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Abstract
With recent advances in ionization sources and instrumentation, ion mobility spectrometers (IMS) have transformed from a
detector for chemical warfare agents and explosives to a widely used tool in analytical and bioanalytical applications. This
increasing measurement task complexity requires higher and higher analytical performance and especially ultra-high resolution.
In this review, we will discuss the currently used ion mobility spectrometers able to reach such ultra-high resolution, defined here
as a resolving power greater than 200. These instruments are drift tube IMS, traveling wave IMS, trapped IMS, and field
asymmetric or differential IMS. The basic operating principles and the resulting effects of experimental parameters on resolving
power are explained and compared between the different instruments. This allows understanding the current limitations of
resolving power and how ion mobility spectrometers may progress in the future.
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Introduction

Ion mobility spectrometers (IMS) separate and analyze ions
based on their motion through a neutral gas under the influ-
ence of an electric field. Ion separation in IMS occurs usually
within milliseconds, and mostly based on the collision prop-
erties between ions and neutral gas molecules. This results in
three major advantages of IMS that have led to their rising
popularity in many applications.
& IMS can be easily coupled to extremely efficient atmo-

spheric pressure chemical ionization sources, allowing
for limits of detection in the low pptv-range for substances
amenable for chemical ionization.

& IMS offer separation in a dimension different to gas chro-
matography, liquid chromatography, and mass spectrom-
etry on a millisecond timescale. Thus, both fast stand-

alone detection devices and hyphenated instruments for
multidimensional separations are feasible.

& IMS separation is based on the physical structure of ions,
providing size and shape information.

The combination of the first two of these three strengths has
led to its widespread use as a detector for chemical warfare
agents [1, 2], explosives [2–4], drugs [5], and other hazardous
compounds beginning in the 1970s. A detailed history of IMS
can be found in the textbook on IMS by Eiceman, Karpas, and
Hill [6]. Today, IMS can be found at most airports and inmany
military units [2]. More recently, often coupled with gas chro-
matography for pre-separation, IMS have been used in the
analysis of more complex samples, for example in the quality
control of food [7–9] and pharmaceuticals [10, 11], process
control [12], or exhaled breath gas analysis [13, 14].

However, it has been the combination of the latter two of
these three strengths that has led to its rise in more analytical
tasks, especially bioanalytical applications [15–24]. On the
one hand, operating on a millisecond to second timescale,
IMS perfectly combines both with chromatographic separa-
tion such as gas chromatography (GC), liquid chromatogra-
phy (LC), or supercritical fluid chromatography (SFC) as well
as with mass spectrometry (MS) [25]. This allows three-di-
mensional, or, when using 2D GC or 2D LC, even four-
dimensional separation [26, 27], enabling the selectivity
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needed for extremely complex samples. On the other hand,
IMS provides not only another dimension of separation but
also structural information about the ions [15, 16, 20, 22, 28].
This allows distinguishing between many isomers and differ-
ently folded structures of biomolecules.

Just as mass spectrometers divide into different instru-
ments, e.g., time-of-flight, sector, quadrupole, and ion trap
devices, IMS can be also grouped into different instruments.
Recent reviews list as many as eight different main operating
principles [29, 30]. However, only a few of them are able to
reach ultra-high resolution. Thus, two aspects should be
discussed first in this review—the very basics of ion mobility
spectrometry and how to define ultra-high resolution.

Basics of ion mobility spectrometry

Generally, ion mobility spectrometry separates and analyzes
ions based on their motion through a neutral buffer gas under
the influence of an electric field. The ion mobility K is then
defined as the proportionality factor between the ion’s drift
velocity vd and the electric field strength E according to Eq. 1.

vd ¼ KE ð1Þ

Ions are constantly accelerated in the direction of the elec-
tric field, but collide with neutrals due to their thermal motion,
and decelerate. These processes quickly reach an equilibrium,
leading to a constant drift velocity. As heavier ions accelerate
slower, but also lose less energy during a collision, the likeli-
hood of a collision becomes the most important parameter.
Thus, ion mobility spectrometry is mostly a separation based
on the ion-neutral collision properties. At extremely low col-
lision energies, the ion mobility does also not depend on the
structure of the ion, as repulsion due to polarization already
occurs at large distances. Therefore, this is called the
Bpolarization limit.^ As given by Eq. 2 [31, 32], the ion mo-
bility only depends on the ion massm, the neutral massM, the
dipole polarizability of the neutral αd, and the number density
of the neutrals N.
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However, this case is only applicable in cryogenic systems,
as the thermal energy of the ions at room temperature is suf-
ficient to leave this realm. At these thermal energies, the ion
mobility will depend on the collision cross section (CCS)
between ion and neutral Ω as given by Eq. 3. Thus, the ion
mobility is related to the size and shape of an ion. Other var-
iables are the charge state z, the elementary charge e, the
Boltzmann constant kB, and the absolute temperature T. It is
noteworthy that a certain correlation between ion mass m and

ion-neutral collision cross section Ω exists, as molecules con-
taining many atoms grow both heavier and larger.
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It is important to note that Eq. 3 was derived under the
assumption of a negligibly low electric field. As soon as an
electric field is applied, correction factors would be re-
quired to account for ion energies above the thermal energy
of the ions and directional bias of collisions [33]. This
increase in ion energy is often referred to as Bion heating,^
as the effects are identical to those of increasing thermal
energy [31]. Several correction approaches exist, most typ-
ical the two-temperature theory [34, 35], the three-
temperature theory [36, 37], and the momentum-transfer
theory [33], each with different adjustments and with dif-
ferent quality of correction depending on the ions studied
[38]. However, these correction factors can typically be
neglected at low electric field strengths. An estimation
for what might be considered a low electric field strength
is given by Eq. 4 [39]. Here, N0 is Loschmidt’s constant,
which is the number density at standard conditions, and K0

is the ion mobility at standard conditions, known as the
reduced ion mobility. It is noteworthy that the limit is given
as the ratio between the electric field E and the number
density of the neutral N, as either doubling E or halving
N would have the same effect on the energy upon collision.
E/N is called the reduced field strength and given in
Townsend (Td). Furthermore, it is important to note that
not only the static drift field needs to be considered but
also AC fields for example for ion focusing [40].

E
N

<
1

5 N0 K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 kB T
mþM

r
ð4Þ

The drift velocity can also be calculated directly from the
reduced ion mobility K0 and the reduced field strength E/N as
given by Eq. 5. Thus, ions move with the same drift velocity
regardless of pressure when adjusting E to the same reduced
field strength E/N.

vd ¼ K0 N 0
E
N

ð5Þ

At much higher energies, even more structural information
can be revealed about the ions. This is shown for isotopomers,
which have the same mass and the same collision cross section,
but can nevertheless be separated at high reduced field strengths
[41, 42]. Thus, the different mass distribution within the ion
must also affect these high-energy collisions. Due to the com-
plexity and limitations of the corrections mentioned above for
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more complex ion-molecule systems, the ion mobility at high
electric field strengths is often empirically described through
the alpha function α(E/N) as given by Eq. 6. As the alpha
function may not depend on the direction of the electric field,
it is typically represented through an even power series [31, 43].
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The alpha function and therefore also K(E/N) contain various
effects, as the increased ion energy may not only effect Eq. 3 but
also cause changes to the collision cross section itself, for exam-
ple, through declustering ion-molecule complexes, through
changing conformations, or simply due to the collision cross
section being energy dependent. The alpha function can be mea-
sured through two different approaches, either by using a drift
tube ion mobility spectrometer able to reach such high ratios of
E/N [44–46] or by using an electric field alternating between high
and low E/N, known from differential ion mobility spectrometry
(DMS) or field asymmetric ion mobility spectrometry (FAIMS)
[47, 48]. While a high reduced field strength drift tube IMS
measures K(E/N) directly, differential or field asymmetric IMS
can only obtain information on the alpha function, but not on the
ion mobility. Furthermore, due to the dynamic field, measure-
ments from differential or field asymmetric IMS may be
perturbed by dynamic effects and also require a complex calcu-
lation to obtain the alpha function from measurement data.

Thus, ion mobility spectrometry includes measurements of
the true low-field ion mobility, of an ion mobility perturbed by
added energy, of the ion mobility at a defined increased ener-
gy, and of the alpha function.

Definition of ultra-high-resolution IMS

Following the terms of the IUPAC definition for chromatogra-
phy, resolution in ion mobility spectrometry is defined as the
separation between two peaks [49]. In practice, comparing reso-
lution between two IMS would require to measure the same
substances. Thus, the resolving power, defined as the ratio be-
tween the position of a peak and its full width at half maximum
(FWHM), is usually used instead. As long as the relative posi-
tions of peaks remain the same, the resolution is proportional to
the resolving power. Measurement results from a drift tube IMS
may be reported in terms of the drift time td, the inverse ion
mobility 1/K, or the collision cross section Ω. The inverse ion
mobility is often used instead of the ion mobility as it is propor-
tional to the other two quantities. No matter which of the three
scales is chosen, resolving power, resolution, and peak capacity
remain the same for a drift tube IMS, as all three scales are

proportional to each other. However, for IMS with nonlinear
ion motion, such as traveling wave IMS, this is not the case as
shown in Fig. 1. Despite the fact that the separation and thus
resolution are exactly the same for both IMS, the resolving power
of the traveling wave IMS appears to be worse in the time do-
main due to the different ion motion mechanism. Only after
conversion to a common scale such as the inverse ion mobility
1/K or the collision cross section Ω, the resolving powers of the
two devices may be compared.

It has been suggested to use the resolving power in the scale of
the collision cross section Ω for comparison [50] and we will
follow this suggestion throughout the paper. Furthermore, it
needs to be noticed that multiply charged ions are easier to sep-
arate and thus comparisons between instruments should be done
using ions of the same charge state.

Rp ¼ Ω
ΔΩ

ð7Þ

This way, all IMS measurements directly related to
the collision cross section can be compared with each
other. Only the alpha function is not directly related to
the collision cross section and thus the resolving power
of FAIMS cannot be compared directly with other IMS.
At constant resolving power, ion separation by FAIMS
may be better or worse compared with other IMS de-
pending on the substance [51]. Furthermore, resolving
powers can obviously not be compared directly between
IMS and gas or liquid chromatography due to their dif-
ferent separation space.

Following a previous definition [52], one can attri-
bute high resolution to IMS with a resolving power
above 80, which is the upper end for most commercial
devices. A resolving power above 200 is considered
ultra-high resolution, which is sufficient to resolve
two peaks equal in height with a 1% difference in col-
lision cross section with a valley of 12.5% of their peak
height [53]. Furthermore, sharper peaks may also ease
determining the peak position exactly and may even, in
the case of a constant number of ions and thus a con-
stant peak area, be higher, improving the signal-to-
noise ratio [54]. Currently, only five IMS technologies
have reached ultra-high resolution: drift tube ion mobil-
ity spectrometers (DT-IMS), the ion cyclotron mobility
spectrometer, traveling wave ion mobility spectrometers
with extended path lengths (cyclic-TW-IMS and SLIM-
TW-IMS), trapped ion mobility spectrometers (TIMS),
and differential or field asymmetric ion mobility spec-
trometers (DMS/FAIMS). Thus, this review will focus
on these instruments. The different operational princi-
ples are illustrated in Figs. 2 and 3. An overview com-
paring the main parameters is given at the end of the
review in Table 1.
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Drift tube IMS

The drift tube ion mobility spectrometer is the original embodi-
ment of an ion mobility spectrometer. The original measure-
ments in the 1930s by Tyndall and Powell [66] as well as
Bradbury and Nielsen [67] used this setup, as well as the first
military trace gas detectors such as the chemical agents monitor
(CAM) [2, 6] and the first analytical IMS(-MS) instruments
[68, 69]. In order to measure the ion mobility, a small packet
of ions is injected by an ion shutter into a drift tube with a
constant electric field and the drift time required to reach the
detector is measured. Drift tubes can be manufactured in a wide

variety of sizes and from a wide variety of materials such as
resistive glass tubes [70, 71], low temperature co-fired ceramics
(LTCC) [72], printed circuit boards (PCB) [73, 74], or even 3D
printing [75]. The expected drift time of an ion with ion mobil-
ity K through a drift tube of length L with the electric field E is
given by Eq. 8.

td ¼ L
KE

ð8Þ

Drift tube IMS can be considered a Bjack of all trades^ instru-
ment, being applicable to most measurement tasks. The full ion
mobility spectrum is acquired within a single measurement of a

Fig. 2 Different applications of
the electric field to the drift region
in the different ion mobility
spectrometers. (A) Constant field
strength in the drift tube IMS. (B)
Switched segments in the ion
cyclotron mobility spectrometer.
(C) Moving wave in traveling
wave IMS. (D) Field gradient
trapping the ions against the gas
flow in trapped IMS

Fig. 1 Illustration of the observed resolving powers in the time and CCS
domains of a drift tube IMS with linear ion motion and a traveling wave
IMS with nonlinear ion motion. Both devices show exactly the same

degree of separation between the two peaks despite the fact that their
resolving power appears different in the time domain due to different
time scales
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few to a few 10ms and can be averaged to increase the signal-to-
noise ratio and thus lower the limits of detection. However, the
short time frame of spectra requires fast mass spectrometers for
fully nested operation [76, 77]. Ion yield can be vastly increased
by usingmultiplexing [78–82], a field switching shutter for com-
patible ion sources [83, 84], or injection from an ion trap when
operating at reduced pressure [85]. There is no inherent limit to
the ion mobility range of a drift tube IMS—when measuring
negative ions in gases not capturing electrons such as nitrogen,
even an electron peak can be observed [86, 87], while the upper
limit is only given by the ability to bring ions into the gas phase.
However, it should be noted that measuring very slow and very
fast ions in a single spectrum requires an ion shutter with

extremely low discrimination of slow ions, meaning that the
initial packet width should not depend on the ion mobility [46,
88, 89]. Furthermore, as there is a direct relationship between
drift time and ion mobility, ion mobility and collision cross sec-
tion can be directly obtained from a measurement without cali-
bration through Eqs. 8 and 3. Specialized high-accuracy drift
tube IMS are able to measure the ion mobility within ± 0.1%
[90–92] and serve as the reference standard for other ionmobility
measurements.

Generally, the resolving power of any separation by ion mo-
bility strongly depends on the diffusion during the ion drift. The
diffusion-limited resolving power Rp,Diff [93, 94] can be calculat-
ed from drift time, diffusion, and velocity of the ion motion [95]
as given by Eq. 9. The diffusion-limited resolving power just
depends on three parameters—the absolute temperature T, the
charge state of the ions z, and the drift voltage U. As mentioned
above, higher charge states and lower temperatures improve IMS
separation power, which needs to be kept in mind when compar-
ing different IMS. Furthermore, as these constants will appear in
manymore equations, we define a combined constantC as given
by Eq. 10 to simplify notations.

Table 1 Comparison of the different ultra-high-resolution ion mobility spectrometers

Drift tube IMS Cyclotron Cyclic-/SLIM-TW-
IMS

Trapped IMS FAIMS

Atmospheric
pressure

Low pressure

Measurable quantities Mobility and
CCS (Ω)

Mobility and
CCS (Ω)

Alpha function

Mobility and
CCS (Ω)

Mobility and CCS (Ω) Mobility and CCS (Ω) Alpha function

Calibration required? No (reference standard) No Yes Yes No ion mobility
measurement
possible

Ion heating possibly
relevant?

No No/yes
(can be

controlled)

Yes Yes Yes Measurement
principle

Required voltage U EmaxL 2EmaxL
m

EmaxL
2m

EmaxL Not comparable

Resolving power
(Ω/ΔΩ)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C z

T U
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C z
T Emax L

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C z

T Emax nL
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C z
T Emax

K
Kmax

4nL
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C z
T Emax

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L
β

Kmin
4

K3

qr Not comparable

Highest reported
resolving powers
(Ω/ΔΩ)

250 (z = 1)
[53, 55]

240 (z = 4)
[56]

216 (z = 11)
[57]

140 (z = 1) [46]
109 (z = 2) [58]

1040 (z = 3) [59] 1860 (z = 1) [60]
550 (z = 1) [61]

400 (z = 1) [62]
295 (z = 7) [63]
228 (z = 1) [64]

No ion mobility
measurement
possible

460 (z = 4) in
CV/ΔCV [65]

Time per measurement L
KminE

nL
KminE

nL
E

Kmax

Kmin
2

vg
β

1
Kmax

− 1
Kmin

� �
(β can vary

during a measurement)

L
vg

Acquisition per
measurement

Full spectrum Single point Full spectrum for
n = 1

Partial spectrum for
n > 1

Full spectrum Single point

Approximate time for a
full spectrum

Milliseconds Seconds to
minutes

Milliseconds to
seconds

Milliseconds to seconds Seconds to minutes

Fig. 3 Application of the electric field in a field asymmetric IMS
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C ¼ e
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However, analytical modeling of drift tube IMS has
progressed much further over the years to include additional
effects such as initial ion packet width and amplifier distortion,
which in turn also create a dependence on ion mobility and drift
length. Every drift tube has an optimum drift voltage that max-
imizes its resolving power by striking a balance between the
diffusion during long drift times and the increasing effect of the
additional peak width caused by ion injection and detection at
short drift times [93, 94, 96–98]. The maximum resolving power
can be given as a function of the optimum drift voltage [54, 55,

96] and is
ffiffiffiffiffiffiffiffi
2=3

p
of the diffusion-limited resolving power at the

same drift voltage [54]. This of course requires an IMS designed
to operate at this optimum drift voltage [96]. Increasing the drift
voltage above the optimum results in a slight loss of resolving
power, but universally increases the signal-to-noise ratio [99] due
to sharper peaks, less ion losses, and more averages due to the
reduced time frame of the spectra. However, we will use the
simple model in Eq. 9 in this review, as models for other IMS
concepts just consider ion motion, and thus the different models
will be comparable.

Atmospheric pressure drift tube IMS (AP-DT-IMS)

As most other ultra-high-resolution IMS concepts are tailored
to be coupled with mass spectrometers and therefore operated
at reduced pressures, we will consider atmospheric pressure
drift tube IMS and low pressure drift tube IMS separately for
easier comparison. Beside IMS aiming to reach high reduced
field strengths [44–46], stand-alone instruments are practical-
ly always operated at atmospheric pressure. Furthermore,
some IMS-MS also use drift tubes at atmospheric pressure
due to their superior separation performance [57, 100–102].

The expected resolving power of a drift tube IMS is derived
by inserting Eq. 10 into Eq. 9 and given by Eq. 11. As drift
tube IMS employ a constant and uniform field as shown in
Fig. 2(A), the drift voltage U and drift field strength E are
directly related through the length L.

Rp;AP−DT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

z
T

U

r
ð11Þ

The main advantages of operating IMS at atmospheric pres-
sure are easier coupling to highly effective atmospheric pressure
chemical ionization sources for maximum ion yield and sensitiv-
ity and low E/N even at high voltages. Therefore, high drift
voltages can be applied to short drift tubes tomaximize resolving
power as long as the electronics for ion injection and detection

are sufficiently fast. The highest resolving drift tube IMS reported
achieves a resolving power of 250 to 260 for several small, single
charged ions such as DMMP, benzene, toluene, and acetone by
applying a drift voltage of 25 kV across a 15-cm drift tube at
1000 mbar [53, 55]. Another drift tube IMS with a length of
63 cm operated at 325 mbar with 10 kV has been reported to
reach a resolving power of 172 for single charged C60 clusters
[103] and 240 for the minus four charge state of
CH3(SO2NHSO2(CH2)6)5SO2NHSO2CH3 [56] as well as 260
for an unidentified peak [56]. Using a drift region at atmospheric
pressurewith a length of 13 cm and a drift voltage of only 3.6 kV,
a resolving power of 216 was obtained for the plus 11 charge
state of cytochrome c [57]. This extremely high resolving power
at low drift voltage again emphasizes the need to keep the charge
state in mind when comparing resolving powers.

In summary, the available maximum drift voltage is the re-
source limiting both the resolving power and the signal-to-noise
ratio and therefore the ultimate limit of drift tube IMS perfor-
mance. Future improvements in atmospheric pressure drift tube
IMS will thus most likely proceed together with improvements
in compact high voltage power supplies, power, and data isola-
tion as either the ion source or the detector is referenced to this
high voltage and improved systems design to handle high volt-
ages in small enclosures without breakdown. Furthermore, in-
creasing drift voltage at the same drift length requires faster
electronics for ion injection and detection.

Low pressure drift tube IMS (LP-DT-IMS)

When coupling IMS with MS, a reduced pressure in the drift
tube simplifies the ion transfer and gives the opportunity to
store or mass-select ions prior to injection. However, below a
certain pressure, the low-field limit given by Eq. 4 must be
considered due to decreasing neutral density N. At this point,
it is no longer possible to apply arbitrary drift voltages to a
drift tube without heating the ions, leaving two possible sce-
narios. If the low-field mobility is the quantity of interest, the
drift field is now fixed to a maximum Emax and increasing the
resolving power is only possible by increasing the drift length
as shown by Eq. 12.

Rp;LP−DT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

z
T

Emax L

r
ð12Þ

This has given rise to drift tubes several meters long. An IMS-
IMS-IMS-MS instrument with a drift tube as long as 3 m has
been reported [104]; however, to our knowledge, no resolving
power when using the whole drift tube as one has been reported.
For a 2-m-long drift tube operating between 15 and 20 mbar, a
resolving power of 109 was measured for the plus two charge
state of angiotensin II using a drift voltage of 5 kV [58]. Moving
back to higher pressure would be a possible remedy. Halving the
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length and doubling the pressure would result in both the same
resolving power and reduced field strength, but in a more com-
pact instrument and, due to the constant drift velocity given by
Eq. 5, also in halvedmeasurement times. On the other hand, high
reduced field strengths can also be used to purposefully increase
the ion energy and thus measure not only K(0) but also K(E/N),
adding another dimension of ion separation and characterization
[44, 45]. This also leads to higher resolving powers, as high
voltages in short drift tubes are now possible again. For example,
by applying a drift voltage of 18 kVacross a drift tube of 30 cm at
a pressure of 20 mbar, which equals 120 Td and is close to the
breakdown of air, a resolving power of 140 has been achieved for
single charged methyl salicylate [46]. Still, the breakdown of the
drift gas creates an ultimate limit for the achievable field strength.
Thus, although low pressure drift tube IMS offer a number of
advantages, achieving ultra-high resolution is difficult.

Extending separation time

As the achievable performance of an accordingly designed drift
tube IMS is limited by the maximum drift voltage available,
while the maximum drift field strength Emax is limited at reduced
pressure, an increase in resolving power would only be possible
through longer drift tubes. Thus, several quite different ap-
proaches have been developed to overcome this limitation.
They all share one common defining feature—they are able to
trade measurement time for resolving power by prolonging the
measurement and thus Breusing^ the same drift voltage. This is
possible as all such IMS operate at reduced pressure and can thus
employ radial focusing. Nevertheless, as can be seen from Fig. 2,
they all retain the same principle of ion motion along a drift
region, but with differently applied electric fields. Often, ions
move several cycles through the instrument and the voltage is
only applied to segments of the drift region. In this review, we
will unanimously use n for the number of cycles and m for the
number of segments. While this differs from the nomenclature
used in some of the references, it ensures that the notation is
consistent throughout this work.

It should be kept in mind that the ion focusing may affect the
measurement through ion heating. Furthermore, these techniques
are only applicable for ions that can actually be focused, leading
to a limitation of the accessible mobility range and mass range
[105, 106]. However, for most applications not related to trace
gas analysis, this limitation is typically not of practical relevance.
Additionally, extending the separation time also increases the
diffusion, meaning that more averages and thus even more mea-
surement time are typically necessary to maintain the same
signal-to-noise ratio. Generally, one would expect four times
the measurement time to double resolving power and another
four times to maintain the signal-to-noise ratio. However, these
devices are relatively new and theories regarding the ion motion
and separation do not consider the signal-to-noise ratio yet.

Ion cyclotron mobility spectrometer

The first such device was the ion cyclotron mobility spectrom-
eter or cyclical drift tube IMS originally published in 2009
[107] followed by two improved versions in 2010 [108] and
2013 [59]. It consists of four curved quarter-circle drift tube
segments with ion funnels in between to re-focus the ions,
together forming a circular drift tube with a length of
181 cm. Thus, possible operating pressure is limited to a few
millibars by the ion funnel operating range. The drift field is
switched periodically to keep the ions moving around the
circle as shown in Fig. 2(B) for n cycles, leading to an n times
longer drift tube that only requires the drift voltage for two of
its m segments to be switched on at the same time. Thus, the
resolving power and required voltage are given by Eqs. 13 and
14. The drift time is simply what would be expected of a drift
tube prolonged to this length.

Rp;cyclotron ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

z
T

Emax nL

r
ð13Þ

U cyclotron ¼ 2EmaxL
m

ð14Þ

However, this is only strictly true during the first few cy-
cles. As the spectrum spreads out around the ring, ions not
moving at the drift field switching frequency are eliminated.
Faster ions move ahead of the drift field and are discharged at
its front, while slower ions lag behind the drift field and are
discharged there. This turns the device into an ion filter as
known from overtone ion mobility spectrometry (OMS)
[109–111]. Here, the ion current passing the device at a certain
drift field application frequency is measured. The resolving
power equation for OMS is rather complex [110] and depends
both on the resolving power expected from the effective drift
length and on the number of segments passed along that
length. However, we will not go into detail here, as the resolv-
ing power expected from the effective length seems to be
sufficient for comparison.

Using n = 100 cycles to achieve a drift length of about 180 m
results in resolving powers above 1000 [59], here measured for
the z= 3 charge states of substance P at a pressure of 3mbar. This
was published in 2013 and the first reported resolving power
above 1000 in the history of IMS. Furthermore, the measured
mobilities agree well with thosemeasured by a conventional drift
tube IMS [108], meaning that no additional calibration would be
required. However, possible ion heating effects have not been
studied, although the good agreement with drift tube values sug-
gests that they are low.

Despite the possibility to filter four ion packets simulta-
neously as four segments exist [59], the device is ultimately
limited by the significant loss of ions at long drift times of
more than a second. Combined with the need to scan the drift
field application frequency to record the full ion mobility
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spectrum, extremely long measurement times are required.
This may presumably be the reason why no further research
concerning the ion cyclotron mobility spectrometer has been
reported despite the outstanding separation capability.

Traveling wave ion mobility spectrometry

Traveling wave ion mobility spectrometry was first published
in 2004 [112, 113], with a second-generation instrument being
published in 2011 [114]. Again, the drift field is not applied
across the whole drift tube, but only across small segments.
These segments are not switched on and off as a whole, but
move along the drift tube ring by ring as shown in Fig. 2(C),
forming the namesake traveling waves that push the ions
through the drift tube. Furthermore, unlike a moving drift
field, the waves move faster than the ions and thus cause them
to roll over the waves instead of moving through the IMSwith
constant drift velocity. Normally, ions would be pushed to-
wards the drift tube wall at the front and at the end of a trav-
eling wave and eliminated. However, an additional RF poten-
tial is applied between adjacent rings similar to an ion funnel
[105, 115, 116], focusing the ions towards the center of the
drift tube throughout the whole length and minimizing ion
discharge at the walls. Again, operating pressures are limited
to a few millibars by the operating range of the ion focusing.

Due to the effect of ions rolling over the moving wave, the
drift velocity becomes a nonlinear function of the ionmobility,
depending approximately on its square assuming an idealized
triangular waveform [117]. For all other waveforms, the de-
pendence is significantly more complex and depends on the
distribution of the electric field strengths inside the wave
[117]. Thus, calibration with suitable standard ions becomes
necessary in order to extract ion mobilities and collision cross
sections [118, 119]. Furthermore, heating of ions by the RF
confinement needs to be considered [120–122], especially
when choosing the standard ions [123–125], as these may
experience heating effects too. Assuming an idealized trian-
gular waveform and selecting the wave velocity to maintain
rollover for the ions with the highest mobility Kmax, the drift
time can be estimated by Eq. 15 for comparison with other
IMS instruments.

td;TW ¼ L
Emax

Kmax

K2 ð15Þ

Calculating the theoretical collision cross section resolving
power of a traveling wave ion mobility spectrometry (TW-
IMS) [117], again assuming the ideal triangular waveform,
results in Eq. 16. This is derived from equations 27 and 34
from reference [117]. The nonlinear ion motion in traveling
wave IMS increases the ion mobility separation and therefore

the collision cross section resolving power by a factor of
ffiffiffi
4

p
.

It should be noted that this is not observable on the nonlinear
drift time scale, underlining the mentioned need to use a com-
mon scale for resolving power comparisons. However, resolv-
ing power decreases for ion mobilities lower than the maxi-
mum ion mobilityKmax, diminishing this advantage. As given
by Eq. 17, the required voltage is reduced by twice the number
of waves m in the traveling wave IMS compared with a drift
tube IMS. The factor 2 stems from the electric potential de-
creasing with the maximum field strength Emax in both direc-
tions from its peak at the center of each wave.

Rp;TW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

z
T

Emax
K

Kmax
4L

r
ð16Þ

UTW ¼ EmaxL
2m

¼ Emaxb
2

ð17Þ

By setting L/m constant, which means fixing the width
b of a traveling wave, the required voltage UTW becomes
independent of the drift length of the IMS. This is the
main advantage of traveling wave IMS—while its resolv-
ing power is approximately the same compared with drift
tube IMS using the same length and field strength, it can
be built at arbitrary lengths without requiring additional
voltage.

Generally, the resolving power reported for traveling wave
IMS is moderate for the first- and second-generation instru-
ments, ranging from 10 [113] to 40 [114]. However, in recent
years, two approaches have emerged that make full use of the
advantages of the traveling wave approach by vastly extend-
ing the drift lengths. At a fixed maximum electric field
strength, this is the only possibility for resolving power im-
provement. The first approach is a cyclic multi-pass arrange-
ment first presented in 2014 [126, 127] with a second-
generation instrument reported in 2017 [61]. This traveling
wave IMS is simply arranged in a circle with a port for trans-
ferring ions in and out. Further modifications are not neces-
sary, as the measurement principle already allows for infinite-
ly long drift tubes. The length is thus multiplied by the number
of cycles n in the instrument as given by Eq. 18, resulting in a
longer effective drift length, while the required voltage still
remains the same.

Rp;TW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

z
T

Emax
K

Kmax
4nL

r
ð18Þ

As expected, the resolving power grows with the square
root of the number of cycles. It reaches about 550 for 50 cycles
equivalent to an effective drift length of 50 m [61], measured
for the single charged peptides SDGRG and GRGDS at a
pressure of 1.8 mbar. The total drift time was about 90 ms.
Due to the constant focusing, ion transmission was relatively
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high. An ion loss of 35% was reported for six cycles, which
corresponds to an effective drift length of 6 m.

It should be noted that, unlike in the ion cyclotron mobility
spectrometer, ions are not eliminated by principle during the
measurement. Thus, it is necessary either to distinguish be-
tween ions having traveled different numbers of cycles or to
eliminate parts of the spectrum to obtain only data from ions
all having the same cycle number. It was shown that the for-
mer is actually possible in IMS-MS systems due to the typical
mass-mobility correlation [127]. However, multiplexing as in
drift tube IMS is most likely impossible due to the overlap that
would result between different injections having traveled dif-
ferent cycles.

The second approach is based on structures for lossless ion
manipulations (SLIM) as focusing devices instead of an ion
guide. SLIM are planar structures etched on the surfaces of
printed circuit boards (PCB), meaning that extremely long
devices can be manufactured with low additional effort.
They consist of two parallel boards with many parallel stripe
electrodes, creating an arrangement similar to the rings in the
drift tube shown in Fig. 2. Again, a RF field is applied be-
tween adjacent stripes, focusing the ions towards the center
between the two boards [128]. However, as now only two
parallel stripes exist instead of a full ring, additional DC guard
electrodes are placed bordering the stripe electrodes to prevent
the ions from moving sideways. Similar to an ion funnel,
operating pressures for SLIM are in the millibar range.
SLIM have been first introduced in 2014 [128, 129] and it
was quickly shown that both drift tube IMS [130, 131] and
traveling wave IMS [132] can be built that way. Apart from
the additional focusing electrodes, ion motion remains the
same as shown in Fig. 2(C). Exhibiting both the ability to store
stable ions for hours [133] and lossless transmission across
distances as long as 1 km [60], extremely long drift tubes
become feasible. Furthermore, additional manipulation struc-
tures have been reported such as 90° turns [134], switches
between multiple paths on one level [131, 134], and even
switching between several levels [135].

By combining these building blocks, it is possible to create
folded, serpentine drift tubes to reach extremely long drift
lengths without a prohibitively large instrument size. Starting
with a length of 44 cm [136], the device was later prolonged to
a drift length of 13 m [137] on a 45.9-cm × 32.5-cm printed
circuit board. Currently, a 3D instrument stacking several layers
for even longer drift length is being developed. Longer paths
have the advantage that extremely long drift lengths with less
overlap of different parts of the spectrum can be achieved.
Nevertheless, a routing system to allow multiple cycles along
the 13-m-long path has also been implemented, reaching effec-
tive drift lengths as long as 1 km [60]. Again, resolving powers
grow with the square root of the number of cycles, reaching a
value of 1860 for the Agilent Tune Mix m/z 622 and 922 ions
for 40 cycles, equaling an effective drift length of 540 m [60].

This is to our knowledge the highest resolving power ever
reported in ion mobility spectrometry.

The separation with 40 cycles also takes over 13 s, as the drift
velocity remains constant since the electric field strength cannot
be increased any further. This time frame is significantly longer
than conventional ion mobility separations, although still ex-
tremely fast compared with chromatographic methods. Thus,
despite the high resolving power, diffusion for the prolonged
time results in peak widths of tens of milliseconds—as long as
the time frame of a full ion mobility spectrum in many drift tube
IMS. While these timescales allow simpler coupling to mass
spectrometers, they are the main challenges in cyclic or SLIM
traveling wave IMS. On the one hand, as the number of ions
determines the peak area, a wider peak is necessarily lower at the
same number of ions. Therefore, even at perfectly lossless trans-
mission, a much higher number of ions is required to maintain
signal intensity. To this end, ion introduction through a flat SLIM
funnel [138], trapping inside the SLIM structures [139], and
compression of the ion packet inside the SLIM structure [139,
140] have been used to increase ion population. On the other
hand, ion lifetime can become a limitation depending on the ions
studied.While the ions in the presented studies have been shown
to be stable for hours [133], others ions are known to have life-
times of only milliseconds [141–145].

Trapped ion mobility spectrometry (TIMS)

The abovementioned separation techniques prolong the effec-
tive drift length of the ions through folded drift tubes and
through flying along these drift tubes several times. Another
possibility for increasing the effective drift length is using a
fast counter flow of drift gas, pushing the ions back [146].
Trapped ion mobility spectrometry combines this concept
with trapping the ions and was first published in 2011 [147,
148]. A short review of theory and hardware advances can be
found in [149]. Generally, a drift gas flow with the velocity vg
pushes the ions towards the detector, while a position-
dependent electric field E pushes them back as shown in
Fig. 2(D). This way, ions advance up to the position where
the drag from the drift gas and the drag from the electric field
are in balance, that is, vg = KE [64]. Then, ions are eluted
towards the detector or mass spectrometer by slowly lowering
the maximum of the electric field, allowing the gas flow to
push ions with sufficiently low ion mobility across the electric
field plateau. From the point in time where the electric field
was no longer able to trap the ion, its ion mobility can be
determined. Unlike the other methods, no ion packet injection
is necessary; instead, the trapping region can simply be filled
by a continuous ion current. Again, radial ion focusing is
employed to minimize ion losses, limiting the operating pres-
sure to the millibar range. In the case of trapped IMS, the drift
rings are split into four segments to create a quadrupole field
for focusing.
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It can be shown that under typical conditions the effective
drift length is the displacement caused by the gas velocity vg
during the time required for crossing the electric field plateau
tp [64], resulting in the resolving power given by Eq. 19. Ee is
the electric field strength on the plateau at the moment of
elution. A recent derivation arrives at a slightly different result
where the effective drift length is additionally multiplied by
the ratio between the ion velocity due to the electric field and
the gas velocity [150]. However, this factor is expected to be
close to unity under conditions for high resolving power.

Rp;TIMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

z
T

Ee vgtp

r
ð19Þ

In principle, the actual physical length of the instrument
does not define the effective drift length. Instead, gas velocity
vg and time to pass the electric field plateau tp need to be
maximized together with the electric field strength on the pla-
teau at the moment of elution Ee. The latter follows directly
from the elution condition, vg = KEe. The time to pass the
electric field plateau depends not only on its length L and
the ion mobility K but also on the scanning rate of the electric
field β, since the electric field continues to change while the
ions cross the electric field plateau. Combining these effects
results in Eq. 20 [64, 150], which equals Equation 22 in ref-
erence [64] and Equations 17 and 18 in reference [150]. It is
especially noteworthy that slower ions separate much better,
as they require a higher electric field to elute and spend a
longer time on the plateau. This dependence is more pro-
nounced than in any other type of IMS, making trapped IMS
especially efficient for large molecules, such as in
bioanalytical applications.

Rp;TIMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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vg2
ffiffiffiffiffiffiffiffiffi
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The time to record an ion mobility spectrum, as given by
Eq. 21, can be calculated by using the equation for the expect-
ed elution time from reference [64] and calculating the differ-
ence between the most extreme ion mobility values of interest.
This is also an advantage compared with the other presented
types of IMS, as it is possible to measure only the range
between the highest and lowest ion mobilities of interest. In
drift tube and traveling wave IMS, the delay between ion
injection and arrival of the most mobile ions of interest passes
without providing any analytical information.

tmeas;TIMS ¼ vg
β

1

Kmax
−

1

Kmin

� �
ð21Þ

However, the above equations are only approximations as
the exact time spent in the trapped IMS contains additional

nonlinear terms [64, 151]. Thus, while there have been attempts
to directly calculate mobilities and collision cross section values
[151], trapped IMS usually require calibration to extract both
values [152, 153]. The effects of ion heating have also been
studied [141, 154], showing that they need to be considered.

As shown by Eq. 20, there are three tuning parameters to
improve the resolving power of trapped IMS. The first is in-
creasing the length of the analyzer, which would also require
higher voltage. However, this is less efficient than in the other
types of IMS. Nevertheless, as current analyzers are only as
long as 4.6 cm, increasing the length remains a possible op-
tion. The second is increasing the gas flow velocity, which
strongly increases the separation performance; however, com-
plex fluid dynamics need to be considered [150, 155] and non-
idealities such as a non-uniform flow profile or the pressure
drop across the analyzer gain influence. Furthermore, the abil-
ity to still trap the slowest ions using the maximum possible
field strength limits the maximum possible gas flow velocity
[156]. In order to compare with other types of IMS also lim-
ited by the maximum possible field strength, wewill substitute
vg by KminEmax in Eq. 20, leading to Eq. 22.

Rp;TIMS ¼
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The only remaining and most common possibility is decreas-
ing the scanning rate β in order to increase the effective drift
length but also measurement time. Like increasing the physical
length, decreasing β is less efficient than in other IMS; however,
as it is simply the slew rate of a voltage, it can be set to any
desired value. Just as increasing the effective drift length in other
IMS, losses in signal-to-noise ratio go along with longer mea-
surement times [64]. To mitigate these effects, ions can be stored
in a second electric field gradient during analysis to increase the
duty cycle to 100% [157] and nonlinear scans can be employed
to shorten the measurement time by only resolving the ion mo-
bility range of interest [158, 159]. Such scans of a limited ion
mobility range can also be used to couple trapped IMS to slower
mass spectrometers such as FT-ICR [160].

The highest reported resolving powers range from 320 to 400
for a set of single charged polybrominated diphenyl ether metab-
olites using a scanning rate of β= 579Vm−1 s−1 (10 V in 500ms)
[62]. Using a scanning rate of β= 3536 V m−1 s−1 (122 V/s for
900ms), a resolving power of 295was obtained for the plus seven
charge state of ubiquitin [63]. Using a reported scanning rate of
β= 2691 V m−1 s−1 in a 900-ms scan, a resolving power of 228
was obtained for the single chargedm/z=1822 ion of an ESI tune
mix [64]. It should be noted that often the voltage difference and
scan time are reported instead of β. We converted these quantities
into β using the potential gradients shown in Figure 3 of reference
[151]. As expected, the highest resolving powers are achieved at
the lowest β and for higher charge states.

6238 Kirk A.T. et al.



Differential or field asymmetric ion mobility
spectrometry (DMS/FAIMS)

Differential mobility spectrometry (DMS) or field asymmetric
ion mobility spectrometry (FAIMS) differs considerably from
the techniques discussed before that a dedicated textbook ex-
ists [47]. Often, however not always in an identical fashion,
the two names have been used to distinguish between cylin-
drical and planar devices. As only planar devices have been
demonstrated to achieve ultra-high resolution, we will only
consider them in this review.

Field asymmetric IMS were originally developed in the
USSR [161] and first published in 1991 [43, 162]. While the
separation principle differs from other IMS, it can be directly
explained from Eq. 6. A gas stream pushes ions along two
parallel plates, the ion filter region, between which a time-
varying separation voltage is applied as shown in Fig. 3. It
generates low E/N for a longer time and high E/N for a shorter
time and in opposite direction. The integrals are identical so
that ions with α(E/N) = 0 would experience no net displace-
ment along the electrical field axis. All other ions are deflected
towards one of the plates depending on the shape of their
alpha function. A small, constant compensation voltage is
applied between the two plates and scanned to allow different
ions to pass the filter region, obtaining a spectrum. Ion heating
is obviously unavoidable in field asymmetric IMS, as it is the
measurement principle [163–165]. Operation is possible un-
der a wide range of pressures [166, 167].

Due to its operation at high E/N, measurement results of
field asymmetric IMS can only be compared with measure-
ments of high-field drift tube IMS [168, 169]. However, this
orthogonality to low-field IMS also enables multidimensional
IMS such as FAIMS-IMS setups [170, 171]. Furthermore, the
alpha function shows less correlation with the ion mass than
the collision cross section, possessing slightly better orthogo-
nality to mass spectrometry than to low-field IMS [47]. As
field asymmetric IMS act as a filter, they pass a continuous
stream of selected ions and thus achieve 100% duty cycle if
only a single ion species is being monitored. This is especially
useful when coupling field asymmetric IMS to slow mass
spectrometers. If multiple ions need to be monitored, the duty
cycle drops accordingly and becomes one over the number of
points in a spectrum.

The peak width of a field asymmetric IMS accounting for
the filtering effect and diffusion can be estimated according to
Eq. 23 [172]. Expressing the diffusion coefficient D through
the ion mobility K by using the Nernst-Einstein-Townsend
relation is in this case only of limited validity, as ion heating
will increase diffusion disproportionally [31, 173].
Nevertheless, doing so as an approximation allows for vastly
simplifying the equation to a form similar to those for other
IMS. Increasing the time the ions spend in the filter tfilt or the
ion mobility K narrows the peaks as ions not passing the filter

move further towards the plates at the same compensation
voltage.

1
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The reduced compensation field strength Ec/N defining the
peak position in the spectrum depends in a complex way on
the shape of the alpha function, the shape of the applied sep-
aration voltage waveform, and the magnitude of the reduced
separation field strengthED/N [43, 172, 174]. A rough approx-
imation ignoring all terms of higher order is given by Eq. 24.
α2 is the first term of the series expansion shown in Eq. 6,
while f3 is the average of the cube of the separation waveform.
Increasing any of the three coefficients in Eq. 24will move the
peaks further apart from each other, improving resolving pow-
er at a constant peak width. It is interesting to note that the
peak width depends on the absolute ion mobility, but the peak
position on the alpha function. Therefore, resolving power can
sometimes be a misleading quantity in field asymmetric IMS,
as under certain conditions, groups of peaks may shift simul-
taneously to lower or higher compensation voltages. By care-
fully tuning experimental parameters to showcase such ef-
fects, it is for example possible to increase the apparent resolv-
ing power from around 20 to 7900 without any increase in
resolution between the peaks [175].

EC

N
≈−α2 f 3

ED

N

� �3

ð24Þ

Being a nonlinear separation method, more possibilities for
improving separation performance exist compared with other
types of IMS as shown by Eqs. 23 and 24. First, the filter time
tfilt can be increased as needed by lowering the gas velocity.
However, this will require larger gaps between the plates to
still maintain acceptable ion transmission [172], as no focus-
ing exists in planar field asymmetric IMS. Furthermore, the
total measurement time already increases with increasing re-
solving power due to being an ion filter, as more points are
needed to maintain the same number of points per peak [176]
and can already be several minutes for a single high resolution
spectrum. Thus, longer filter times are often not a feasible way
to higher resolving power. Second, the ion mobility K can be
increased by using high fractions of light gases such as helium
or hydrogen in the drift gas, also increasing the energy uptake
of the ions [176–179]. This has vastly helped to increase re-
solving power of field asymmetric IMS; however, there is no
possibility to surpass the ion mobility in pure hydrogen or
helium for further improvement. Furthermore, the increased
risk of electrical breakdown has to be kept in mind. Third, the
magnitude of the alpha function can be increased through
modifiers which cluster with the target ions during the low-
field period [180–182]. This can be an ion-specific process
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and thus add selectivity, increasing the spread between differ-
ent peaks even further. Fourth, changing the shape of the sep-
aration voltage waveform to better approximate a rectangular
shape will increase f3 at the cost of more complex high-voltage
electronics and higher power consumption due to high charg-
ing currents [183, 184]. This optimization approach is obvi-
ously limited when having reached a rectangular shape. Fifth,
increasing the reduced dispersion field is limited by break-
down based on Paschen’s curve [173, 179] and ion losses
due to fragmentation at extremely high fields [185]. While
most of these parameters have already been explored to their
limit individually, the various possible combinations allow
tuning field asymmetric IMS for the measurement task at
hand. For example, it has recently been shown that maintain-
ing resolving power is possible when replacing helium with
nitrogen, thus widening the peaks, but increasing the disper-
sion field as possible by the higher electrical breakdown of
nitrogen, thus increasing the peak shift [186].

Using a mixture with 14% nitrogen and 86% hydrogen in
combination with an extremely stable compensation voltage
generator and filter times of 200 ms, a resolving power of 440
to 460 has been obtained for four times charged Syntide 2
[65]. Similar resolving powers were obtained in a 50/50 mix-
ture with 700-ms filter time. At these resolving powers and
filter times, the total measurement time for scanning a single
peak already exceeds 1 min [65]. It was suggested that with
better stability of experimental parameters during these time-
scales, resolving power might be significantly above 500. It is
important to remember once again that FAIMS operates in a
different separation space and thus, values for resolving power
cannot be easily compared with other IMS. Nevertheless,
ultra-high resolving power in field asymmetric IMS translates
to many separations not possible in low-field IMS, for exam-
ple, distinguishing between isotopomers [41, 42].

Conclusion

In this review, we have analyzed the main principles of ion
mobility spectrometers with respect to ultra-high resolution
and their limitations to further improvements. While drift tube
IMS have the major advantage of providing a direct measure-
ment of the ion mobility and collision cross section, they have
most likely reached their maximum possible resolving power
at values between 100 and 140 when operated at low pressure.
As higher fields are not permissible due to electrical break-
down and ion heating, the only way to increase resolving
power at constant pressure is to increase the drift length.
However, with instruments as long as 3 m, the practical limit
for most applications has most likely been reached or even
surpassed. Thus, higher resolving power in drift tube IMS is
only possible when moving to higher pressures. Atmospheric
pressure drift tube IMS provide, at the same low level of ion

heating, much higher field strengths and thus faster analysis
time in a smaller device. Here, increases in resolving power
are still possible as long as the required drift voltages can be
managed, allowing for full spectra to be recorded with ultra-
high resolution in milliseconds. Current resolving powers are
as high as 250 in a 15-cm-long drift tube.

Staying at reduced pressure while also circumventing the
need for high voltage, increasing the effective drift length is
another way to ultra-high resolving power. This can be done
either by traveling a long folded drift tube, possibly even
several times, such as in cyclic or SLIM traveling wave
IMS, or by pushing against a gas stream as in trapped IMS.
At the cost of increased measurement time and requiring cal-
ibration to obtain collision cross sections, even higher resolv-
ing powers than possible with ultra-high-resolution atmo-
spheric pressure drift tube IMS can be obtained. Generally,
the traveling wave variants reach the highest resolving powers
with values of 550 and 1860, as it scales with the square root
of additional measurement time. Resolving power in trapped
IMS only scales with the fourth root of additional measure-
ment time; however, measurement time can be set regardless
of the physical drift length through the scanning rate and it is
possible to scan only the ion mobility range of interest with
high resolving power. This way, resolving powers of up to 400
have been achieved.

Furthermore, differential or field asymmetric IMS offer an
ion separation orthogonal to the abovementioned instruments.
While no measurement of ion mobility or collision cross sec-
tions is possible and measurement times are extremely long
for ultra-high resolving power, they offer additional possibil-
ities for tuning the ion separation and, as an ion filter, deliver a
continuous stream of ions for further analysis. This enables
better coupling to slow mass spectrometers and even multidi-
mensional IMS systems, such as FAIMS-IMS.
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