. It improves overall data quality and facilitates
sample stratification due to the biological factor of inter-
est. Our data proved that the performance of median fold
change and quantile normalization was similar; however,
it is a substantial matter to consider the data matrix com-
position. Data normalization is a critical step in the ana-
lytical workflow with a fundamental problem of data in-
tegrity and reliability behind. The normalization strategy
should be compatible with experimental design and over-
all research purpose. Most normalization methods perform
well in consistent samples, but highly heterogeneous data
as it could be in case of tissue-derived samples pose a
serious problem. Unwanted biological variations still
seem to be underestimated and its evaluation in a given
biological model or specific case should be considered

adequately. Data normalization is a concern not only in
untargeted metabolomics studies but also in targeted strat-
egies where protein normalization is frequently used.
Therefore, minimum reporting criteria should include the
normalization method chosen because its lack might con-
tribute to incorrect data pre-treatment and misleading bi-
ological interpretations.
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