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Abstract

DNA analysis has seen an incredible development in terms of instrumentation, assays and applications over the last years.
Massively parallel sequencing (MPS) and digital PCR are now broadly applied in research and diagnostics, and quantitative
PCR is used for more and more practises. All these techniques are based on in vitro DNA polymerization and fluorescence
measurements. A major limitation for successful analysis is the various sample-related substances that interfere with the analysis,
i.e. PCR inhibitors. PCR inhibition affects library preparation in MPS analysis and skews quantification in qPCR, and some
inhibitors have been found to quench the fluorescence of the applied fluorophores. Here, we provide a deeper understanding of
mechanisms of specific PCR inhibitors and how these impact specific analytical techniques. This background knowledge is
necessary in order to take full advantage of modern DNA analysis techniques, specifically for analysis of samples with low
amounts of template and high amounts of background material. The classical solution to handle PCR inhibition is to purify or
dilute DNA extracts, which leads to DNA loss. Applying inhibitor-tolerant DNA polymerases, either single enzymes or blends,
provides a more straightforward and powerful solution. This review includes mechanisms of specific PCR inhibitors as well as

solutions to the inhibition problem in relation to cutting-edge DNA analysis.
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Introduction

DNA polymerase-based analysis has become indispensable
in many societal functions. Established techniques such as
conventional PCR and real-time quantitative PCR (qPCR),
as well as emerging ones such as digital PCR (dPCR) and
massively parallel sequencing (MPS), are key tools for
decision-making in, for example, forensic DNA analysis, food
safety, clinical diagnostics and bioterrorism preparedness
[1-4]. One of the main analytical challenges is that the sam-
ples of interest often contain low amounts of nucleic acids in
combination with a challenging matrix [5, 6]. Molecules from
the sample matrix, target cells or reagents added during sam-
ple preparation that affect the in vitro DNA polymerization or
the fluorescence signal are collectively called PCR inhibitors.
To overcome analytical limitations in presence of PCR
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inhibitors, it is useful to understand the underlying molecular
inhibition mechanisms. This critical review gives an overview
of PCR inhibition mechanisms in relation to qPCR, dPCR and
MPS, and solutions to overcome inhibition problems are pro-
posed. Knowledge is collected from the fields of forensics,
clinical diagnostics, food safety and veterinary medicine.
The strength of PCR is that it enables amplification and
detection of specific nucleotide sequences from one or just a
few target molecules. Efficient in vitro DNA polymerization
demands high DNA polymerase activity as well as favourable
interactions between nucleic acids (target denaturation and
primer annealing), meaning that both biochemical and bio-
physical processes are involved [7, 8]. Any compound affect-
ing any of the critical reagents or the subreactions in the po-
lymerization process thus acts as an inhibitor (Fig. 1).
Fluorescence measurement is the main means to detect and
quantify nucleic acids in DNA polymerase-based analysis,
thanks to the ease-of-use and excellent limits of detection [9,
10]. Fluorophores attached to primers or nucleotides are es-
sential in, for example, forensic STR analysis [11], Sanger
sequencing [12] and sequencing-by-synthesis MPS [13, 14].
Fluorescence intensity is also used to monitor amplicon gen-
eration in qPCR and dPCR. An often overlooked disadvan-
tage of fluorescence-based analysis is that any substance that
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disturbs the function of the fluorophore, for example by fluo-
rescence quenching, will impair the analysis [15, 16].
Fluorescence quenching can be caused through different
mechanisms, for example collisional quenching and static
quenching [17]. In collisional quenching, the quenching mol-
ecule comes into contact with the excited-state fluorophore,
and in static quenching, the quencher forms a non-fluorescent
complex with the fluorophore in its ground state.

Digital PCR analysis has been proven to be less affected by
PCR inhibitors than qPCR [18-20]. The main reason for the
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more accurate dPCR quantification in presence of PCR inhib-
itors is that end-point measurements are applied, meaning that
there is no reliance on amplification kinetics. For gPCR, on
the other hand, quantification cycle (Cq) values are linked to a
standard curve and any inhibition effect skewing the Cq
values will directly affect quantification. However, complete
inhibition has been shown to occur at lower amounts of humic
acid in qPCR compared with dPCR, indicating that the in-
creased PCR inhibitor tolerance in dPCR quantification can-
not be explained by the use of end-point measurements alone
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[16]. Possibly, the partitioning of the samples into many min-
ute reactions play a role in the elevated resistance to inhibitors
due to less interaction between inhibitor molecules and the
molecules involved in the polymerization process. Still, con-
siderable differences in dPCR quantification accuracy in pres-
ence of PCR inhibitors have been shown for different DNA
polymerases [16].

Around 2011, the first benchtop platforms for MPS
were released. This simplified DNA sequencing, for ex-
ample enabling cost-effective and fast analysis of bacte-
rial genomes in outbreak events [21, 22]. Today, MPS is
increasingly applied in, for example, clinical diagnostics
and forensics [23, 24]. MPS has opened up for many
new applications in forensic DNA analysis, such as phe-
notype prediction, enhanced mixture analysis and body
fluid identification [25, 26]. MPS analysis relies on
in vitro DNA polymerization and also on fluorescence
measurements when considering the sequencing-by-
synthesis technology, one of the most commonly used
sequencing approaches [27].

qPCR, dPCR and MPS are all vulnerable to molecules that
interfere with the DNA polymerase or the nucleic acids in the
reactions. Apart from the actual amplicon generation, the de-
tection of amplicons through fluorescence measurements
must function optimally. There are several molecules that
can interfere with the PCR, e.g. through lowering of the
DNA polymerase activity, by interacting with nucleic acids
or by quenching fluorescence. It has been reported that differ-
ent PCR assays, including different primer and target se-
quences, may be affected differently by inhibitors [28, 29].
Also, larger fragments are in general more difficult to amplify
in the presence of PCR inhibitors than smaller ones. It is cru-
cial to understand and control the impact of PCR inhibitors on
the quality and reliability of PCR and MPS data, specifically
concerning impure samples with low amounts of DNA. A
comprehensive list of relevant PCR-inhibitory molecules can
be found in [30].

Challenging samples

The general PCR workflow consists of sampling, extraction of
the nucleic acids and thereafter detection, quantification or
identification of specific nucleic acids (Fig. 2). PCR may be
applied to accurately detect low DNA amounts, to quantify the
amount of a certain microbial pathogen or to determine the
identity of the person that left DNA at a crime scene. The
objective will guide the important sampling step. It is vital
that the sample is representative of the material tested and that
uptake and release of cells is optimized [30, 31]. Further,
sampling should aim to minimize the uptake of PCR inhibitors
from the sample matrices while maximizing the target uptake
[30]. There are different strategies for sampling, where

swabbing with a cotton or nylon swab is commonly applied
in forensics and microbial testing [32—34].

The sample preparation serves to generate homogeneous
DNA extracts from heterogeneous samples using, for exam-
ple, biochemical or physical principles [35]. DNA is released
from the cells by DNA extraction, and if needed, the extracts
are further purified. A common method for DNA extraction is
based on Chelex resin, providing a convenient and quick
method with low cost [36]. Cationic magnetic beads and
silica-based filters provide efficient purification of nucleic
acids and have been applied in many automated methods
[37]. Other advanced DNA purification methods include sub-
jecting the DNA extract to high pressure and focusing DNA in
a small area on a gel [38, 39]. In recent years, there has also
been a focus on developing integrated microfluidic systems
for sample preparation and amplification of nucleic acids [40].
The drawback of extensive purification is that it leads to sub-
stantial DNA loss, generally with recovery rates from 10 to
80% [41, 42]. The opposite of extensive purification is direct
PCR methods, where the sample preparation step is mini-
mized or left out entirely [43]. Here, the advantage is that
the DNA loss is avoided, but one disadvantage is that high
amounts of PCR inhibitors may be present. A direct PCR
approach used in forensic DNA analysis cut the DNA profil-
ing time from 10—12 h to 2-3 h by applying the inhibitor-
tolerant DNA polymerase Phusion Flash [44]. The methodol-
ogy was most effective for samples with high DNA amounts,
where a sub-sample of controlled size could be added to the
PCR.

Many different types of challenging samples may be rele-
vant in bioterrorism preparedness, food safety,
archaeogenetics and forensics. Any type of human tissue de-
posited on any surface (e.g. cigarettes, fabrics, outdoors [45])
may be of interest in forensic DNA analysis. In microbial
testing of food, the sample matrix may be, for example, rasp-
berries or minced meat. These various sample types cause
analytical complications linked to PCR-inhibitory molecules
from the target cells/tissues, the sample matrix and/or reagents
added during sample processing.

When a crime has been committed outdoors, there
may be a need to analyse human DNA from soil sam-
ples. Trained search dogs are capable of locating small
amounts of body fluids not visible to the naked eye.
The challenge is to isolate and analyse these small
amounts of human cells in a complex background of
plant or soil material [43]. In environmental studies, soil
and sediment are often the source of genetic material,
for example when studying the microbiota or tracing
pathogens. Soil has a high content of humic substances
that are degradation products of lignin decomposition
[46]. Humic substances can be divided into three cate-
gories: humin which is black and insoluble, humic acid
that is dark brown and soluble at neutral or alkaline pH
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Fig. 2 The general workflow for PCR-based analysis. To ensure optimal
analytical success for challenging samples, important performance char-
acteristics to investigate in method validation are matrix effects, limit of
detection, selectivity and trueness and precision. In the pre-PCR

and fulvic acid which is yellowish and soluble in water
at all pH levels [47]. Humic and fulvic acids are two
heterogencous groups of dibasic weak acids with car-
boxyl and hydroxyl groups. Statistical calculations indi-
cate that in 1 kg of humic acid, there are not two
molecules that are identical [48, 49]. Humic acids are
generally larger than fulvic acids which in turn contain
more oxygen and less carbon than humic acid [47, 50,
51]. Humic acid molecules have molecular weights of
up to approximately 100,000 Da compared with about
10,000 Da for fulvic acid [46]. Humic acid has been
identified as the main PCR inhibitor in sample matrices
of soil and sediment [52-54].

Blood is often analysed for nucleic acids both in clinical
diagnostics and in forensic DNA analysis. Blood is composed
of plasma (approximately 55% of total blood volume), white
blood cells and red blood cells (approximately 45% of total
blood volume) [55]. Potential PCR inhibitors that have been
identified in blood are immunoglobulin G, lactoferrin,
haemoglobin and anticoagulants such as EDTA and heparin
[56-58]. In clinical diagnostics, there is a need for quick and
reliable analysis by means of direct PCR analysis of blood
samples [59]. In forensic DNA analysis, it is not uncommon
that a recovered blood stain has been exposed to tough envi-
ronmental conditions, posing harsher analytical challenges
due to low DNA levels and DNA degradation. Thus, to avoid
the need for extensive purification where DNA is lost, it is
vital to control and circumvent the PCR inhibition effects.
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processing concept, the different parts of the analytical process are viewed
as links in a chain. Thus, to overcome limitations with low DNA amounts
or PCR inhibitors, one of the most vital steps is to apply a DNA
polymerase-buffer system that is compatible with the sample matrix

Inhibition of DNA polymerization

In vitro DNA polymerization may be inhibited by molecules
that have a direct negative effect on the polymerase activity,
e.g. through binding to or degrading the enzyme, or molecules
that affect the ion content or bind to nucleic acids, thus hin-
dering primer extension [60]. To design a DNA polymerase-
buffer system that is compatible with the sample matrix, there
is a need to understand how different molecules impact the
polymerization.

DNA polymerase inhibitors

Haemoglobin and haematin have been reported to cause inhi-
bition of the DNA polymerization in qPCR and dPCR [58,
61]. More recent work has shown that haemoglobin and
haematin cause lowered DNA polymerase activity which im-
pacts the amplification efficiency [62]. The release of iron
trichloride from haemoglobin has previously been suggested
to be responsible for the PCR inhibition [57], but recent find-
ings indicate another main mechanism of inhibition since iron
trichloride by itself showed different effects compared with
haematin and haemoglobin [62]. Further, the principal inhib-
itory effect of haemoglobin has been suggested to be caused
by the haem groups, and therefore, haematin (a derivative of
haem) is often used as a model for blood in validation studies
[63—65]. Each molecule of haemoglobin contains four
haematin molecules. Thus, four times more haematin should
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give the same effects as a certain amount of haemoglobin if
the main inhibitory effect is caused by haem alone. However,
haemoglobin has been shown to be a more potent inhibitor
than haematin since 470 uM haemoglobin or 3000 uM
haematin was needed to cause complete amplification inhibi-
tion in dPCR analysis [62]. This indicates that it is not solely
the haem group that is responsible for the haemoglobin-
induced inhibition.

Humic substances, specifically humic acid and fulvic acid,
have long been acknowledged to cause PCR inhibition [54,
66]. DNA polymerization inhibition has been suggested to
occur through binding to DNA or by directly impacting the
DNA polymerase activity [53, 67, 68]. However, humic acid
does not bind to DNA under regular PCR conditions [15, 52].
The level of PCR inhibition has been shown to be similar for
various soils and standardized humic acid preparations, and it
has been suggested that phenolic structures of humic sub-
stances are likely responsible for the DNA polymerase inhibi-
tion [52]. Humic acid has been used in several studies as a
defined PCR inhibitor representing soil and sediment [15, 52,
69].

When investigating PCR inhibition mechanisms, it is vital
to apply various DNA polymerases and buffer systems.
Otherwise, the found mechanism may not be relevant in prac-
tical settings. A DNA polymerase-buffer system with high
tolerance to humic substances (Immolase with 10 pg BSA)
was used when studying inhibition mechanisms [15]. There,
both humic acid and fulvic acid caused polymerization inhi-
bition, although higher amounts of fulvic acid were needed to
impair amplification. An example of how the amplification
inhibition effect of fulvic acids is manifested in qPCR may
be found in Fig. 3 a and b. Increasing amounts of DNA tem-
plate or Mg”* did not improve the tolerance to humic acid.
Therefore, it was concluded that the amplification inhibition is
caused by a direct effect on the DNA polymerase, rather than
on template DNA or through chelation of vital ions. High
amounts of DNA polymerase can be used as an expensive
means to elevate PCR inhibitor tolerance [68], and also to
study inhibition mechanisms. Increasing amounts of DNA
polymerase (from 1 to 5 U) were applied to support the con-
clusion that the inhibition mechanism for humic acid,
haemoglobin and haematin is a direct effect on the DNA po-
lymerase activity (Table 1) [15, 16, 62]. Bile salts and phytic
acid in faeces have also been reported to act as DNA poly-
merase inhibitors with a direct effect on the DNA polymerase
[70, 71]. Phenols introduced during DNA purification can act
as inhibitors by denaturation of the polymerase [72].
Additionally, moist snuff tobacco has been reported to have
a negative effect on the polymerase activity [73].

MPS analysis relies on in vitro DNA polymerization and
fluorescence measurements for detection. For targeted MPS,
where the sequence of interest is amplified prior to sequenc-
ing, the targeted PCR amplification is crucial for accurate
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Fig. 3 Examples of how PCR inhibition may be manifested in qPCR. a
Amplification curves for analysis with increasing amounts of fulvic acid
that inhibits amplification. b Corresponding agarose gel electrophoresis
results for the amplification in a. ¢ Amplification curves for analysis with
increasing amounts of humic acid that quenches the fluorescence. d
Corresponding agarose gel electrophoresis results for the reactions in c.
The numbers depict the amounts of humic acid or fulvic acid spiked into
the reactions. PC (positive control) denotes a reaction where water was
added instead of PCR inhibitor. EvaGreen dye was used for detection.
Reprinted from Analytical Biochemistry, 487, pp. 30-37, Title: Humic
substances cause fluorescence inhibition in real-time polymerase chain
reaction, Authors: Maja Sidstedt, Linda Jansson, Elin Nilsson, Laila
Noppa, Mats Forsman, Peter Rddstrom and Johannes Hedman.
Copyright (2015), with permission from Elsevier [15]
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Table 1 A summary of the PCR inhibition mechanisms for the main PCR inhibitors in soil and blood
Source Molecule Effect on DNA Effect on fluorescence detection Proposed mechanism

polymerization

Soil and sediment Humic acid

Decreased amplification
efficiency, eventually
leading to complete
amplification inhibition

Quenching of fluorescence (e.g.
EvaGreen, SYBR Green I, ResoLight,
ROX)

Fulvic acid ~ Decreased amplification Quenching of fluoresence at high
efficiency, although less concentration. No noted effect in
potent than humic acid qPCR due to a stronger negative effect

on DNA polymerization
Blood IgG Increased Cq values No effect

Binds to fluorescent dyes, causing static
fluorescence quenching

Lowers the activity of the DNA
polymerase, likely with the greatest
effect in the early cycles of PCR

Lowers the activity of the DNA
polymerase

Binds to genomic ssDNA, thereby

eventually leading to
complete amplification
inhibition
Haemoglobin Decreased amplification
efficiency, eventually
leading to complete
amplification inhibition
Haematin Similar to haemoglobin,
although a weaker effect

Quenching of fluorescence (e.g.
EvaGreen, ROX)

Similar to haemoglobin, although a
weaker effect

hindering primer annealing, thus
disturbing the initiation of amplification
in the first few PCR cycles

Binds to fluorescent dyes, causing static
fluorescence quenching

Lowers the activity of the DNA
polymerase throughout the PCR

Similar to haemoglobin, although a
weaker effect

analysis [74—77]. It is also important to consider the sampling
strategy, DNA extraction method and quantity of the DNA, as
well as contamination control in the practical workflow of
MPS [78]. For pure template samples, it has been shown that
the PCR step in MPS contributes to bias in obtained sequences
for templates with extreme base compositions [74]. Further,
there are reports highlighting the importance of the choice of
DNA polymerase to obtain accurate sequencing data [75,
79-81]. For example, when four different genomes with vary-
ing GC-contents were amplified with 24 different DNA
polymerase buffer systems and one PCR-free protocol, it
was found that the best performing enzyme was KAPA HiFi
and not the more commonly used Phusion DNA polymerase
[81]. It has been observed that PCR inhibitors limit MPS ap-
plications [69, 78, 82]. For example, it was noted that humic
acid and haematin caused complete amplification inhibition at
certain levels in MPS-based analysis with a commercial fo-
rensic kit [69]. For MPS methods to be widely used in forensic
and clinical routine analysis, there is a need to ensure compat-
ibility with challenging sample types such as blood and soil.
The impact of DNA polymerization errors is a much
discussed topic in MPS-based analysis [74, 75, 83-85].
Recently, the effect of humic acid and haematin on MPS-
based analysis was investigated [86]. The inhibitors did not
impact the nucleotide sequence, but rather the amount of
amplicons that was generated in the initial targeted multiplex
PCR. Larger amplicons were most severely affected, suggest-
ing that humic acid and haematin impact the DNA polymerase
activity in the initial PCR. Further, there was uneven amplifi-
cation of the different targets in the multiplex PCR. In con-
trast, low DNA amounts in the initial PCR resulted in evenly
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lowered read numbers for all markers, which further strength-
ened the conclusion that the inhibitor effect was on the DNA
polymerase and not on DNA [86].

Nucleic acid inhibitors

Immunoglobulin G (IgG) has previously been suggested to
inhibit polymerization by binding to single-stranded genomic
DNA (ssDNA), hence interfering with primer annealing [56].
This was recently confirmed using alternative methods to
study the different subreactions of PCR [62]. The main effect
of IgG on dPCR was elevated and more dispersed Cq values.
In qPCR, the slopes of the amplification curves were not af-
fected by IgG, but delayed amplification (higher Cq values)
was observed. This implies inhibition due to DNA binding.
The electrophoretic mobility shift assay (EMSA) is a method
used to study protein-DNA interactions. EMSA experiments
showed that IgG preferentially interacts with single-stranded
high-molecular weight genomic DNA [62]. The specific effect
on ssDNA was further corroborated in dPCR, where IgG had a
substantially stronger inhibitory effect when using ssDNA as
template, compared with dsDNA. The interactions between
antibodies and DNA have also been studied in other fields,
and it has been shown that a small portion of IgG in serum of
healthy people binds to ssDNA [87]. Further, researchers
studying lupus monoclonal antibodies showed that there are
different binding mechanisms of antibodies to DNA, where
some preferentially bind to dsDNA in complex with a DNA
polymerase [88]. Another molecule that has been identified as
a nucleic acid inhibitor is collagen in bone, causing inhibition
by interaction with template DNA which affects the DNA
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polymerase processivity [67, 89]. Cellulose in cigarette filter
papers or wood and bilirubin in facces are other compounds
that have been implicated to interfere with the DNA polymer-
ization through binding to DNA [73, 90, 91].

Isothermal titration calorimetry (ITC) is a technique for
thermodynamic and kinetic studies, which relies on measuring
the heat released or absorbed during a chemical reaction. ITC
has been used to determine the interactions between the DNA
polymerase and the primer-template complex as well as the
salt dependence of binding for pure samples [92, 93]. For
example, the investigation of the thermodynamics for the
DNA-binding characteristics revealed that 7ag DNA polymer-
ase binds efficiently to the primer-template complex over a
range of temperatures, with the highest affinity at 40 to
50 °C [92]. ITC has also been applied to study the DNA
polymerization, independent of fluorophores and primer an-
nealing efficiency, showing that haematin, but not IgG, in-
hibits the DNA polymerase activity [62]. Calorimetry is a
promising methodology to study the different subreactions
in PCR and thus investigate specific PCR inhibition
mechanisms.

Inhibition of fluorescence detection

The phenomenon of Forster resonance energy transfer (FRET)
is used in the design of dual-labelled hydrolysis probes for
detection of specific amplicons in qPCR and dPCR (Fig. 4)
[94-96]. Probes for qPCR are labelled with a fluorescent dye
acting as reporter, e.g. 6-carboxyfluorescein (FAM), and a
second fluorescent dye serving as quencher, e.g. 6-carboxy-
tetramethyl-rhodamine (TAMRA). The fluorophores are at-
tached to an oligonucleotide, and as long as they are in close
proximity, TAMRA will quench FAM fluorescence. The ap-
plication of these oligonucleotide probes relies on annealing
of' the probe to the target sequence, and subsequent hydrolysis
of the phosphodiester bonds in the probe by the 5’-3" exonu-
clease activity of the DNA polymerase. When the probe is
cleaved, the reporter fluorescence will no longer be quenched
due to increased distance between the reporter and the quench-
er molecule. Probes differ from dsDNA-binding dyes in that
the fluorescence signal is directly connected to the amplifica-
tion of the specific target sequence.

Cyanine dyes are a class of fluorescent dyes with high
affinity for binding to DNA. They have proven to be very
useful in qPCR due to their characteristic increased fluores-
cence upon binding to dsDNA (Fig. 4) [97-99]. There are two
modes of non-covalent dye interaction with DNA: intercala-
tion and surface binding. Surface binding can occur either
within the major groove, which is common for larger mole-
cules such as proteins, or within the minor groove. DNA-
binding dyes generally intercalate or bind to the minor groove.
Molecules that bind to DNA through intercalation are often
cationic with planar aromatic rings, whereas minor groove

binders usually have more flexible structures. The binding of
dye molecules to DNA is the key to monitor the generation of
amplicons during amplification. However, the dyes should not
have too high binding affinity for DNA since this can hinder
amplification [100].

The first reported qPCR applications used ethidium bro-
mide to monitor the increase in amplicon amount [101]. Not
long after, SYBR Green I was applied for the same purpose
[102] and SYBR Green I is still the most commonly used
cyanine dye in PCR applications. SYBR Green I has been
proposed to function through intercalation in combination
with minor groove binding via interaction through the posi-
tively charged amino group of the elongated arm [103—105]. It
has also been observed that SYBR Green I exhibits sequence-
specific binding, with preferential binding to amplicons with
high GC-content [106]. SYBR Green I inhibits PCR at mod-
erate concentrations due to its strong binding affinity for
dsDNA (K4 3.1 nM reported in [103]), elevating the melting
temperature of the DNA double helix up to 10 °C [100]. Apart
from inhibiting polymerization, the high binding affinity for
DNA leads to the generation of more primer-dimer products
for SYBR Green I than for the dye SYTO-82 [100].
Alternative dyes such as EvaGreen, SYTO-9 or SYTO-82
have been shown to have a much lower affinity for dsDNA
compared with SYBR Green I, which may explain why these
are less PCR inhibitory [100, 107, 108]. EvaGreen has been
reported to have an intrinsic affinity constant of 3.6 x 10° M
and the two acridine orange moieties of EvaGreen likely co-
operatively intercalate into dsDNA [109].

Fluorescence quenching mechanisms

The introduction of qPCR using fluorescence detection has
brought great benefits to the field. However, any molecule
that interferes with the fluorophores may inhibit the detection
of amplicons. This inhibition may be due to quenching of the
fluorescence or by hindering a dye from binding to DNA.
Changes in the ion content can also impact DNA-binding
characteristics of both cyanine dyes and hydrolysis probes
[99]. Further, if an inhibitor has a negative effect on the 5'-3’
exonuclease activity, this could lead to inhibition since the
DNA polymerase would not be able to hydrolyse the probe
[110]. Fluorescence inhibition can lead to an underestimation
of the DNA quantity or even false negative results which in
turn could have dramatic effects on the decisions made based
on the outcome. Still, research related to fluorescence inhibi-
tion has been scarce.

Humic substances have previously been shown to cause a
negative effect on non-PCR-based fluorometric methods used
to quantify nucleic acids [49, 111]. In PCR-based studies, both
lake sediment and humic acid caused systematically lowered
qPCR fluorescence signals when the DNA-binding dye
EvaGreen was used [15]. The results showed lowered qPCR
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Fig. 4 Schematic representation of the two most commonly used fluorescence detection systems in PCR-based applications

end-point fluorescence intensity or failed detection, although
clear bands of the correct PCR product were detected in aga-
rose gel electrophoresis. An example of how fluorescence
inhibition caused by humic acids may be manifested in
gqPCR is provided in Fig. 3 ¢ and d. When studying the effects
of humic acid on other dsSDNA-binding dyes, i.e. ResoLight,
SYBR Green I and SYTO-82, it was revealed that these were
all affected by fluorescence quenching, although the degree of
inhibition differed [15]. For example, EvaGreen fluorescence
was relatively more quenched than SYTO-82, and no apparent
correlation between the quenching effect and dye concentra-
tion was seen. Likely, the difference in sensitivity to fluores-
cence quenching between the dyes is explained by their dif-
ferent structures and binding affinities to both DNA and hu-
mic acid. Using hydrolysis probes for detection in presence of
humic acid revealed no negative effect on the fluorescence
signals, i.e. the amplification curves and the product detected
with gel electrophoresis were in concordance [15]. Indigo
dyes have also been implicated to disturb fluorescence detec-
tion by causing background fluorescence [67].

Fluorescence spectroscopy has been used to investigate the
underlying mechanisms of the fluorescence quenching caused
by humic substances [15]. There, the EvaGreen signal was
lowered by increasing amounts of both humic acid and fulvic
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acid. This was apparent for free EvaGreen dye molecules as
well as for EvaGreen bound to DNA. Fulvic acid caused no
fluorescence inhibition in qPCR. However, fluorescence spec-
troscopy measurements showed that large amounts of fulvic
acid quenched the fluorescence of qPCR dyes. This was not
observed in qPCR because such high amounts of fulvic acid
inhibited polymerization, thus masking the quenching effect.
There were no observed effects on the fluorescence emission
spectra by humic acid or fulvic acid. Stern-Volmer plots were
used to investigate the nature of the fluorescence quenching
[15]. A linear relationship was shown, indicating that static
quenching is the major quenching mechanism. In summary,
humic acid causes static quenching of dSDNA-binding dyes as
confirmed with qPCR and fluorescence spectroscopy
measurements.

In work dedicated to determine the PCR inhibition mech-
anisms of molecules in blood, it was identified that
haemoglobin, and to a lesser extent haematin, also quenches
the fluorescence of DNA-binding dyes [62]. Haemoglobin has
previously been suggested to quench fluorescence in non-
PCR applications and fluorescein has been found to bind with-
in the central cavity of haemoglobin [112, 113]. However, no
systematic fluorescence quenching of the hydrolysis probe
reporter dye (FAM, a derivative of fluorescein) was observed
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using qPCR or dPCR measurements with humic acid or
haemoglobin. The fact that humic acid does not quench the
hydrolysis probe fluorescence may be due to that this
fluorophore is bound to an oligonucleotide and not free in
solution. Other reasons for the difference in quenching be-
tween probes and DNA-binding dyes may be binding affini-
ties or the ionic charge, as cyanine dyes generally have a
positive charge and humic acid and fluorescein generally are
negatively charged in qPCR (pH around 8.3).

Bovine serum albumin (BSA) is a potent facilitator reduc-
ing the polymerization-inhibitory effects of, for example, hu-
mic substances [15, 91]. However, BSA did not counteract the
fluorescence quenching from humic acid [15]. For example,
fluorescence quenching of EvaGreen was observed at similar
levels with 2 and 10 pg BSA in the reactions. This may be due
to a higher binding affinity between the dyes and humic acid,
compared with BSA and humic acid. However, when there is
no dye present, humic acid interacts with BSA rather than with
the DNA polymerase as witnessed by the increased amplifi-
cation inhibitor tolerance with BSA [15].

High amounts of humic acids are tolerated in dPCR, but
result in elevated normalized fluorescence of the amplification
curves [16]. The normalized fluorescence is the signal of the
FAM fluorophore normalized to the passive reference ROX.
Examination of the fluorescence intensity revealed that 375—
750 pg/mL humic acid quenched the ROX fluorescence to
approximately half of the intensity compared with reactions
without humic acid. This could cause analytical problems
since the fluorescence threshold applied to distinguish positive
and negative reactions may be inaccurate. When analysing
reactions with whole blood in dPCR, 5% blood resulted in
quenching of the ROX fluorescence to less than half the in-
tensity compared with reactions without blood [62]. The same
effects were observed with haemoglobin present in the reac-
tions, in both gPCR and dPCR. In summary, both humic acid
and haemoglobin inhibit the fluorescence signal for several
free dyes, e.g. SYBR Green I, EvaGreen and ROX reference
dye [15, 16, 62] (Table 1). Dithiothreitol (DTT), used in sev-
eral DNA extraction protocols, has also been observed to act
as a fluorescence quencher, causing lowered fluorescence in-
tensity of the passive reference dye MustangPurple in qPCR
[114].

Solutions to PCR inhibition
Monitoring PCR inhibition

In order to avoid false negative and incorrect results in routine
diagnostics, it is important to monitor and control PCR inhi-
bition. This entails applying proper quality assurance and
quality control measures [115, 116]. Method validation is a
prerequisite prior to implementation to ensure that the

methods perform well for the samples of interest [117].
Apart from the general performance characteristics that should
be investigated in a validation study (e.g. limit of detection,
selectivity, trueness and precision), PCR inhibition should be
properly addressed (Fig. 2) [118, 119]. It is also crucial to
include relevant sample types and matrices in the validation
study, i.e. matrices expected to be present in the analysis. For
this purpose, reference material mimicking commonly en-
countered matrices may be prepared and applied [120]. The
possible outcome of such an experiment, where DNA is
analysed with qPCR in the presence of increasing amounts
of inhibitors, is provided in Fig. 3. Apart from showing that
inhibition is present, it may be elucidated whether the inhibi-
tors affect the DNA polymerization (Fig. 3a, b) or the fluores-
cence signals (Fig. 3c, d). This then directs any need for fur-
ther improving the method. In routine analysis, there are two
main ways to assess if the analysis is affected by PCR inhibi-
tion: (1) using internal amplification controls (IAC) or (2)
investigating amplification kinetics through the actual ampli-
fication curves of the target DNA (kinetic outlier detection
(KOD)) [30, 121]. IAC is well-established and highly recom-
mended in diagnostics. KOD has not yet been broadly intro-
duced in routine analysis, but may be applied as a complement
to IAC. IAC is based on the addition of a non-target DNA
fragment at known concentration that is co-amplified with the
target, which helps to avoid false negatives [122]. The design
of'the internal amplification control should enable detection of
PCR inhibition, meaning that if the target amplification is
affected by inhibition, this can be elucidated from the IAC.
For targeted MPS, the initial PCR is most vulnerable to PCR
inhibitors [86]. After library preparation, the samples are gen-
erally diluted substantially, lowering the risk of inhibitors
impacting the sequencing. As a quality control measure,
PCR inhibition effects may be monitored prior to sequencing
by checking quality and quantity of the generated libraries
applying CE-based fragment analysis, e.g. Fragment
Analyzer, or qPCR [86, 123].

Overcoming polymerization inhibition

Today there are a wide variety of commercial DNA polymer-
ases tailor-made for different applications [124]. A critical part
of setting up an efficient DNA analysis process is to apply a
DNA polymerase-buffer system that is compatible with the
sample matrices analysed, thus ensuring optimal limits of de-
tection. The use of alternative DNA polymerases and buffer
systems can efficiently circumvent PCR inhibition for chal-
lenging samples. A methodology called pre-PCR processing
has been proposed to overcome limitations caused by inhibi-
tors and to achieve optimal detection limits by using an ap-
propriate PCR composition [5, 6] (Fig. 2). The aim of pre-
PCR processing is to achieve a fast and simple analysis pro-
cess with minimal loss of nucleic acids [5]. For example, in
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efforts to improve detection of waterborne RNA viruses, pre-
PCR processing was successfully applied to elevate the virus
recovery and make the RT-qPCR step more efficient [125].
Further, to achieve higher tolerance to PCR inhibitors, blends
of complementary or synergistic DNA polymerases may be
applied [73].

The first study that investigated the PCR inhibitor tolerance
of different DNA polymerases showed that the widely used
Ampli7ag Gold and Tag DNA polymerases were considerably
less resistant to blood (completely inhibited by 0.004% (vol/
vol)) compared with DNA polymerases isolated from
Thermus thermophilus (tTth) and Thermus flavus (Tfl). The
latter were able to amplify DNA without reduced efficiency in
the presence of 20% (vol/vol) blood [126]. A screening of 16
DNA polymerases and buffer systems has been performed to
find the most robust reaction composition for soil and sedi-
ment samples [15]. The four best performing DNA
polymerase-buffer systems in that screening were Immolase,
KAPA3G, PerfeCta Toughmix and TEMPase. The combina-
tion of Immolase and a high amount of BSA (10 pg) proved to
be the most inhibitor-tolerant variant, enabling amplification
in presence of up to three times more humic substances than
the other three [15]. In another study, great differences in
tolerance to soil-derived humic substances were observed for
six DNA polymerase-buffer systems [52]. In forensic DNA
profiling, alternative DNA polymerases were shown to per-
form better than Ampli7ag Gold for various types of crime
scene traces [127]. A blend of the two complementary DNA
polymerases PicoMaxx HF and Ex7ag HS further improved
performance [73] and led to a substantial increase in number
of usable DNA profiles for both blood and saliva samples
when implemented in casework [128]. These studies exempli-
fy the importance of selecting a robust DNA polymerase-
buffer system as a means for reaching optimal analytical suc-
cess for challenging samples.

In efforts to generate new variants of DNA polymerases
with elevated inhibitor tolerance, some knowledge of poly-
merization inhibition has been gained. 7ug DNA polymerases
have been generated by site-directed mutagenesis resulting in
greater resistance to inhibitors in blood and soil as well as an
increased tolerance to high concentrations of DNA-binding
dyes [129, 130]. The authors speculate that the elevated resis-
tance to inhibitors may be due to an altered enzyme speed or
improved interaction with the DNA template. More recent
efforts have used compartmentalized self-replication [131] or
fusion strategies [132] for the design of new DNA polymer-
ases. For example, mutants of 7ag DNA polymerase that ex-
hibited a higher affinity for primer-template (K4 1.1 nM for
mutant versus 102 nM for wild-type 7ag) showed increased
tolerance to blood with successful amplification in up to 45%
whole blood [131]. By fusing a DNA polymerase to a ssDNA-
binding domain, the inhibitor tolerance was improved for hu-
man blood, lactoferrin and heparin [133, 134]. In other
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studies, compartmentalized self-replication has been used to
generate new enzymes that showed higher tolerance to humic
acid and other inhibitors [135, 136]. One of those enzymes,
called 2D9 [135], showed improved abilities to function in the
presence of humic substances, but there was no clear expla-
nation of the underlying mechanisms. Further, new enzymes
with higher resistance to salts have been generated through a
strategy of adding on new protein domains to DNA polymer-
ases [137].

The buffer composition can also be altered to improve po-
lymerization in presence of inhibitors, e.g. applying an elevat-
ed pH [138]. Further, changing the ion content or adding var-
ious facilitators can enable a higher resistance to PCR inhibi-
tors [15, 130, 139]. BSA is an abundant blood plasma trans-
port protein that binds efficiently to a range of molecules and
has been shown to make DNA polymerization more efficient
in presence of many inhibitory molecules [52, 91]. A range of
BSA amounts have been applied for this purpose, with 0.2 to
20 pg in the reactions [6, 15]. Trehalose is a solute that has
been shown to improve the thermal stability of enzymes, a
mechanism believed to explain its inhibition-relieving proper-
ties, when 2-30% (w/v) is added to the reactions [30, 130,
140].

Overcoming fluorescence inhibition

The risk for detection inhibition should be considered
when analysing challenging samples such as those contain-
ing soil or blood. There are several studies where SYBR
Green I detection has been applied for analysis of matrices
that contain blood or humic acid [141-143], which may
have skewed the results and conclusions. Using hydrolysis
probes for detection is a much better alternative than
dsDNA-binding dyes in order to avoid fluorescence inhi-
bition when humic acid or haemoglobin is present in the
reactions. However, for some applications, it may still be
preferable to apply dyes. Then, blending of qPCR dyes has
been suggested to optimize detection in the presence of
molecules that quench fluorescence [144]. Blending of
dyes resulted in elevated fluorescence intensities, thus en-
abling detection of amplicons in the presence of, for exam-
ple, humic acid. High concentrations of individual dyes
inhibit amplification, but a blend of the four dyes
EvaGreen, ResoLight, SYBR Green I and SYTO-9 showed
higher fluorescence intensities in both presence and ab-
sence of humic acid with no or low negative effect on
amplification. It is also important to consider that the dye
used as a passive reference may be sensitive to fluores-
cence quenching and that different dyes may be affected
differently, such as ROX and MustangPurple [16, 114].
Further, the use of an internal amplification control could
help in monitoring samples for fluorescence inhibition as
well as polymerization inhibition.
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Conclusions

Depending on the mechanism of the relevant inhibitor, and
whether it mainly affects DNA polymerization or fluorescence
detection, different strategies may be applied to overcome
PCR inhibition. For challenging matrices such as soil and
blood, a lot is known about the PCR inhibition mechanisms
(Table 1). This knowledge about PCR inhibition mechanisms
may be applied to design more robust analysis systems.

A critical part in setting up an efficient DNA analysis pro-
cess is to apply an inhibitor-tolerant DNA polymerase-buffer
system that is compatible with the relevant sample matrices.
Selecting alternative DNA polymerases and buffer systems,
e.g. through screening, can efficiently circumvent PCR inhi-
bition from challenging samples, which is the core of the pre-
PCR processing strategy. When analysing samples containing,
e.g., humic acids or haemoglobin, simply applying hydrolysis
probes instead of dsDNA-binding dyes can enable a more
robust analysis and avoid issues with fluorescence quenching
[15]. Further, dPCR may be used instead of qPCR for chal-
lenging samples since this technique is not as sensitive to PCR
inhibition due to that end-point measurements are used [1].

An increased awareness of the effects that PCR inhibitors
can have on the analysis is crucial to ensure that reliable re-
sults are generated. Measures for troubleshooting include the
assessment of relevant sample types and matrices in method
validation [117], as well as implementation of quality control
measures such as IACs. For many molecules, the mechanism
of inhibition has not been elucidated, i.c. whether they affect
the DNA polymerase activity, ion content or nucleic acids.
Additionally, the exact mechanisms of DNA polymerase in-
hibitors, e.g. how certain molecules bind to the polymerase,
have not been explained. To achieve optimal analytical suc-
cess for DNA polymerase—based methods, more studies are
needed that investigate the underlying PCR inhibition
mechanisms.
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