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Abstract
The Manuguru geothermal area, located in the Telangana state, is one of the least explored geothermal fields in India. In this
study, characterization of the soil samples is carried out by laser-induced breakdown spectroscopy (LIBS) coupled with analytical
spectral-dependent principal component analysis. A total of 20 soil samples were collected both from near the thermal discharges
as well as away from the thermal manifestations. LIBS spectra were recorded for all the collected soil samples and principal
component analysis (PCA) was applied to easily identify the emission lines majorly responsible for variety classification of the
soil samples. In this submission, a modified PCAwas developed which is based on the spectral truncation method to reduce the
huge number of spectral data obtained from LIBS. The PCA bi-plot on the LIBS data reveals the presence of two different
clusters. One cluster represents the soil samples collected from the close vicinity of the thermal manifestations whereas the other
cluster contains the soil samples collected away from the thermal sprouts. PCA performed on the chemical dataset of the soil
samples also reveals the same clustering of the soil samples. Both LIBS and chemical analysis data shows that soil samples near
the thermal waters are found to be enriched in B, Sr, Cs, Rb, Fe, Co, Al, Si, Ti, Ru, Mn, Mg, Cu, and Eu concentrations compared
to the soil samples located away from thermal manifestations. This study demonstrates the potential use of LIBS coupled with
PCA as a tool for variety discrimination of soil samples in a geothermal area. LIBS is shown to be a viable real-time elemental
characterization technology for these samples, avoiding the rigorous dissolution required by other analytical techniques.
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Introduction

Water and gas sampling of the natural thermal discharges are
the most commonly used techniques for exploring the prospec-
tive geothermal sources. On the other hand, soil characteriza-
tion is probably the least adopted surveymethod employed over

the geothermal areas. However, in the geothermal areas where
surface discharges are relatively few and the extent of the geo-
thermal field is not known, soil sampling has been proven to be
a very effective tool [25].The elevated temperature of the geo-
thermal reservoirs increases the mobility of volatile vapor-
borne species, e.g., mercury, arsenic, antimony, boron, and am-
monia; as a result, these elements migrate upward through the
permeable zone and get adsorbed in the upper soil matrix. In
fact, the presence of an anomalous concentration of Hg and its
mineralization in various high-temperature geothermal areas
around the world are well documented and is an effective tool
for exploring potential geothermal fields [12, 22, 26, 27,
39].Although there are abundant literatures available about
mapping of Hg in high-temperature geothermal areas, there is
no study being carried out about the overall classification of
soils near the thermal manifestations and its comparison with
the soils away from the thermal discharges.

Analytical techniques like atomic absorption spectroscopy
(AAS), X-ray fluorescence spectroscopy (XRFS), inductively

* Sitangshu Chatterjee
sitangshujuchem@gmail.com

* Arnab Sarkar
arnab@barc.gov.in

1 Isotope & Radiation Application Division, Bhabha Atomic Research
Centre, Mumbai 400085, India

2 Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094,
India

3 Fuel Chemistry Division, Bhabha Atomic Research Centre,
Mumbai 400085, India

4 Geological Survey of India, Central Region, Nagpur 44006, India

Analytical and Bioanalytical Chemistry (2019) 411:2855–2866
https://doi.org/10.1007/s00216-019-01731-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-019-01731-3&domain=pdf
http://orcid.org/0000-0001-7289-2739
mailto:sitangshujuchem@gmail.com
mailto:arnab@barc.gov.in


coupled plasma atomic emission spectroscopy (ICP-AES),
and gravimetric analysis are often used for qualitative and
quantitative variety discrimination of soil [40]. However,
these techniques are costly and time consuming and cannot
be applied as an on-field technique. Laser-induced breakdown
spectroscopy (LIBS) is an elemental emission-based spectro-
scopic technique that has inherent capability for both qualita-
tive and quantitative study of materials in solids, liquids or
gaseous samples and can be used in-situ / on-field and also
if required remotely. In LIBS, a short laser pulse of high en-
ergy is focussed on the sample surface to produce a micro-
plasma. The resulting emission lines from the atomic, ionic,
and molecular fragments, created by the plasma, is then re-
solved both optically and spectrally to produce a spectrum of
intensity against wavelength (Harmon, 2009).LIBS is being
considered as a front runner in green chemical analysis due to
its unique features, such as, real-time analysis, pseudo non-
destructive technique, minimal to no sample preparation pro-
tocol, high sensitivity to low atomic weight elements, and
capability to carry out close-in as well as stand-off detection.
As a consequence, over the last two decades, LIBS has been
widely applied in a variety of fields, like environmental mon-
itoring [1, 2], biomedical applications [11, 19], archeological
investigations [4], pharmaceutical industries [23, 24], extra-
terrestrial explorations [6, 7, 20, 28, 29], hazardous materials
identification [9, 10, 14], nuclear fuel characterization [17, 30,
32, 33], and geological material characterization [3, 5, 15, 16].

The application of multivariate chemometric methods in
conjunction with LIBS data has recently shown tremendous
potential in the field of soil analysis. Principal component
analysis (PCA) is one of the most widely used chemometric
procedure for multivariate data system. Chemometrics ba-
sically reduce the dimension of the input data to describe the
complete information with considerably fewer variables
than was originally present, thereby revealing the simple
underlying structure that is present within a complex input
dataset[8]. A chemometrics-LIBS couple can be utilized
both for qualitative and quantitative assessment of samples.
Qualitative applications include a study by Zhang et al. [42]
for classification of slag samples using partial least squares
discriminant analysis (PLS-DA). Fink et al. [13] and
Unnikrishnan et al. [38] used PCA for identification of poly-
mers and related materials. Yueh et al. [41] used hierarchical
cluster analysis (HCA) for tissue classification, Sirven et al.
[35] studied feasibility of rock identification in the Mars
surface by applying PCA, PLS-DA, and soft independent
modeling of class analogy (SIMCA) to the LIBS data.
However, there are relatively few numbers of literature
studies available on the classification of soil samples using
PCA-LIBS coupled methods [34, 40].

In the present work, we have employed PCA methodology
on the LIBS spectrum data to classify the soil samples collect-
ed from the Manuguru geothermal area of the Telangana state,

India. The soil samples consist of several samples collected
close to thermal discharges and these were compared with the
samples taken away from the discharge areas to observe any
distinguishable characteristics of any specific mineral (major,
trace, and rare earth elements) concentrations. This work ad-
dressed the use of PCA in an indigenously developed modi-
fied form to identify emission lines significantly responsible
for variety classification in LIBS spectral analysis. The devel-
opedmethod employed a relatively simple spectral truncation-
based PCA technique. Several PCA score classification plots
representing different sets of wavelength ranges were evalu-
ated. These plots were based on truncated spectra obtained by
applying a threshold radius on the corresponding PCA loading
plot. Traditional PCA has been applied to the chemical data
set to further corroborate the results obtained from the LIBS
data.

General geology of the study area

The soil samples were collected from the Manuguru geother-
mal area, located in the Khammam district of the Telangana
state, India. The district forms a part of the Godavari river
basin. The study area consists of several thermal water mani-
festations having a temperature in the range of 36–76 °C. The
Godavari basin, a NNW–SSE trending graben on a
Precambrian platform, is filled with Gondwana sedimentary
formations. This area is known for coal exploration and there
are several opencast coal mines operated by Singareni
Collieries Company Ltd. (SCCL). Almost all of the thermal
manifestations are from the bore wells drilled for coal explo-
ration. These thermal discharges are located near the
Pagaderu, Gollakatur, ST colony, Shantinagar, and
Kodichenkuntala villages of the Manuguru administrative di-
vision. Geological mapping in 1:25000 scales was carried out
over an area of 80 km2 in and around the study area. The
geological map along with the sample location points are
shown in Fig. 1. Lower Gondwana sedimentary formations
of the Permian period rest uncomformably over Proterozoic
Pakhal meta-sediments, which form the basement rock of the
study area. The Talchir formation, the Barakar formation, the
Barren Measures formation, and the Kamthi formation collec-
tively form the lower Gondwana subgroup. The simple litho-
stratigraphy of the study area is given in Table 1. Among
different structures, well-defined bedding planes and cross
beddings are observed in the sandstone. There are two sets
of joints observed in the sandstone. One strikes N30°W with
a dip towards the east and the other E–W with a dip towards
the south area. Apart from the joints, faults are the main dia-
strophic structure which controls the hot water movements
within the basin. The fault system is characterized by a prom-
inence of dip faults whereas some are oblique in the study
area. Some faults extend beyond the limit of Gondwana basin
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into Pakhal Group, whereas others are restricted within the
basin. The geothermal manifestations seem to be confined to
the NE–SW trending fault. A total of 20 samples were collect-
ed from the B horizon (subsurface layer, 9–15-cm depth) of
the soil.

Methods

To ensure the homogenous nature of the soil composition, the
samples were dried, grounded, and sieved to a particle size of
80 mesh. The samples were divided into three sets, one for
LIBS spectra recording and the other two for chemical com-
position analysis by inductively coupled plasma optical emis-
sion spectroscopy (ICP-OES) and instrumental neutron acti-
vation analysis (INAA).

LIBS

A common configuration of the LIBS system was used in this
study [33]. Figure 2 presents a schematic diagram of the ex-
perimental setup. Laser pulses from an Nd: YAG laser

(Brilliant B, Quantel, France) a with 532-nm wavelength (6-
ns pulse duration) and having a maximum energy of 440 mJ
were focussed on to the sample surface using a plano-convex
lens (f = 10 cm) to produce a laser-induced micro-plasma. The
samples were translated using a motorized linear XYZ trans-
lator (Velmex, USA) to ensure that each laser pulse hits a fresh
portion of the sample. The emission light was collected at 45°
with respect to the laser pulse propagation, through a collima-
tor (CC52, Andor, UK). The collected light was fed to an
echelle spectrometer (Mechelle, ME5000, Andor, UK)
through an optical fiber. The echelle spectrometer covers
200–975-nm wavelength regions and has a spectral resolution
of ~ 4750 CSR (λ/Δλ) at a 50-μm entrance slit width. The
spectrograph is equipped with an ICCD (iStar, Andor, UK,
1024 × 1024 pixels), which is synchronized with the Q-
switch of laser pulse to control acquisition time delay (td)
and detector gate width (tg). The digital spectra recording
and controlling the delay generation were carried out with data
acquisition software (Solis 4.28). For the present study, a laser
energy of 50 mJ, td = 1.2 μs, and tg = 50 μs was used. The soil
samples were initially pelletized to 3-cm diameter pellets by
applying a pressure of 2 × 109 Pa for 5 min using a pellet

Fig. 1 Soil sample location points along with the geological map in the Manuguru geothermal field. The red circle indicates the location of thermal
manifestations
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presser. Each LIBS analysis consists of an accumulation of
60 laser shots taken in scanning mode over a 15-mm straight
line and three replicate spectra for every individual sample
were recorded. These three replicate spectrums were then
averaged to get a spectrum representing the overall sample
surface.

Chemical analysis

Thermal waters contain variable amounts of trace metals (i.e.,
Li, Rb, Cs, B, Sb, Cu, Pb, Mn, Co, etc.), rare earth elements
(i.e., Sc, Ce, Eu, Tb, etc.) and transition metals (i.e., Hf, Ta,
etc.) which are usually not present in detectable amounts in
natural groundwater systems. High-temperature thermal wa-
ters show elevated concentrations of these trace and rare earth
elements depending upon the extent of rock-water interaction
at the high reservoir temperature ([18, 31] and the references
cited therein). The elevated concentration of trace and rare
earth elements in the thermal waters prompted us to analyze
the concentrations of some of these elements in the soil sam-
ples collected from the geothermal area to check their prefer-
ential distribution.

Quantitative analysis of Fe, Na, K, Mn, Cu, B, As, Hg, Sb,
Li, Pb, and Co concentrations in the soil samples were mea-
sured by the ICP-OES technique (Model: ACTIVA, M/S
HORIBA Scientific). Prior to the analysis by ICP-OES, diges-
tion of soil samples was carried out as per the methodology
described by Kumar et al. [21]. Silica content of the soil sam-
ples was analyzed by the conventional gravimetric method
[36]. The concentrations of Sc, Rb, Cs, Ce, Eu, Tb, Hf, Ta,
and Th were determined by instrumental neutron activation
analysis (INAA). For INAA analysis, 50 g of each soil sample
was dried in an oven and carefully ground using mortar and
agar from which 20 mg of the powdered sample was sealed

doubly in aluminum foil and irradiated in the self-serve facil-
ity of the DHRUVA reactor, Mumbai, with a neutron flux of
1013 cm−1 s−1 for 6 h. IAEA RMs (reference materials) SL-1
and Soil-7 were used as reference and control standards, re-
spectively. Gamma-ray measurements were carried out after
the appropriate cooling time by using an HPGe detector
coupled with a computer-assisted multichannel analyzer [37].

Results and discussion

Characterization and PCA of LIBS spectra

PCA on the LIBS data was employed to identify the varia-
tions in the spectral data and to interpret the data relative to
the subset of the spectral variations. On applying a linear
mathematical transformation, these variations were reduced
to a smaller set of principal components. The first PC (PC1)
contained the largest variance of data set followed by second
PC (PC2), third PC (PC3), and so on. In this current study,
PCAwas applied to transform the LIBS spectra of all the 20
samples into several principal components (PCs). It was
seen that that PC1, PC2, and PC3 explain 73%, 18%, and
8.9% of the variance respectively; implying three PCs col-
lectively could explain 99.9% of the total variance of the
original dataset. Figure 3 b to d show the comparison of
principle components (PCs) after applying the PCA on the
whole spectra with a typical LIBS spectra obtained from the
soil sample (Fig. 3 a). One of the drawbacks of the
abovementioned PCA procedure was the frequent crashing
of the software due to excessive load of data in the algo-
rithm. The spectrograph-detector system generates > 16,000
wavelength or pixel data per spectrum covering a 200–975-
nm region. Hence, applying the PCA model on this LIBS

Table 1 Litho-stratigraphy of the study area

Formation Lithology Age

Quaternary alluvium Soil and alluvium Quaternary to recent

Lower Gondwana Kamthi formation Upper Kamthi Coarse grain ferruginous sandstone with cherty
siltstone and pebble bed

Up. Permian to Low. Triassic

Middle Kamthi Alternate sequence of sandstone and clay bed Up. Permian to Low. Triassic

Lower Kamthi Medium to course-grained calcareous sandstone
with few coal seams

Up. Permian to Low. Triassic

Unconformity

Barren measure Medium to course grained felspathic sandstone
with subordinate micaceous siltstone and clay

Up. Permian

Barakar formation Felspathic sandstone, carbonaceous shale, and coal Low. Permian

Talchir formation Fine sandstone, greenish and chocolate shale,
pebble bed, and tillites

Up. Carboniferous to Low.
Permian

Unconformity

Pakhal formation (basement) Quartzite, chert, phyllite, and marble
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whole spectrum meant introducing 20 (sample) × 16000
pixel data points, which was equal to 320,000 variables.
This caused a heavy load on the program. To reduce this

load, regions with no or minimal contribution to the overall
analytical results were needed to be removed. Figure 3 a
clearly depicts the lack of a significant amount of emission

Fig. 2 The experimental setup of
LIBS used for the present study

Fig. 3 aA complete LIBS spectra
of the soil sample showing the
232–1000-nm region. b–d A
comparison of different PCs on
the whole LIBS spectra
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lines after 550 nm. The same thing was reflected from the
PC1, PC2, and PC3 with a lack of a significant amount of
contribution in the 550–975-nm regions, and hence, this
region was irrelevant in the variety classification exercise
and was omitted. Figure 4 a and b show the comparison
of the PCA loading plot using whole a 232–1000-nm region
and 232–550-nm region respectively and were found to be
almost identical. Both Fig. 4 a and b show the presence of
two different clusters. Soil samples very near to the thermal
manifestations (MU-1, MU-4, MU-8, MU-10, MU-11, MU-
13, MU-18) fall in one cluster (square symbols) whereas
samples (MU-3, MU-12, MU-14, MU-15, MU-17, MU-20)
collected away from the thermal manifestations fall in a
different cluster (circle symbols). The MU-6 sample al-
though collected near the thermal manifestations did not fall
in the thermal cluster. Anomalies or wrong clustering were
shown by only three samples (MU-7, MU-2, and MU-16).
These three samples although collected away from the ther-
mal manifestations but fell in the proximity of the thermal
cluster in the PCA plot.

Ascertaining the reason behind the differential clustering of
soil samples depending upon the proximity to the thermal
waters, the PCA on the loadings of PC1 and PC2 were carried
out (Fig. 5). Since the echellogram consisted of a huge number
of pixels, even after eliminating 550–975 nm, the total number
of pixels in the PCA model was ~ 9000. Due to this huge
number of the pixel data, it became virtually impossible to
identify which emission lines were majorly influencing the
clustering in Fig. 4 b. To make the model more efficient in

distinguishing major influencing variables or pixels, the irrel-
evant pixel input data to the program were needed to be re-
duced.When the LIBS spectrum is used as the input data set in
a PCA model, a weakly intense emission line can be an effec-
tive variable for classification but a strong one can be irrele-
vant. Singh et al. [33] developed and successfully used a mod-
ified algorithm of PLSR known as analytical spectral-
dependent PLSR (ASD-PLSR) for qualitative analysis of
glass samples. The core idea of the algorithm was to delete
the irrelevant spectral region. Based on a similar principle, in
the present work, we have developed a spectral truncation
method known as analytical spectral-dependent truncation,
which was guided by the loading’s Euclidean distance in the
loading plot (Fig. 5).

The loading plot is simply the Cartesian plot of the individ-
ual scalar values of the loading vector in the XY-plane made
by the respective principle components. The direction and
distance of these scalar points (i.e., the representation of the
corresponding variable) of the loading vector indicate the di-
rection and magnitude of that particular variable contributing
to the variety classification. In other words, the points close to
the origin of the loading plot are irrelevant in verity classifi-
cation. Hence, variables or pixels having a near-zero Cartesian
distance from the origin can be removed. To select only those
wavelength regions or pixels which are at a significant dis-
tance from the origin and significantly contributing in variety
classification, an arbitrary parameter named the PCA coeffi-
cient threshold (Tc) was introduced, whose value varied from
0 to the maximum Cartesian distance in the loading plot. A
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program was written in such a way that it had converted the
LIBS spectrum to a modified spectrum by replacing all emis-
sion intensities to 0 whose Cartesian distance in the loading
plot was less than a selected Tc whereas the remaining inten-
sities were left unaltered. Basically, this procedure removes all
the intensities of the pixels which are irrelevant for the classi-
fication purpose and helps to retain only relevant intensities in
the spectra. Figure 5 shows the six arbitrarily chosen Tc cir-
cles. These circles indicate that if say Tc = 0.08 is chosen, then
all the pixels having a loading Euclidean distance less than the
value of 0.08 will be replaced by the 0 value. A Tc value equal
to 0 indicates no spectral region or pixel deletion, i.e., the PCA
plot of the whole spectra as it is. The Tc value was changed
from 0 to 0.4 with an increment of 0.005, and for each Tc

value, separate PCA plots were constructed. Figure 6 shows
PCA plots at four arbitrary Tc values. With the increase in the
Tc value from 0 to 0.02, 0.08, and 0.2, the change in the PCA
classification was observed. At Tc = 0, onlyMU-6 sample was
the outlier from the thermal soil grouping. But at Tc = 0.02,
when some amount of irrelevant signal or intensities were
removed, a very similar grouping is observed, but now, two
non-thermal samples gave false positive results. At Tc = 0.08,
this clustering became less obvious and the degree of separa-
tion between two groups of soil samples (collected from near
the thermal manifestations and away from thermal manifesta-
tions) became less, indicating a significant loss of relevant
information or intensities At Tc > 0.08,the separate clustering
of the soil samples was not at all there. These observations
indicated the requirement of the variables or pixels having a Tc

value ≤ 0.02 for proper variety classification, without which
PCA classification would fail. Although, with the increase in
the Tc value, the chance of false positive results increased, but

this methodology helped us to separate the relevant pixel from
irrelevant pixels thereby enabling us to identify the emission
lines majorly responsible for the variety classification.

Figure 7 shows the PC1 and PC2 loadings obtained from
PCA of truncated spectral data using a Tc of 0.02. For identi-
fication purposes, the truncated spectrum of an arbitrary cho-
sen sample (MU-11) was also shown in Fig. 7. By identifying
the different scalar values in the PC1 and PC2 and comparing
with truncated spectra, the variables or emission lines majorly
responsible for the PCAvariety classification were identified.
Table 2 tabulated the list of emission lines in the LIBS spectra
responsible for the variety classification of the PCA plot
shown in Fig. 4 b. It was interesting to note that, Table 2
mainly contained ionic lines rather than atomic lines. The
occurrence of these ionic lines was not an indication of the
plasma’s ionic nature; rather, the spectrally pure lines (in
heavy spectrally impure emission spectra) which play a major
role in variety classification were accidentally ionic in nature.
The use of a spectrograph with high resolution might solve
this dilemma by resolvingmany of these emission lines. It was
observed that PC1 and PC2 had greater loadings for the emis-
sion lines of the few elements, i.e., Fe, Ca, Co, Sr, Al, Si, Ti,
Ru, Mn, Mg, Cu, and Eu which caused the preferential clus-
tering shown in the PCA plot (Fig. 4). However, a higher
loading of these emission lines did not necessarily imply the
higher intensities (higher intensity is proportion to the higher
concentration of the elements) of the abovementioned ele-
ments in the soil samples near the thermal manifestations.
Rather, the concentration of all these elements as a whole
affected the emission pattern of soil samples near the thermal
manifestation to be different from the other samples resulting
in differential clustering in PCA. Simply, the overall distribu-
tion of the Fe, Ca, Co, Sr, Al, Si, Ti, Ru, Mn, Mg, Cu, and Eu
compared to the other elements present in the soil samples
near the thermal water has resulted in this alternate grouping.

PCA of the chemical data

To correlate the findings obtained from the LIBS analysis,
PCA on the chemical analysis data was performed. The con-
centrations of the corresponding elements are given in Table 3.
The PCA bi-plot (Fig. 8) using PC1 and PC2 showed the
existence of two different clusters. In Fig. 8, the soil samples
close to the thermal water manifestations are shown in square
blocks whereas the circle symbol denotes the soil samples
collected away from the thermal manifestations. The tip of
the arrow in Fig. 8 indicates the loading value of the respective
elemental concentration. Figure 8 basically shows the PCA
plot of the sample as well as the PCA plot of the elemental
concentration in a single graph. The higher loadings of boron,
cesium, rubidium, and cobalt as a whole made the soil samples
close to the thermal water very distinct compared to other
samples. Although the separate grouping of soil samples near

Fig. 5 PCA bi-plot of loading factors along with different Tc values

Application of laser-induced breakdown spectroscopy (LIBS) coupled with PCA for rapid classification of... 2861



the thermal manifestations was strikingly similar in both LIBS
and chemical analysis methods, there were a few mismatches
in the clustered samples. In Fig. 8, the MU-10 sample did not
fall into the thermal cluster whereas MU-14 and MU-15 fall
within the thermal cluster although they represented the soil
samples away from the thermal manifestations. The MU-10
sample had nearly twice the concentration of Na and K, along
with abnormally low Cu concentration than the fellow thermal
soil sample. These unusual elemental patterns had forced the
MU-10 sample to move away from thermal soil clustering. On
the other hand, the MU-14 and MU-15 samples possessed a
concentration range of few elements similar to thermal ones
and few elements having a concentration range similar to non-
thermal samples. This characteristic pattern had caused the
PCA modeling to misinterpret the two samples as a part of
the thermal cluster. A complete analysis of other traces and
bulk elements will probably be able to correct this PCA
misinterpretation.

It is interesting to note that the number of elements, as-
sumed to play a significant role in the clustering process, is
found to be a little bit different as per LIBS and chemical
analysis data. This happens due to some intrinsic shortcom-
ings of LIBS compared to traditional chemical analysis

technique and vice versa. In chemical analysis, the matrix is
generally separated and the elements are measured sequential-
ly, whereas in LIBS, the spectrum of the whole matrix is taken
so overall composition plays a very vital role in the LIBS
technique. The spectral intensities of major elements (i.e.,
Fe, Mg, Si, etc.) were so high compared to the spectral inten-
sities of the trace elements that in the PCA, these small inten-
sities were unable to play any significant role in the clustering
process. Not only that, some of the elements like boron (B)
which was present in a significant amount (~ 100 ppm) and
was a known influencer in the chemical analysis was found to
be insignificant in the LIBS analysis due to the heavy spectral
interference of iron (which is present in percentage amounts).
The B (I) 249.677-nm line got heavily interfered by the Fe (II)
249.913-nm emission line. Cs and Ru being alkali metals are
an emission-poor system, and hence, they were not seen in the
LIBS spectrum with significant intensity. In short, Cs and Ru
also could not play any significant role in clustering processes.
It is true that the significant elements to distinguish between
soil samples from close to the thermal manifestations and
samples far away from thermal manifestations cannot depend
on the analytical techniques employed in the study. But the
LIBS system (resolution = 0.05 nm) used in the present study

Fig. 6 PCA bi-plots of loading factors having different Tc values
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is unable to detect some of the signal from trace elements due
to the instrumental limitation and intrinsic nature of the emis-
sion lines. Moreover, when the idea of the current study was
conceived, the authors were completely in the dark regarding
the elements which were to be analyzed chemically as there

was no prior study regarding the soil analysis in the geother-
mal area. The only reference available was the analysis of the
thermal waters which were found to be enriched in certain
trace metals (i.e., Li, Rb, Cs, B, Sb, Cu, Pb, Mn, Co, etc.),
rare earth elements (i.e., Sc, Ce, Eu, Tb, etc.) and transition
metals (i.e., Hf, Ta, etc.) compared to the non-thermal ground-
water ([18, 31], and the references cited therein). The elevated
concentration of trace and rare earth elements in the thermal
waters prompted us to analyze the concentrations of some of
these elements in the soil samples collected from the geother-
mal area to check their preferential distribution, this being the
main reason that some of the elements found to be important
in LIBS analysis (Ca, Al, Ru, Mg, and Sr) were excluded from
the chemical analysis. However, the available chemical data
was found to be sufficient for the classification purpose. We
are very sure that analysis of somemore elements by chemical
methods would have been able to dispel this concern. Thus
combining the results obtained from both the LIBS and chem-
ical analysis, it can be concluded that the relative difference in
concentrations of few elements (i.e., B, Sr, Cs, Rb, Fe, Co, Sr,
Al, Si, Ti, Ru,Mn,Mg, Cu and Eu) in the soil samples near the
thermal manifestations has made them characteristically dif-
ferent from the soil samples situated away from the thermal
springs.

Conclusion

This study for the very first time demonstrates the potential
use of LIBS coupled with PCA as a tool for identification and
discrimination of soil samples in a geothermal area through a
geochemical fingerprinting approach. This submission also
shows that indigenously developed analytical spectral-
dependent truncation based PCA method applied on the
LIBS spectra utilizing only relevant pixels helped to under-
stand the majorly influencing emission lines. Combining the
results obtained from both the LIBS and chemical analysis, it

Fig. 7 PC1 and PC2 loadings obtained from PCA of truncated spectral
data using the Tc = 0.02 parameter along with the truncated spectra of the
MU_11 sample in the 230–450-nm region

Table 2 The emission lines and
the corresponding spectral
regions of the majorly influencing
elements in the soil samples near
the thermal manifestations

Co II 427.222, II 272.103, II 251.454

Ca I 428.301, II 393.366

Sr I 437.947, I 420.221

Fe I 419.909, I 387.872, II 373.532, I 334.191, II307.567, II 304.779, II 283.571, I 273.977, II 261.399, II
259.154, II 258.273, II 250.702, II 249.913, II 249.808

Al I 394.400, II 373.391, I 396.152

Si I 390.552, I 413.09, I 288.158

Ti I 388.289, II 374.164

Ru I 373.740

Mn II 334.956, I 307.313, II 273.389, II 259.372

Mg I 332.992, I 517.27, II 279.553

Cu II 324.243, I 323.916, II 321.731, II 273.826, II 273.977

Eu I 272.395
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can be concluded that soil samples near the thermal manifes-
tations had a distinctly different concentration pattern for
some trace and bulk elements (B, Sr, Cs, Rb, Fe, Co, Al, Si,
Ti, Ru, Mn, Mg, Cu, and Eu) compared to the soil samples
located away from thermal manifestations. But this PCA-
based LIBS method was not completely robust as it
misinterpreted four samples out of 20 samples implying

80% accuracy. On the other hand, the chemical analysis-
based PCA method also was not completely robust as a total
of 17 samples out of 20 samples were clearly differentiated
implying 85% accuracy. Yet, considering the time consump-
tion and cost involved in multiple analytical techniques to get
the chemical data, the LIBS method with a comparatively
lower success rate seems to be a simple and good alternative

Table 3 Chemical analysis results of the soil samples collected from the study area

Sample ID Fe (%) Cu (ppm) B (ppm) Co (ppm) Sc (ppm) Rb (ppm) Cs (ppm) Ce (ppm) Eu (ppm) As (ppm) Sb (ppm)

MU-1 2.59 ± 0.1 23 ± 0.9 121 ± 6 11.7 ± 0.4 11.8 ± 0.3 75 ± 10 4.4 ± 0.7 92 ± 14 1.07 ± 0.16 < 5 < 5

MU-2 1.69 ± 0.18 9 ± 0.5 120 ± 5 10.1 ± 2.3 7.5 ± 0.8 74 ± 11 2.1 ± 0.3 149 ± 35 1.1 ± 0.18 < 5 < 5

MU-3 4.1 ± 0.30 38 ± 1.5 137 ± 7 20.9 ± 1.2 16.1 ± 0.8 113 ± 16 7.6 ± 0.9 106 ± 15 1.35 ± 0.12 < 5 < 5

MU-4 3.53 ± 0.31 25 ± 0.8 104 ± 5 12.5 ± 1.0 14.8 ± 1.5 104 ± 14 7.3 ± 0.4 103 ± 16 1.04 ± 0.15 < 5 < 5

MU-5 2.46 ± 0.02 50 ± 2.3 73 ± 3 14.6 ± 1.5 10.4 ± 0.3 69 ± 8 3.8 ± 0.5 88 ± 12 1.19 ± 0.20 < 5 < 5

MU-6 4.89 ± 0.16 20 ± 0.6 64 ± 4 14.3 ± 0.8 14.9 ± 0.4 87 ± 15 3.6 ± 0.6 70 ± 9 1.45 ± 0.13 < 5 < 5

MU-7 1.51 ± 0.02 193 ± 8.5 89 ± 5 9.8 ± 0.7 8.6 ± 0.8 47 ± 7 2.5 ± 0.3 230 ± 45 1.72 ± 0.12 < 5 < 5

MU-8 1.76 ± 0.25 20 ± 0.8 148 ± 9 7.1 ± 0.3 8.2 ± 0.9 75 ± 11 3.5 ± 0.5 71 ± 12 0.88 ± 0.16 < 5 < 5

MU-9 1.43 ± 0.08 15 ± 0.7 105 ± 6 9.1 ± 0.3 6.9 ± 0.2 71 ± 2 1.8 ± 0.3 99 ± 4 1.39 ± 0.08 < 5 < 5

MU-10 2.62 ± 0.46 9 ± 0.2 94 ± 4 10.5 ± 1.0 12 ± 1.4 122 ± 20 3.3 ± 0.2 145 ± 38 1.7 ± 0.16 < 5 < 5

MU-11 4.8 ± 0.64 38 ± 1.5 99 ± 6 12.5 ± 1.6 16.8 ± 0.8 330 ± 27 3.2 ± 0.2 69 ± 5 1.12 ± 0.10 < 5 < 5

MU-12 1.8 ± 0.20 18 ± 0.6 97 ± 6 8.9 ± 0.5 8.8 ± 0.4 76 ± 8 2.8 ± 0.2 174 ± 40 1.39 ± 0.08 < 5 < 5

MU-13 3.24 ± 0.10 29 ± 1.5 84 ± 5 16.3 ± 2.0 14.3 ± 0.2 73 ± 10 6.5 ± 0.6 105 ± 12 1.19 ± 0.20 < 5 < 5

MU-14 2.85 ± 0.30 24 ± 0.86 77 ± 5 11.9 ± 0.7 11.3 ± 0.8 81 ± 12 7.9 ± 0.3 82 ± 2 1.14 ± 0.08 < 5 < 5

MU-15 2.74 ± 0.14 25 ± 0.9 128 ± 8 13.3 ± 1.3 11.1 ± 0.6 95 ± 9 4.8 ± 0.5 59 ± 8 1.12 ± 0.11 < 5 < 5

MU-16 3.4 ± 0.36 25 ± 0.7 89 ± 4 10.6 ± 0.6 13.4 ± 1.5 125 ± 25 6.3 ± 0.8 95 ± 16 1.08 ± 0.06 < 5 < 5

MU-17 1.62 ± 0.10 19 ± 0.8 68 ± 4 5.8 ± 0.4 7.1 ± 1.0 55 ± 8 2.5 ± 0.7 329 ± 31 0.86 ± 0.28 < 5 < 5

MU-18 2.53 ± 0.41 19 ± 0.6 128 ± 9 12.8 ± 1.4 11.1 ± 0.9 103 ± 18 5.5 ± 0.9 141 ± 10 1.36 ± 0.15 < 5 < 5

MU-19 1.96 ± 0.21 14 ± 0.45 10 ± 6 5.9 ± 0.4 11.2 ± 0.7 76 ± 8 4.3 ± 0.7 79 ± 7 1.39 ± 0.10 < 5 < 5

MU-20 1.8 ± 0.3 15 ± 0.5 95 ± 4 6.8 ± 0.2 10.8 ± 0.6 74 ± 6 4.5 ± 0.8 75 ± 8 1.7 ± 0.2 < 5 < 5

Sample ID Tb (ppm) Hf (ppm) Ta (ppm) Th (ppm) Mn (ppm) Na (ppm) K (ppm) SiO2 (%) Pb (ppm) Hg (ppm) Li (ppm)

MU-1 1.4 ± 0.6 20 ± 1 1.1 ± 0.2 23 ± 3 400 ± 10 680 ± 50 15,900 ± 600 66.05 ± 2.5 < 5 < 5 < 5

MU-2 1.2 ± 0.7 18 ± 4 1.1 ± 0.3 36 ± 4 370 ± 11 1470 ± 80 25,300 ± 800 76.4 ± 3.0 < 5 < 5 < 5

MU-3 1.6 ± 0.7 16 ± 2 1.3 ± 0.3 42 ± 10 890 ± 20 700 ± 60 8000 ± 200 43.43 ± 1.8 < 5 < 5 < 5

MU-4 1.6 ± 0.5 19 ± 5 1.5 ± 0.3 46 ± 8 380 ± 10 730 ± 75 16,300 ± 560 48.05 ± 1.5 < 5 < 5 < 5

MU-5 1.5 ± 0.3 20 ± 1 1.4 ± 0.2 21 ± 3 560 ± 12 1860 ± 110 24,200 ± 850 62.02 ± 2.7 < 5 < 5 < 5

MU-6 1.7 ± 0.4 8 ± 1 1.4 ± 0.1 19 ± 2 770 ± 19 700 ± 56 17,800 ± 750 51.54 ± 2.0 59 < 5 < 5

MU-7 1.4 ± 0.3 24 ± 5 1.3 ± 0.1 105 ± 12 450 ± 15 670 ± 48 12,600 ± 450 66.39 ± 2.9 < 5 < 5 < 5

MU-8 1.2 ± 0.2 13 ± 1 1 ± 0.2 33 ± 7 210 ± 16 960 ± 52 14,700 ± 520 73.76 ± 2.5 < 5 < 5 < 5

MU-9 1.5 ± 0.4 14 ± 2 1.7 ± 0.3 49 ± 1 470 ± 18 2160 ± 80 29,400 ± 950 74.95 ± 2.3 < 5 < 5 < 5

MU-10 2.3 ± 0.6 28 ± 1 1.3 ± 0.1 68 ± 9 360 ± 15 2000 ± 92 31,900 ± 900 58.39 ± 1.8 < 5 < 5 < 5

MU-11 2 ± 0.5 9 ± 2 1.6 ± 0.6 21 ± 4 360 ± 12 490 ± 30 17,400 ± 600 53.34 ± 1.7 56 < 5 < 5

MU-12 1.6 ± 0.3 22 ± 6 1.5 ± 0.3 51 ± 3 410 ± 11 990 ± 50 15,200 ± 550 78.02 ± 3.5 < 5 < 5 < 5

MU-13 1.7 ± 0.4 15 ± 3 1.7 ± 0.4 30 ± 2 400 ± 12 940 ± 45 9600 ± 350 62.73 ± 2.6 < 5 < 5 < 5

MU-14 1.3 ± 0.3 15 ± 2 1.3 ± 0.2 23 ± 1 360 ± 10 670 ± 50 16,100 ± 560 53.44 ± 1.9 < 5 < 5 < 5

MU-15 1.6 ± 0.4 15 ± 2 1.1 ± 0.3 23 ± 3 510 ± 16 710 ± 53 8700 ± 300 61.04 ± 2.85 < 5 < 5 < 5

MU-16 1.6 ± 0.5 17 ± 2 1.6 ± 0.4 32 ± 5 400 ± 18 1920 ± 100 32,900 ± 980 59.72 ± 2.0 < 5 < 5 < 5

MU-17 1.1 ± 0.3 21 ± 2 1 ± 0.3 111 ± 17 200 ± 10 890 ± 74 16,600 ± 880 71.91 ± 3.2 < 5 < 5 < 5

MU-18 1.1 ± 0.3 19 ± 4 1.2 ± 0.2 47 ± 5 420 ± 12 980 ± 64 18,600 ± 820 68.93 ± 3.1 < 5 < 5 < 5

MU-19 2.0 ± 0.2 16 ± 2 1.4 ± 0.1 24 ± 4 500 ± 16 1890 ± 80 41,300 ± 1100 61.07 ± 2.8 < 5 < 5 < 5

MU-20 1.8 ± 0.3 15 ± 2 1.7 ± 0.2 23 ± 2 700 ± 16 1500 ± 95 15,400 ± 570 75 ± 3.4 < 5 < 5 < 5
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technique which can be field adopted and generate real-time
data. Due to the limited number of samples with known geo-
thermal linkage, the validation of this method using an un-
known sample was not possible to carry out in the present
work but the obtained results demonstrate the successful ap-
plication of the LIBS-PCA combination for fast classification
of the geothermal soil samples avoiding the rigorous dissolu-
tion required by other analytical techniques.
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