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Abstract
Non-targeted analysis (NTA)methods are increasingly used to discover contaminants of emerging concern (CECs), but the extent
to which these methods can support exposure and health studies remains to be determined. EPA’s Non-Targeted Analysis
Collaborative Trial (ENTACT) was launched in 2016 to address this need. As part of ENTACT, 1269 unique substances from
EPA’s ToxCast library were combined to make ten synthetic mixtures, with each mixture containing between 95 and 365
substances. As a participant in the trial, we first performed blinded NTA on each mixture using liquid chromatography (LC)
coupled with high-resolution mass spectrometry (HRMS). We then performed an unblinded evaluation to identify limitations of
our NTA method. Overall, at least 60% of spiked substances could be observed using selected methods. Discounting spiked
isomers, true positive rates from the blinded and unblinded analyses reached a maximum of 46% and 65%, respectively. An
overall reproducibility rate of 75% was observed for substances spiked into more than one mixture and observed at least once.
Considerable discordance in substance identification was observed when comparing a subset of our results derived from two
separate reversed-phase chromatography methods. We conclude that a single NTA method, even when optimized, can likely
characterize only a subset of ToxCast substances (and, by extension, other CECs). Rigorous quality control and self-evaluation
practices should be required of labs generating NTA data to support exposure and health studies. Accurate and transparent
communication of performance results will best enable meaningful interpretations and defensible use of NTA data.
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Introduction

Since the 1970s, targeted analytical methods have been the
primary means of generating monitoring data to support envi-
ronmental health studies and chemical risk assessments.
Monitoring programs around the globe now have the means
to measure hundreds of target chemicals in biological speci-
mens (e.g., blood and urine) and/or environmental samples
(e.g., surface water and drinking water). Thousands of
chemicals, however, are known or suspected to exist in con-
sumer products, household articles, food and food packaging
materials, surface and drinking water, household dust, and a
host of other media [1–5]. Furthermore, signatures of chemi-
cal exposures have been detected in numerous biological me-
dia, including human serum, urine, breath, teeth, and breast
milk [6–10]. The diversity and magnitude of chemical expo-
sures are poorly characterized, as are the health effects that
may result from these exposures. Growing awareness of these
information gaps has led researchers to define and explore the
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exposome, a concept that emphasizes the importance of all
lifetime exposures, rather than exposure to individual target
substances [11, 12]. This interest, in turn, has fostered an em-
phasis on non-targeted analysis (NTA) methods that can char-
acterize many contaminants of emerging concern (CECs), in
addition to target substances. To date, NTA methods have
been employed to examine a wide variety of media, with most
utilizing a combination of chromatography, high-resolution
mass spectrometry (HRMS), and data processing workflows
[13]. There remains, however, no standardized methods, qual-
ity control practices, or acceptance criteria for NTA studies,
which may limit the utility of these data for research and
decision-making.

Several research projects have examined NTA method per-
formance by focusing on specific aspects of analytical
workflows. For example, five Critical Assessment of Small
Molecule Identification (CASMI) contests have examined
the abilities of different tools to correctly identify unknown
substances given experimental MS1 and MS2 data (http://
www.casmi-contest.org/2017/index.shtml). CASMI contests
have focused solely on computational aspects of NTA
workflows by controlling variation that would otherwise
stem from laboratory preparation and instrumental analysis.
Other projects have allowed for these additional sources of
variation when comparing NTA results across labs. For
example, a recent article reported findings from a NTA
collaborative trial in which 18 institutes from 12 European
countries examined common extracts of a single surface
water sample [14]. The trial was not meant to rank labs
based on performance, but to better understand the impacts
of method variation on substance identification. Results from
these trials and contests have been tremendously useful for
defining the state-of-the-science for NTA. An exhaustive ex-
amination of NTAmethod performance, however, requires the
use of well-characterized samples containing a large and di-
verse assortment of substances. This need, as articulated dur-
ing a U.S. EPAworkshop in 2015, led to the design of EPA’s
Non-Targeted Analysis Collaborative Trial (ENTACT) [15].

ENTACT uses over 1200 chemical substances that are
maintained by EPA’s National Center for Computational
Toxicology (NCCT) as part of the ToxCast project [16]. In
2016, a series of ten synthetic mixtures were prepared by
combining these ToxCast substances [15]. The ten mixtures,
each containing 95–365 substances, were distributed to ap-
proximately 25 labs with experience in performing NTA.
Each lab was charged with performing a blinded analysis of
each mixture, using an NTA method (or methods) of their
choosing, followed by an unblinded review to assess method
performance. The contents of each mixture were carefully
selected by EPA staff. The purpose of the experimental design
was to define the boundaries/limitations of each NTAmethod.
Specific design elements, the exact contents of each mixture,
and preliminary results across multiple laboratories are

discussed in detail in a companion article [17]. Future articles
will carefully examine results of the trial across labs, paying
particular attention to which NTA methods/techniques are
well suited to individual substances and chemical classes.
The purpose of this article is to report on the initial analyses
conducted within our own laboratory. Specifically, we de-
scribe in detail the following: (1) our approach for analyzing
individual mixtures using liquid chromatography (LC) quad-
rupole time-of-flight (QTOF) HRMS; (2) our methods for
assigning candidate structures to observed molecular features;
(3) our methods for comparing lists of tentatively assigned
structures to lists of spiked substances; and (4) blinded and
unblinded results of our experiments. Specific attention is giv-
en to factors that affected true positive rates, confidence levels
in substance identifications, andmethod reproducibility across
all ten mixtures. This article provides a performance evalua-
tion model for labs involved in ENTACT. It further provides a
general blueprint for any NTA lab wishing to conduct self-
evaluations using synthetic mixtures. Finally, it provides a
point-of-reference for determining the suitability of NTA
methods to support exposure monitoring studies and related
assessments of health risks.

Materials and methods

The overall NTA workflow is described in Fig. 1. This
workflow includes information related to sample preparation
and analysis, data processing, and the assignment of formulae
and candidate structures to observed sample features.

Sample preparation

Substances included in the ENTACT mixtures were from
EPA’s ToxCast library [16]. A total of 1269 unique substances
were spiked across the ten ENTACT mixtures (see Electronic
Supplementary Material (ESM) Table S1). Of these sub-
stances, five were spiked into all ten mixtures, 57 were spiked
into four mixtures, 33 were spiked into three mixtures, 388
were spiked into two mixtures, and 786 were spiked into only
one mixture. Five of the mixtures contained a total of 95
spiked substances, two contained 185 spiked substances, and
three contained 365 spiked substances. One of the 95-
substance mixtures (mixture 507) was designed to contain a
large percentage of isomers (the same molecular formula).
One of the 365-substance mixtures (mixture 508) was also
designed to contain many isomers, as well as substances with
lower molecular weights (MW) and lower quality control
(QC) ratings (based on purity, stability, and expected vs. ob-
served concentration). Substances included in all other mix-
tures had acceptable QC ratings based on previously collected
experimental data [17].
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Mixtures were initially prepared in dimethyl sulfoxide with
individual substances at a concentration of ~ 0.05 mM.
Multiple dilutions were then prepared (yielding working con-
centrations of approximately 0.5, 0.1, and 0.02 μM) using
Optima grade methanol (Fisher Scientific, Hampton, NH,
USA) and 2 mM ammonium formate (Acros Organics, Geel,
Belgium) buffer in HPLC grade water (B&J, Muskegon, MI,
USA) at a ratio of 1:3 methanol:buffer. For this initial inves-
tigation, multiple dilutions were used as a means of filtering
features emanating from sample preparation materials (see
BFeature filtering and flagging^ below). In future studies, data
corresponding to specific dilutions may be further used to
investigate the quantitative behavior (e.g., known concentra-
tion vs. observed intensity) of specific analytes of interest.

A 400-μL aliquot of each diluted mixture was added into
an autosampler vial. Each aliquot was then spiked (10 μL)
with a 1-ng/μL solution of stable isotope-labeled Btracer^
compounds (Table 1) in methanol. Each dilution was analyzed
in triplicate (15-μL injections) using LC-QTOF/MS. Six
method blanks (consisting of methanol, buffer, and tracer
compounds) were interspersed throughout sample worklists
to monitor instrument response and account for background/
contaminant peaks. The use of relatively high analyte concen-
trations and matrix-free samples in this study is meant to pro-
vide a Bbest-case^ scenario for evaluating NTA methods. By
design, a lack of substance identifications cannot be attributed
to matrix effects or insufficient instrument sensitivity.

LC-QTOF/MS1 analysis

Analyte separation was accomplished using an Agilent 1290
Infinity II LC system (Santa Clara, CA). Two different chro-
matographic methods were employed for this study, details of
which are summarized in ESM Table S2. Method 1 used an
Agilent ZORBAX Eclipse Plus C8 column (2.1 × 50 mm,
1.8 μm) and a mobile phase consisting of methanol, water,
and ammonium formate buffer. Method 2 used a Waters
Acquity UPLC® BEH C18 column (2.1 × 50 mm, 1.7 μm)
and a mobile phase consisting of acetonitrile, water, and
formic acid buffer. Unless otherwise noted, reported results
are frommethod 1 only; this method was originally optimized
for the detection of per- and polyfluoroalkyl substances
(PFAS) in water, but over time proved to be a suitable generic
method for a variety of compounds and media. No one meth-
od is assumed suitable for all analytes of interest; a key goal of
ENTACT is to determine which methods are most suitable for
specific chemicals and chemical classes.

An Agilent 6530B Accurate-Mass QTOF/MS (Santa
Clara, CA) with a Dual AJS ionization source was operated
under positive and negative electrospray ionization (ESI) in
full scan mode (100–1000 m/z). The instrument was tuned
using Agilent-specific tuning solution in both ionization
modes before the start of any analysis. Reference solution
was infused into the electrospray source to correct for mass
drifts during a run. Purine (DTXSID5074470) and HP-0921

Sample Preparation
3 Dilutions, 3 Replicate Injections, 6 Blanks

Peak Picking & Alignment
Agilent MassHunter Profinder Software

10 Synthetic Mixtures

Formula Assignment
Agilent Mass Profiler Professional Software,

DSSTox Unique MS-Ready Formula List

Feature Filtering & Flagging
Custom SAS Script:

Blank Subtraction, Fold-Change Thresholds, 
Formula Match Score Cut-Off

Candidate Structure Selection
EPA CompTox Chemicals Dashboard:
Batch Search, Data Source Ranking

Chemical Structure Corroboration
LC-QTOF/HRMS: 

DDA MS2 Using Preferred Ions List

Sample Analysis
LC-QTOF/HRMS: ESI+ and ESI-, MS1

1) Filtered Lists of Observed Accurate Masses
2) Filtered Lists of Observed Molecular Formulae

3) Top 10 Substances (DTXSIDs) for Each Searched Formula
4) MS-Ready Structure(s) (DTXCIDs) for each DTXSID

5) Top Structure Hits (Name, CASRN) Using Agilent PCDLs
6) DTXSID and MS Ready DTXCID for each Top PCDL Hit-

Data Used for Performance Evaluation:

Fig. 1 NTAworkflow as applied
to ten synthetic mixtures from the
ENTACTstudy. Major steps (left)
are underlined and bold, and
specific details of each step are
written in blue font. The NTA
workflow generated six data
outputs (right), four of which
(bold) were compared against
spiked substance lists for the
purpose of evaluating method
performance
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(DTXSID90880494) (m/z 121.0509 and 922.0098, respec-
tively) were used in positive mode, while trifluoroacetic acid
(DTXSID9041578) and the formate adduct of HP-0921 (m/z
112.9856 and 966.0073, respectively) were used in negative
mode. According to manufacturer specifications, the Agilent
6530B is expected to perform with better than 2 ppm mass
accuracy based on ten repeat injections of Reserpine (m/z
609.2807 when monitoring the [M+H]+ ion).

Peak picking and alignment

Procedures were performed separately for ten individual ex-
periments, which each included nine samples (three dilutions
of a single ENTACT mixture with triplicate injections of each
dilution) and six method blanks. Recursive molecular feature
extraction (MFE) and alignment was performed using Agilent
Profinder software (version B.08). Each extracted molecular
feature was defined as the aggregate of m/z peaks (including
isotopologue, adduct, and fragment peaks) relating to a com-
mon analyte and represented using a neutral monoisotopic
mass, retention time (RT), and composite spectrum (MS1).
Ion species were restricted to [M+H]+ and [M−H]− in ESI+
and ESI− modes, respectively, to minimize incorrect assign-
ments of neutral accurate mass and molecular formula.

Thresholds used for feature extraction and alignment are given
in ESM Table S3.

Formula assignment

Aligned features were searched against a database of chemical
formulae using the Compound Identification Wizard in
Agilent’s Mass Profiler Professional (MPP) software (version
14.9). First, BMS-Ready^ structures and their associated mo-
lecular formulae were generated for ~ 760 K substances
contained within EPA’s Distributed Structure-Searchable
Toxicity (DSSTox) Database [18]. Procedures for generating
MS-Ready formulae are described in McEachran et al. [19]
and involve desalting, desolvation, removal of stereochemis-
try, and neutralization. Next, predicted MS-Ready formulae
were deduplicated, yielding a final list of 142,507 unique for-
mulae that were included in a compound database file (.csv
format) used by MPP. Matching of molecular features to MS-
Ready formulae was based on similarities in mass and isotopic
fidelity (i.e., isotope presence, abundance, and spacing). For a
given molecular feature, MPP would assign and output a max-
imum of one MS-Ready formula with the highest match score
(maximum score = 100). Criteria and parameters for feature
matching are given in ESM Table S4.

Table 1 Descriptive statistics for stable isotope-labeled Btracer^
compounds. Each tracer (source indicated by superscript) was observed in
all replicate study samples (n = 90) and blanks (n = 60). Since feature
alignment was performed separately for each ENTACT mixture, a mixture-
specific monoisotopic mass (averaged across 9 samples and 6 blanks) was
determined for each tracer.Minimum,median, andmaximummass accuracy

was then based on the 10 monoisotopic mass estimates for each tracer.
Precision, as estimated using relative standard deviation (%-RSD) of peak
area, was determined across replicate injections (n = 3) at each mixture
concentration (n = 3). Minimum, median, and maximum precision was
then based on 30 RSD estimates (10 samples × 3 concentrations) for each
tracer

Mass error (ppm),
n = 10

Precision (%-RSD),
n = 30

Chemical name DTXSIDd Ionization
mode

Monoisotopic
mass (Da)

Retention
time
(min)

Min. Med. Max. Min.
(%)

Med.
(%)

Max.
(%)

13C6-Methyl parabena DTXSID30894090 ESI− 158.0675 2.28 0.80 6.50 8.40 0 5 14
13C6-Butyl paraben

a DTXSID90894091 ESI− 200.1144 7.21 0.38 7.88 9.38 0 5 10
13C4-Perfluorooctanoic acid

b DTXSID70892999 ESI− 417.9871 8.33 0.29 3.66 4.26 0 5 15
13C4

15N2-Fipronil
a DTXSID50894092 ESI− 441.9462 9.76 0.24 2.61 3.41 0 3 14

13C4
15N2-Fipronil sulfone

a DTXSID10894093 ESI− 457.9411 10.56 0.24 3.47 3.69 0 6 20
13C5-Perfluorononanoic acid

b DTXSID70894099 ESI− 468.9873 9.45 0.39 2.70 3.24 0 5 14
13C4-Perfluorooctanesulfonic

acidb
DTXSID80894101 ESI− 503.9509 9.50 0.03 3.55 3.94 0 4 15

13C2-Perfluorodecanoic acid
b DTXSID20894100 ESI− 515.9740 10.40 0.34 2.38 3.05 0 2 15

13C3-Atrazine
a DTXSID60894088 ESI+ 218.1038 5.33 0.28 2.24 7.51 0 5 38

D3-Thiamethoxam
c DTXSID60746816 ESI+ 294.0381 0.85 1.42 6.46 10.94 0 7 29

D4-Pyriproxyfen
c DTXSID20894089 ESI+ 325.1616 11.68 0.00 0.77 12.92 0 5 65

a Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA)
bWellington Laboratories Inc. (Guelph, Ontario, Canada)
c CDN Isotopes Inc. (Pointe-Claire, Quebec, Canada)
d DSSTox Substance Identifier
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Feature filtering and flagging

Matched and unmatched molecular features were further proc-
essed using custom scripts (available upon request) written in
the SAS programming language (SAS Institute Inc., Cary,
NC, USA). Briefly, SAS scripts were used to (1) track instru-
ment mass accuracy, RT drift, and signal variability (using
tracers); (2) remove duplicate features that were artifacts of
recursive MFE; (3) filter out features that were not reproduc-
ible across replicate injections; (4) filter out features that were
found at similar intensities across various sample dilutions and
method blanks; (5) calculate blank-subtracted feature intensi-
ties; (6) flag features that were observed using both positive
and negative ionization modes; and (7) prepare lists of unique
formulae (i.e., no duplicate formulae) to be used for structure
searching on the US EPA CompTox Chemicals Dashboard
(https://comptox.epa.gov/dashboard) (hereafter referred to as
the BDashboard^) [18]. All features searched on the
Dashboard (1) were observed in two out of three replicate
injections of the highest dilution (~ 0.5 μM), (2) had a median
peak area (across replicates) 3× larger in the highest dilution
than in the blanks, (3) had a median peak area 1.5× larger in
the highest dilution than in the middle dilution (~ 0.1 μM),
and (4) were assigned a formula (in MPP) with a match score
≥ 90 or had a negative mass defect and a formula match (no
score threshold) containing a halogen.

Candidate structure selection

MS-Ready structures, denoted by DSSTox Chemical
Identifiers (DTXCIDs), are mapped to registered DSSTox
substances (with their associated DTXSIDs) within the
DSSTox Database. Formula batch searches (https://comptox.
epa.gov/dashboard/dsstoxdb/batch_search) against the
content of the database retrieve DTXSIDs (which can be
mixtures, polymers, or single chemicals) based on mappings
to MS-Ready structure representations (ESM Figs. S1 and
S2). The mapping of MS-Ready DTXCIDs to DTXSIDs en-
ables identification and performance evaluation at both the
observed chemical level (DTXCID) and the substance level
(DTXSID). For this analysis, performance was evaluated
based on the identification of the corresponding MS-Ready
DTXCID of all spiked substances.

Following formula batch searches on the Dashboard, the
top candidate substances (up to ten, sorted by descending data
source counts) corresponding to each searched formula were
downloaded (as .xls files) for further examination. Substances
in the download files were defined using DTXSIDs and in-
cluded salts, mixtures, ionic species, and neutral molecules.
The top-ranked substance, based on Bdata source^ counts, for
each searched formula was deemed the most likely candidate.
According to McEachran et al. [20], Bdata sources^ in the
Dashboard represent the number of registered lists in the

DSSTox Database that contains a particular chemical.
Prevalence across many registered lists is potentially indica-
tive of a chemical’s relative likelihood of occurrence.
Additional details and performance metrics of the data source
ranking method can be found in McEachran et al. [20].

Structure corroboration using MS2 analysis

Feature lists fromMS1 analyses were manually converted into
preferred ion lists for automated data-dependent acquisition
(DDA) MS2 (Auto MSMS) using the Agilent LC-QTOF/
MS. Specifically, all features that were searched on the
Dashboard were ultimately included on a preferred ion list.
Selected ions were fragmented at 10, 20, and 40 eV in both
positive and negative ionization modes. The m/z of reference
compounds and anticipated contaminants were added to an
exclusion list. Windows for mass and RT were set at 20 ppm
and 0.3 min, respectively (except for reference masses which
were excluded for the entire run). An abundance threshold of
1000 was used with active exclusion of 5 spectra and a 0.3-
min release time. The isolation window of the quadrupole was
set to medium (4 Da), and data collection for MS1 and MS2

were set to 3 spectra/s and 4 spectra/s, respectively. Acquired
MS2 data for preferred ions were matched to a combined
Agilent Personal Compound Database and Library (PCDL)
using MassHunter Qualitative Analysis software (version
B.07). The combined PCDL contained reference mass spectra
at 10, 20, and 40 eV for compounds found within the follow-
ing four Agilent PCDLs: Environmental Water Screening,
Pesticides, Forensic Toxicology, and Veterinary Drugs.
PCDL matches were identified using forward and reverse
scoring thresholds of 25 and 85, respectively. Compound hits,
generally identified by chemical name and CASRN, were in-
cluded in output files and assigned DTXSIDs and MS-Ready
DTXCIDs.

Evaluation of spiked substances vs. observed features

After unblinding, NTAmethod performance evaluation began
with processing of each ENTACT mixture list (Fig. 2).
Specifically, an MS-Ready DTXCID, MS-Ready formula,
and MS-Ready monoisotopic mass were first assigned to each
spiked substance (DTXSID). It was next determined (1) how
often each DTXSID occurred across mixtures, (2) how often
each MS-Ready DTXCID occurred within and across mix-
tures, (3) whether each MS-Ready formula occurred more
than once per mixture (isomers), and (4) whether each MS-
Ready monoisotopic mass occurred (within 0.005 amu) more
than once per mixture.

After processing and annotation, each list of spiked sub-
stances was compared to the respective list of observed fea-
tures. Matches between spiked substances and observed fea-
tures occurred at the MS-Ready DTXCID, MS-Ready
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formula, and/or MS-Ready monoisotopic mass (within
15 ppm) levels. A customized scoring system, ranging from
1 star (lowest confidence) to 5 stars (highest confidence), was
developed to reflect the quality of each match (Fig. 2). Table 2
lists the specific attributes of 1–5 star matches.

As stated previously, formulae were assigned to aligned
features using automated techniques (via Agilent MPP soft-
ware). To evaluate the quality of formula assignments, output
tables for each ENTACT mixture, containing all 1–5 star
matches, underwent exhaustive manual review (using
Agilent MassHunter Qualitative Analysis Software).
Extracted ion chromatograms (EICs) for each matched feature
were first examined to ensure sufficient peak shape and

intensity. There was no quantifiable parameter for peak shape
acceptability. Rather, individual peaks were evaluated based
on user experience, with insufficient peaks being much small-
er than expected or having extreme deviations from a
Gaussian shape. A background-subtracted spectrum for each
EIC was then examined and matched against DSSTox MS-
Ready formulae using the BSearch Library/DB for Spectra^
function inMassHunter. TheMS-Ready formula database and
criteria for matching were identical to those used within MPP
(ESM Table S4).

Based on star ratings andmanual examination of EICs, a final
determination was made for each matched feature. If, for a given
feature, reviewers (JS, RS, and AC in the author list) had

List of MS-Ready Formulae 
Annotations for Mixture-Specific Isomers 

List of MS-Ready Monoisotopic Masses 
Annotations for Mixture-Specific Isobars 

List of MS-Ready Structures (DTXCIDs) 
Annotations for Occurrence Within and 

Across Mixtures 

List of Chemical Substances (DTXSIDs) 
Annotations for Number of Replicate  

Spikes Across 10 Mixtures 

1) Matched to Top Agilent PCDL Hit (MS2) 

2) Matched to Top Dashboard Hit (MS1 only) 

3) Match Amongst Top 10 Dashboard Hits (MS1 only) 

4) Match Amongst Filtered List of Observed Molecular Formulae 

5) Match Amongst Filtered List of Observed Accurate Masses (15 ppm) 

2nd: Comparing to Blinded Results 3rd: Scoring Matches 

6) No Match Amongst Filtered List of Observed Accurate Masses (15 ppm) 

   4th: Review 

Pass 

         Und. 

Fail 

1st: Processing Mixture Lists 

Fig. 2 Workflow for comparing NTA experimental results with lists of
spiked substances. Each spiked substance (DTXSID) was assigned aMS-
Ready structure (DTXCID), MS-Ready formula, and MS-Ready
monoisotopic mass. The occurrence of each structure, formula, and
mass, within and across samples, was determined prior to matching
against experimental data. Matches between experimental features and

spiked substances were scored on a scale of 1–5 stars based on the
strength of evidence supporting each association. A manual review of
each matched feature was performed, and each match assigned a final
decision of Bpass,^ Bundetermined,^ or Bfail.^ Matches with a Bpass^
rating were used in method sensitivity (true positive rate) calculations

Table 2 Star-rating system for
classifying molecular features that
matched to spiked substances.
Matches were based onMS-Ready
monoisotopic mass, MS-Ready
molecular formula, and/or MS-
Ready structure (DTXCID)

Star rating
for matched
features

MS-Ready
monoisotopic
mass match

MS-
Ready
formula
match

MS-Ready
DTXCID match
(Dashboard
top 10a)

MS-Ready
DTXCID match
(Dashboard
top hitb)

MS-Ready
DTXCID match
(PCDL hitc)

5 Yes Yes Yes Yes or no Yes

4 Yes Yes Yes Yes No

3 Yes Yes Yes No No

2 Yes Yes No No No

1 Yes No No No No

Ø No No No No No

a The MS-Ready DTXCID of the spiked substance was amongst the MS-Ready DTXCIDs of the top 10 sorted
substances returned from a Dashboard batch search
b The MS-Ready DTXCID of the spiked substance matched that of the top substance returned from a Dashboard
batch search
c TheMS-Ready DTXCID of the spiked substance matched that of the top PCDL hit (using a combination of four
Agilent PCDLs)
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confidence in the formula assignment and spiked substance
match, the feature was given a Bpass^ rating. If the evidence
was not strong enough to support a match, the feature was given
an Bundetermined^ rating. Finally, if the evidence supported a
mismatch, the feature was given a Bfail^ rating. All features
assigned an Bundetermined^ or Bfail^ rating were removed from
the final dataset. All features assigned a Bpass^ rating weremain-
tained in the final dataset and aligned using ionization mode and
RT information. This alignment yielded a master list of observed
ENTACT substances to be used as a matching library in future
experiments.

Method performance was determined for each ENTACT
mixture using true positive rate (TPR) estimates. For this study,
TPR is defined as the number of correctly identified substances
divided by the number of spiked substances. Within the final
dataset for each ENTACT mixture, it was common for multiple
features with Bpass^ ratings to match to a single spiked sub-
stance. This occurred when spiked substances were observed
in both ionization modes or when multiple isomer peaks were
observed for a given spiked substance. To reconcile these in-
stances with TPR calculations, only the highest rankingmatched
feature (based on star ratings) was considered for each spiked
substance. The BBlinded TPR^ (Eq. 1) was then defined as the
sum of 4- and 5-star Bpass^ features divided by the number of
spiked substances. This statistic communicates how often a sub-
stance could be correctly identified, at the MS-Ready DTXCID
level, using the NTA workflow. A second statistic, called the
Bunblinded TPR^ (Eq. 2), was defined as the sum of all Bpass^
features divided by the number of spiked substances. This sta-
tistic communicates how often a substance could be correctly
identified given that its presence in the sample was known.

Blinded TPR ¼ 5 Star Passesþ 4 Star Passes

Spiked Substances
ð1Þ

Unblinded TPR ¼ All Passes

Spiked Substances
ð2Þ

By design, different ENTACT mixtures had different num-
bers of spiked isomers [17]. In many instances, it was not
possible to resolve spiked isomers, particularly when feature
identification was based on MS1 data. As such, adjustments
were made to the TPR calculations to allow for better compa-
rability in method performance statistics across the mixtures.
Equations 3 and 4 show how adjustments were made to
blinded TPRs and unblinded TPRs, respectively.

Blinded Adj:TPR

¼ 5 Star Passesþ 4 Star Passes−Spiked Isomer Passes

Spiked Substances−Spiked Isomers

ð3Þ

Unblinded Adj:TPR

¼ All Passes−Spiked Isomer Passes

Spiked Substances−Spiked Isomers
ð4Þ

Results

Evaluation of tracer compounds

Mass accuracy

Eleven stable isotope-labeled tracer compounds (Table 1)
were monitored across all experimental runs (n = 150).
Tracers ranged in monoisotopic mass from 158.0675 amu
(13C6-methyl paraben) to 515.9740 amu (13C2-
perfluorodecanoic acid) and in RT from 0.85 min (D3-
thiamethoxam) to 11.68 min (D4-pyriproxyfen) (solvent inter-
ference was observed out to ~ 0.4 min). Median mass error
estimates for individual tracers ranged from 0.77 to 7.88 ppm
(global median = 3.05 ppm). Several tracers had a maximum
mass error that approached or exceeded 10 ppm. Nearly all
tracers were observed at < 1 ppm mass error in at least one
ENTACT mixture.

Measurement precision

Precision estimates are reported as relative standard deviations
(%-RSD = [standard deviation/mean × 100]) and reflect the
variability in observed feature intensities across three replicate
measures (Table 1). For eight out of eleven tracers, all RSD
estimates (30 per tracer) were ≤ 20%. An overall median RSD
of 5% was observed across 330 RSD estimates (3 concentra-
tions × 11 tracers × 10 mixtures). The minimum observed
RSD for each of the 11 tracers was < 1%.

Feature characterization and identification

Observed and filtered features

Between 1822 and 4168 molecular features were observed
in the individual mixtures (Table 3), considering data from
both positive and negative ionization modes (positive
mode features generally outnumbered negative mode fea-
tures by a factor of 4). After removing non-reproducible
features and markers of background contamination, be-
tween 547 and 2179 filtered features remained in the
datasets (Table 3). Figure 3a shows an example compari-
son of features that were kept vs. those that were removed
via data filtering. In this example, 4168 total features were
observed for mixture 505 before filtering, which contained
365 spiked substances. Only 52% of these features were
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ultimately kept in analysis. Yet, the summed peak area of
these kept features comprised 93% of the total peak area
for mixture 505. Percentages of features kept in the

analysis, calculated by peak number and area, are present-
ed in ESM Table S5 for all ENTACT mixtures. Bubble
plots for all ENTACT mixtures are given in ESM Table S6.

Table 3 Descriptive statistics, based on MS1 and MS2 results, for ten ENTACT mixtures

MS1 results MS2 results

ENTACT
mixture
ID

Analysis
sequencea

Spiked
substances

Observed
featuresb

Filtered
featuresc

Searched
formulaed

Library
chemicalse

Library
matches

Match
percentagef

499 4 95 1914 619 179 38 10 26

500 10 95 1862 547 120 36 0 0

501 3 95 1822 956 245 40 11 28

502 2 95 2091 1208 241 40 10 25

503 5 185 2458 999 256 70 15 21

504 6 185 2678 1128 298 68 10 15

505 1 365 4168 2179 426 143 30 21

506 7 365 3507 2084 478 157 18 11

507 8 95 2201 646 133 30 4 13

508 9 364 2797 1377 249 132 4 3

a The order in which mixtures were analyzed using LC-QTOF/MS
b The number of molecular features observed via MFE and alignment
c The number of observed features that passed through custom filtering scripts
d The number of de-duplicated formulae, assigned to observed features, that were flagged and searched on the Dashboard
e The number of compounds in the combined PCDL library that had (1) MS2 data and (2) enough information to map to a MS-ready DTXCID
fMatch percentage = (library matches/library chemicals) × 100

All Features (n = 4,168) Filtered Features (n = 2,179) Matched Features (n = 366)

% Kept (by number) = 52% 
% Kept (by area) = 93% 

% Pass (by number) = 13% 
% Pass (by area) = 69%

% Pass (by number) = 78% 
% Pass (by area) = 96%

a b c

Fig. 3 Bubble plots for molecular features observed in ENTACTmixture
505. Each feature is represented by a bubble positioned on the x- and y-
axis according to observed retention time and m/z, respectively. The
diameter of each bubble is proportional to the peak area of the observed
feature. Panel a shows a comparison of features that were kept in the
analyses after initial filtering (yellow bubbles) vs. those that were
removed (gray bubbles). Here, 52% of the total features (comprising
93% of the total peak area) were kept. Panel b shows all filtered
features (n = 2179) with Bpass^ features (i.e., those that correctly
matched to a spiked substance) represented by blue bubbles, and all

other features (i.e., those that could not be matched to spiked substance)
represented by red bubbles. Here, 13% of the filtered features (comprising
69% of the total peak area) were Bpass^ features. Panel c shows all filtered
features that matched to a spiked substance, based on MS-Ready
monoisotopic mass, within a 15-ppm mass error window (n = 366).
Here, Bpass^ features, or correct matches, are again shown as blue
bubbles. Seventy-eight percent of mass matches were ultimately Bpass^
features. The summed peak area of these correct matches was 96% of the
total peak area for all mass matches
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Molecular formula assignments

Approximately one-quarter of filtered features were assigned
a MS-Ready formula with an acceptable level of confidence
(i.e., feature had a formula match score ≥ 90 or a negative
mass defect and a formula match [no score threshold] contain-
ing a halogen). For eachmixture, between 120 and 478 unique
matched formulae were ultimately searched on the Dashboard
and utilized as the basis for DDA MS2 preferred ion lists
(Table 3). The numbers of searched formulae were generally
comparable to the numbers of spiked substances, with ratios
of searched formulae to spiked substances ranging from 0.68
to 2.58.

PCDL (MS2) matches

Across four Agilent PCDLs, MS2 data were identified as be-
ing available for 497 out of 1269 unique substances that were
spiked into the ENTACT mixtures. Initial DDA MS2 experi-
ments yielded between 0 and 30 hits for each ENTACT mix-
ture (Table 3). This corresponds to match percentages ranging
from 0 to 28%. In other words, the selected DDAMS2method
correctly identified no more than one third of the substances
that were spiked into a mixture and contained (with MS2 data)
in the Agilent PCDLs.

Performance on individual ENTACT mixtures

True positive rates

Table 4 shows the number of spiked isomers for each
ENTACT mixture, along with sensitivity estimates with and
without adjustment for isomers. Only two mixtures (501 and
502) were free of spiked isomers. Six mixtures (499, 500, 503,
504, 505, and 506) had a modest proportion of spiked isomers
(≤ 5%), and the remaining two mixtures (507 and 508) had a
higher proportion (~ 55%) of spiked isomers. Without adjust-
ment for the presence of isomers, blinded TPRs ranged from 5
to 46%. After unblinding, the number of spiked substances
that could be correctly identified (via manual review) rose
considerably. Specifically, unblinded TPRs ranged from 9 to
62%. When isomers were not considered in sensitivity calcu-
lations, the unblinded Adj. TPR estimates ranged from 19 to
65%. Estimates for eight of the ten mixtures were generally
comparable (44–65%), whereas estimates for two mixtures
(500 and 508) were considerably lower (~ 20%).

The order of analysis (Table 4) indicates diminished
performance for ENTACT mixtures that were run towards
the end of the initial experiments. Specifically, TPR esti-
mates were lowest for mixtures 508 and 500, which were
the last two mixtures to be analyzed in the sequence.
Results for labeled tracers (ESM Table S7) show modest
decreases in mass accuracy, measurement precision, and

signal strength for these two mixtures. Thus, a decline in
instrument cleanliness over the run sequence likely con-
tributed to a decrease in performance. A second analysis,
at a later time, was therefore performed on mixtures 500
and 508. Mixture 502 was also included in the second
analysis as a QC sample, as some method parameters were
altered to improve identifications (method 2, ESM
Table S2). Results of the second analysis are given in pa-
rentheses in Table 4. Unblinded results for mixture 502
were identical when comparing results of the first and sec-
ond analyses. Blinded and unblinded results for mixtures
500 and 508 were substantially better in the second analy-
sis compared to those in the first analysis. The updated
results (Table 4) suggest that 56 to 59% of spiked sub-
stances (excluding isomers) could be observed in these
samples, after unblinding. While results of the second anal-
ysis are clearly superior for mixtures 500 and 508, results
of the first analysis are the basis for all summary statistics
(in subsequent sections) relating to method performance.

Star ratings for observed substances

Between 19 and 225 spiked substances were observed, per
mixture, after unblinding and manual evaluation of
matched features (Table 4). Figure 4 shows the percentages
of these observed substances that were matched at the 1-
through 5-star levels. On average, 14% of observed sub-
stances were matched at the 5-star level; the MS-Ready
structures of these substances were correctly identified
based on matching of observed vs. library (PCDL) MS2

spectra. Fifty-six percent of observed substances were
matched at the 4-star level; the MS-Ready structures of
these substances were correctly identified via formula
matching (based on MS1 data) and assignment of the top-
ranked Dashboard structure. Twelve percent of observed
substances were matched at the 3-star level; the MS-
Ready formulae of these substances were correctly identi-
fied, but the corresponding MS-Ready structures were not
Dashboard top hits (they were, however, amongst the top
10 Dashboard hits). No observed substances were matched
at the 2-star level. In other words, every time the MS-
Ready formula of a spiked substance was correctly identi-
fied, the corresponding MS-Ready structure was amongst
the top 10 Dashboard hits. Eighteen percent of observed
substances were matched at the 1-star level; the MS-Ready
monoisotopic masses of these substances were correctly
observed, but formulae (and ultimately structures) were
incorrectly assigned using automated techniques. Pooling
results across star bins, ~ 70% of observed substances were
correctly identified at the MS-Ready structure level (4- and
5-star hits), and 82% were correctly identified at the MS-
Ready formula level (3-, 4-, and 5-star hits), on average.
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Table 4 Blinded and unblinded analysis results for ENTACT mixtures. Estimates of Btrue positives,^ BTPR,^ and BAdj. TPR^ are based on method 1
(Supplemental Table 2). Values given in parentheses are based on a second analysis of mixtures 500, 502, and 508 using method 2 (Supplemental Table 2)

Blinded results Unblinded results

ENTACT
mixture

Order of
analysis

Spiked
substances

Spiked
isomersa

True
positivesb

TPRc Adj.
TPRd

True
positivese

TPRf Adj.
TPRg

499 4 95 2 33 0.35 0.35 46 0.48 0.49

500 10 95 2 12 (35) 0.13 (0.37) 0.13 (0.37) 19 (53) 0.20 (0.56) 0.20 (0.56)

501 3 95 0 26 0.27 0.27 47 0.49 0.49

502 2 95 0 44 (36) 0.46 (0.38) 0.46 (0.38) 58 (58) 0.61 (0.61) 0.61 (0.61)

503 5 185 2 66 0.36 0.36 103 0.56 0.56

504 6 185 2 81 0.44 0.44 103 0.56 0.56

505 1 365 18 156 0.43 0.45 225 0.62 0.65

506 7 365 2 144 0.39 0.40 195 0.53 0.54

507 8 95 52 18 0.19 0.42 19 0.20 0.44

508 9 364 207 19 (80) 0.05 (0.22) 0.11 (0.42) 31 (107) 0.09 (0.29) 0.19 (0.59)

a Determined when two spiked substances shared the same MS-Ready formula
bNumber of spiked substances for which a Bpass^ feature was observed at the 4- or 5-star level
c Calculated according to Eq. 1
d Calculated according to Eq. 3
e Number of spiked substances for which a Bpass^ feature was observed at any star level
f Calculated according to Eq. 2
g Calculated according to Eq. 4
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Fig. 4 Percentage of observed substances according to star ratings.
ENTACT mixtures (n = 10) contained between 95 and 365 spiked
substances. Molecular features were observed upon analysis of each
mixture and matched to spiked substances according to MS-Ready
monoisotopic mass, MS-Ready formula, and/or MS-Ready structure.
Each feature match was manually reviewed and assigned a rating of 1–
5 stars as described in Table 2. Multiple feature matches were observed

for certain spiked substances due to chromatographic separation of
isomers or identification in both ESI+ and ESI−. Only the highest
ranking feature match for each spiked substance was used in percentage
calculations. Each black circle represents the percentage of observed
substances, for an individual mixture, that was assigned a specific star
rating. Bar height represents the mean percentage for each star-rating
category, and error bars represent the 95% confidence intervals
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Reproducibility across mixtures

Four hundred eighty-three substances were spiked into more
than one ENTACT mixture, and 232 (48%) of these sub-
stances were observed at least once. For these 232 substances,
a total of 597 substance hits were possible given the study
design ([5 substances × 10 spikes] + [36 substances × 4
spikes] + [21 substances × 3 spikes] + [170 substances × 2
spikes]). Out of a possible 597 hits, 370 were ultimately re-
corded, meaning that reoccurring substances were observed
62% of the time.

Many of the substances that were spiked across multiple
mixtures were, at times, concurrently spiked with isomers
(ESM Table S8). For example, diethyl phthalate was spiked
into all ten mixtures—in five mixtures, it was the only spiked
substance with theMS-Ready formula C12H14O4; in five other
mixtures, it was spiked alongside another substance that
shared the same MS-Ready formula. Since MS1 data could
not be used to differentiate isomers, and since most substance
hits were based on MS1 data (Fig. 4), reproducibility statistics
were recalculated after subtracting isomer occurrences (597
possible hits − 102 isomer occurrences = 495 possible hits).
After adjustment, reoccurring substances were observed
75% of the time. Figure 5 shows reproducibility statistics for
groups of substances based on the number of spikes (two,
three, four, or ten). ESM Table S8 shows full reproducibility
statistics for all 1269 unique ENTACT substances.

Comparison across methods

Three of the ten ENTACT mixtures were analyzed a second
time using different chromatography methods (ESM
Table S2). Mixtures 500 and 508 were reanalyzed due to poor
results from the first analysis (Tables 3 and 4), and mixture
502 was reanalyzed as a QC check. Whereas unblinded Adj.
TPRs for mixture 502 were identical across the first and sec-
ond analyses (61%), differences were observed in the blinded
results, indicating some effect of the selected method on NTA
performance. Ninety-five substances were spiked in mixture
502; a side-by-side comparison showed that ten substances
were observed in the second analysis but not the first and that
another ten were observed in the first analysis but not the
second. In six of these 20 instances (e.g., diphenyl phthalate
and oxycarboxin), an m/z for the substance was observed, but
the correct formula was not confidently assigned. In two in-
stances (veratraldehyde and benzocaine), the m/z for the sub-
stance was observed, but the feature was filtered out after not
meeting fold-change thresholds. In the remaining 12 instances
(e.g., 8-hydroxyquinoline and dimethyl phthalate), m/z values
corresponding to the spiked substances could not be observed
(either truly not present or missed by the peak picker) using
either the first or second analysis method.

Four hundred fifty-six unique substances were spiked into
mixtures 500, 502, and 508. Two hundred fifteen (47%) of
these substances were observed in the first analysis (consider-
ing results across all ten mixtures), and 193 (42%) were ob-
served in the second analysis. Discordance between results of
the first and second analyses was suspected for at least 93 out
of the 456 unique substances (criteria for discordance given in
ESM Table S8). Of the 93 discordant features, 31 were ob-
served in the first analysis but not the second, and 62 were
observed in the second analysis but not the first. All discordant
features are listed in ESM Table S8.

Overall performance

Seven hundred fifty-eight substances could be identified, as
part of the first or second analysis, out of 1269 unique spiked
substances (ESM Table S8). It can therefore be concluded that
at least 60% of the spiked substances are well suited to NTA
using LC-QTOF/MS instrumentation with electrospray ioni-
zation. One hundred thirty-one of these compounds were ob-
served in both the first and second analyses, suggesting that
they are amenable to LC-MS-based NTA under a variety of
experimental conditions. In contrast, 179 substances (out of
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Fig. 5 Reproducibility of NTA feature identification methods. Four
hundred eighty-three substances were spiked more than once across the
ten ENTACT mixtures. Three hundred eighty-eight substances were
spiked in two mixtures; 170 (44%) of these substances were observed
at least once. Thirty-three substances were spiked into three mixtures; 21
of these substances (64%) were observed at least once. Fifty-seven
substances were spiked into four mixtures; 36 (63%) of these
substances were observed at least once. Five substances were spiked
into all 10 mixtures; all five of these substances were observed at least
once. The quotient of # times observed / # times spiked is displayed
separately for substances that were spiked two, three, four, and ten
times and that were observed at least once. Here, circles represent
individual substances, and horizontal lines represent the minimum,
mean, and maximum quotient for each group. Some substances were
included in mixtures with isomers. Since identification at the MS1 level
could not distinguish isomers, an adjustment was made to the quotient
calculation to account for this limitation (i.e., adjusted quotient = # times
observed/[# times spiked − # times spiked with isomer])
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456) could not be observed despite being screened with two
LCmethods. Ten of these substances (e.g., monobutyl phthal-
ate, acetaminophen, and estrone) were always spiked along-
side an isomer, making them particularly difficult to identify at
the structure level. An additional 332 substances were
screened in the first analysis but not the second, and not ob-
served. Six of these substances were always spiked alongside
an isomer. Combining non-detect lists, 495 substances ([179
− 10] + [332 − 6]) are suspected of not being amenable to the
utilized LC-MS-based NTA methods. Importantly, 178 of
these substances were classified as Bundetermined^ upon
manual evaluation (ESM Table S8), meaning that some evi-
dence exists for their presence in the mixtures. More work is
needed, however, examining individual standards of each sub-
stance, to definitively categorize each substance as a Bpass^ or
Bfail.^ Until then, lists of substances that were (n = 758) and
were not (n = 495) observed are given in ESM Figs. S3 and
S4, respectively.

Discussion

For decades, environmental monitoring data have provided a
basis for regulatory decisions that impact public health.
Monitoring studies have, in large part, focused on small lists
of target substances and utilized robust methods with demon-
strable accuracy, precision, sensitivity, and reliability. Recent
applications of NTA methods have highlighted numerous
CECs in both outdoor and indoor environments and in prod-
ucts [1, 4, 5]. Targeted methods cannot keep pace with the
discovery of these CECs [21]. NTA methods must therefore
be developed to a point of providing defensible, albeit prelim-
inary, monitoring data to enable risk-based prioritizations and
provisional assessments. The ENTACT project was devel-
oped as a large litmus test for the NTA research community
with the overarching goal of establishing performance base-
lines and benchmarks [15, 17]. This article represents a broad
and transparent examination of ten ENTACT mixtures, each
containing 95–365 substances, using LC-QTOF/HRMS. The
discussion material provided herein focuses on strengths and
limitations of our adopted methods, as well as broader NTA
challenges that must be addressed by the research community.

Summary of findings

A total of 1269 unique substances were spiked across the ten
ENTACT mixtures. Taking the best results for each mixture
(from either the first or second analysis), blinded TPRs ranged
from 19 to 46% (Table 4). This means that, for all mixtures,
less than half of the spiked substances could be correctly iden-
tified when they were unknown. Even after adjusting for
spiked isomers, no more than 46% of a mixture’s contents
were correctly identified at the blinded stage of the analysis.

These results highlight deficiencies of NTA for environmental
monitoring. Compounds that are truly present in a medium
can and will go undetected; which chemicals go undetected
appears to be a function of method selection and implementa-
tion. Hence, practitioners must develop strategies for charac-
terizing and communicating false negative and false positive
rates in monitoring studies.

After unblinding, 758 substances (60%) were ultimately
observed using the selected methods. Only 14% (averaged
across samples) of these observed substances were identified
using MS2 data (Fig. 4). This low percentage stems, in part,
from limited overlap between spiked substances and library
compounds with MS2 data (Table 3). Eighty-two percent of
the observed substances were assigned the correct molecular
formula using MS1 data and automated matching techniques.
Most of these substances were further assigned the correct
MS-Ready DTXCID using functions within EPA’s
Chemicals Dashboard. Only 18% of observed substances
were initially assigned an incorrect formula or assigned the
correct formula with a low match score (Fig. 4). These results
highlight a need for more comprehensive MS2 libraries, the
further development and utilization of predicted MS2 spectra,
the implementation of optimized formula prediction algo-
rithms, and the discovery and use of optimized data process-
ing settings.

To our knowledge, ENTACT is the first NTA trial to allow
assessment of method performance and reproducibility across
synthetic mixtures with varying numbers of spiked substances
and isomers. Considering the unblinded results (Table 4), the
presence of isomers had a much stronger effect on perfor-
mance than did the number of spiked substances. Mixtures
507 and 508 had, by far, the largest proportion of spiked iso-
mers; these two mixtures yielded an average unblinded TPR
of 0.25 vs. 0.55 for the remaining eight mixtures (using the
highest TPRs for each mixture). After adjusting for isomers,
these two mixtures yielded an average unblinded Adj. TPR of
0.52, which is nearly equal to that of the remaining mixtures.
Regarding the number of spiked substances, the 95-, 185-, and
365-substance mixtures yielded average unblinded Adj. TPRs
of 0.52, 0.56, and 0.59, respectively. This result clearly shows
no negative impact of the number of substances on method
performance. A reproducibility estimate of 75% was calculat-
ed for compounds that were repeatedly spiked (but not along-
side isomers) and observed at least once. Importantly, this
estimate reflects results from the first analysis only, where
poor performance was observed for mixtures 500 and 508.
A higher estimate is expected under optimal working condi-
tions. The statistics reported here, however, reflect an accurate
and honest accounting of our initial performance in this trial.

Forty percent of spiked substances ultimately could not be
identified at the MS-Ready DTXCID level. Many of these
substances simply were not observed as a molecular feature,
that is, they likely were not amenable to LC-MS using ESI,
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selected chromatography, and/or identification criteria. Others
were observed as a molecular feature but filtered out during
data processing. Finally, many substances were correctly iden-
tified at the MS-Ready formula level but could not be anno-
tated at the structure level due to the presence of a spiked
isomer and a lack of MS2 library data. Future research will
closely examine the basis for missed substances to help opti-
mize and broaden our NTAworkflow. The following sections
provide details on issues that may have limited correct identi-
fications of ENTACT substances and that will be the focus of
future investigations.

Data analysis considerations

Data filtering and mass assignment

Custom scripts were written to filter out features that repre-
sented background contaminants and artifacts of peak picking
and alignment processes. Results in ESM Table S5 indicate
that processing scripts generally removed about half of the
features for a given mixture, which comprised a small portion
(~ 10% on average) of the total peak area. These results indi-
cate the highly effective removal of uninformative features.
Filtering criteria, however, may have been too restrictive in
some instances. For example, veratraldehyde and benzocaine
were both erroneously filtered out in the first analysis of mix-
ture 502 after not meeting fold-change requirements. Less
restrictive criteria would have allowed for their ultimate iden-
tification, but at the cost of other potential false positives. This
example highlights the delicate balance of false positive and
false negatives when performing NTA and underscores the
care that should be taken when establishing filtering criteria.

Around 10% of filtered features were ultimately matched to
spiked substances, suggesting that other real compounds were
present in the mixtures (ESM Table S5). Features that were
matched to spiked substances generally comprised about half
of the total peak area. This indicates that certain unmatched
features had large peak intensities (ESM Table S6). It is very
likely that some unmatched features represent unknown inter-
action products, degradants, or impurities of the spiked sub-
stances. It is also likely that some represent spiked substances
that were misidentified at the monoisotopic mass level. Our
feature extraction method (ESM Table S3) allowed for the
identification of only two types of ion species, i.e., +H and
−H; early experiments with a separate mixture highlighted
many incorrect mass and formula assignments when allowing
for ion species other than +H and −H. It is likely that certain
spiked substances were observed only as other ion species
(e.g., +NH4, +Na, +HCOO) or after a neutral loss (e.g.,
H2O, CO2). In both instances, the neutral monoisotopic mass
of the feature would be incorrectly assigned, and the spiked
substance never correctly identified. Considering these find-
ings, we have updated our processing scripts to flag features

that were likely identified as multiple ion species in a given
mode. More work is needed, however, to improve the identi-
fication of features that are not observable as +H or −H ion
species.

Formula matching

Our NTA workflow depended heavily on matching molecular
features toMS-Ready formulae. This step made use ofMS1 data
and was necessary since so few matches were based on MS2

data. Nearly one fifth of the observed substances were initially
assigned an incorrect formula or assigned the correct formula
with limited confidence. Moreover, for several ENTACT mix-
tures (namely, 500, 507, and 508), only a small number of spiked
substances observed by mass (within 15 ppm) could be identi-
fied at the formula level and assigned a Bpass^ rating (ESM
Table S5). Poor formula matching was often a consequence of
episodic drops in mass accuracy (> 5 ppm), likely due to a de-
cline in instrument cleanliness over the run sequence. In other
cases, competing formulae were given similar high scores, and
only the top-ranked formula was included in the output. The first
scenario will be addressed in future experiments via careful
monitoring of instrument performance (using tracer compounds)
and adhering to well-defined acceptance criteria. The second
scenario will be addressed by migrating to mass-based searches
on the Dashboard (https://comptox.epa.gov/dashboard/
dsstoxdb/batch_search) and making use of additional formula
generation tools and MS2 data. Efforts are underway to
examine the benefits of alternative formula matching strategies
using compiled ENTACT data from collaborating labs.

Structure searching using MS1 data

Well over half of the observed substances were correctly iden-
tified at the 4- and 5-star levels, and only 12%, on average,
were identified at the 3-star level (Fig. 4). These results high-
light that top-ranked Dashboard hits were most often good
matches for spiked substances when molecular formulae were
correctly assigned. They further reflect the merits of metadata-
based ranking schemes coupled with a large, high-quality
chemical database for selecting amongst candidate compounds.
The results are potentially misleading, however, in that all
spiked substances are ToxCast chemicals and, therefore, are
likely to have high data source counts within the Dashboard.
Yet, they mirror those of McEachran et al. [20] who observed
an 88% success rate for substance identification when
searching the Dashboard by formula (for 162 compounds)
and ranking by data source counts. The level of success in the
current and prior investigations, again, likely reflects the types
of chemicals being examined. To date, our evaluations have
mostly considered well-known substances, including pharma-
ceutical drugs, industrial chemicals, pesticides, personal care
product chemicals, and perfluorochemicals. As more
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Bemerging^ contaminants are encountered in NTA studies,
more rigorous sorting schemes will be required for accurate
identifications, particularly when queries are based entirely on
MS1 data.Work on the Dashboard continues in terms of adding
new data and developing new functionality to support NTA.
Future developments are intended to allow for weighted sorting
of candidate substances based on several metrics, including
data sources and reference counts from other databases (e.g.,
PubChem, PubMed), presence in priority lists (e.g., ToxCast,
NORMAN Suspect List Exchange [http://www.norman-
network.com/?q=node/236]), and likelihood of being
measured in a given medium (e.g., water, house dust) and
with a given method (e.g., LC-MS ESI+). Retention time pre-
diction has recently been evaluated as both a scoring term and
threshold cutoff for candidate selection [22]; broader imple-
mentation of RT predictions is underway.

Library matching using MS2 data

About 40% of spiked substances were found in Agilent
PCDLs with MS2 reference data (other Agilent PCDLs con-
tain data on additional ToxCast substances). For those sub-
stances with MS2 data, less than one third were ultimately
matched at the 5-star level using DDA and Agilent’s Auto
MSMS feature extraction (Table 3). These statistics highlight
two limitations of our current workflow. First, there was too
little coverage of ToxCast chemicals in the utilized PCDLs.
ENTACT is attempting to shrink this limitation by making the
full ToxCast chemical library (over 4000 substances) available
to several instrument vendors to enable the expansion of ref-
erence libraries [15, 17]. Obviously, this will provide coverage
for only a small portion of the known chemical universe. As
such, we are working to make use of other openMS2 libraries,
as well as predicted MS2 spectra. Recent integration between
the Dashboard and the in silico fragmentation tool MetFrag
[23] has been enabled via the Batch Search menu (https://
comptox.epa.gov/dashboard/dsstoxdb/batch_search),
allowing users to input results and metadata from the
Dashboard directly into MetFrag [19]. Predicted MS2

spectra for all structures in DSSTox have also been
generated using the in silico fragmentation tool CFM-ID and
command line utilities [24, 25]. Predicted spectra have been
stored, and programmatic access was developed for spectra
retrieval and matching to experimental spectra. Future work
will make these data and services available via the Dashboard.

The second limitation of our workflow, as it pertains to
MS2 spectral matching, appears to be the use of overly-
stringent match criteria. Automated library matching was per-
formed by searching experimental MS2 spectra against refer-
ence MS2 spectra, with matches meeting or exceeding user-
defined thresholds. Matching thresholds were set at stringent
levels to yield only confident matches. It was observed that
reference MS2 spectra present in the Agilent PCDLs varied

significantly in complexity, most likely due to differences in
compound structure and associated fragmentation pathways.
This variability in spectral complexity can affect the quality of
library match scores; matches with complex reference MS2

spectra will be penalized for peaks not identified in experi-
mental MS2 spectra and will thus have reduced scores. Poor
matching is exacerbated when experimental spectra include
matrix/noise peaks and when instrument mass accuracy is
not optimal (as was the case for mixtures 500 and 508
[Table 3]). Overly-stringent scoring thresholds can prevent
accurate compound identifications even in the face of confi-
dent fragment matches. The use of lower scoring thresholds
can lead to more correct matches but necessitates careful man-
ual review of each match to ensure confident identifications.

Manual evaluation

Extracted ion chromatograms and observed spectra were man-
ually reviewed for all molecular features that matched to a
spiked substance (based on MS-Ready DTXCID, formula,
or mass). The manual evaluation was performed to minimize
false positives and negatives, while allowing an assessment of
blinded vs. unblinded performance. The determination as to
whether a feature was classified as Bpass,^ Bundetermined,^ or
Bfail^ was somewhat subjective and, therefore, not considered
100% reliable. In other words, it was impossible to assign a
classification with absolute certainty since results of individ-
ual standards were not generated and compared against those
of the mixtures. Moving forward, all Bpass^ features from this
analysis are referred to as Bprobable structures^ using the
criteria of Schymanski and colleagues [26]. Specifically, no
substances will be considered Bconfirmed^ unless existing
results are examined against those of a single reference stan-
dard. All substances given a Bpass^ rating at the 5-star level
are considered level 2a hits since matching was based onMS2

reference spectra. All substances given a Bpass^ rating at the
1- through 4-star levels are considered level 2b hits since
enough diagnostic evidence exists to support a substance
match. We note that confidence levels proposed by
Schymanski and colleagues [26] were not used in our analysis,
as they are meant to communicate confidence in structure
assignments when examining features observed in Breal^ sam-
ples. The current analysis focused only on prepared mixtures,
where sample contents were known, and success rates
ascertained via comparison of spiked substances vs. observed
features. Our scoring criteria were therefore developed to re-
flect the strength of a given match, rather than the confidence
in an initial structure assignment.

Analytical chemistry considerations

An overarching goal of ENTACT is to determine how analyt-
ical chemistry affects NTA performance [17]. In general, our
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applied method(s) identified substances that are known to ion-
ize well in ESI like amides, amines, esters, and carbamates
(ESM Fig. S3). Conversely, our method(s) generally did not
identify substances that possess the aniline, phenol, and
nitroso moieties (ESM Fig. S4). Several key factors likely
influenced our inability to observe certain substances. First,
in-source fragmentation may have caused neutral losses lead-
ing to misidentification at the monoisotopic mass level.
Second, some analytes did not possess ionizable functional
groups that could improve the acquisition or loss of a proton
during the ionization process. Third, some compounds are
known to have poor ionization efficiencies, like estrogens
and sugars, which makes them hard to observe, particularly
at lower concentrations. Fourth, very polar compounds that
elute right after void volume suffer from ionization suppres-
sion. Fifth, some spiked substances have a permanent positive
charge, meaning that monoisotopic mass would be incorrectly
assigned when assuming detection as [M+H]+. Finally, small
molecules (mass < 200 Da) that possess multiple ionizable
groups may be doubly charged and, therefore, fall below the
m/z range set for the analysis.

Some apparent anomalies were observed throughout our
result files. For example, we did not observe 2,2′-[(4-
methylphenyl)imino]diethanol, diphenylamine, and
thidiazuron, all of which are expected to be LC-MS amenable
due to the ease by which nitrogen-containing compounds ac-
quire a proton in positive mode. On the other hand, we did
observe 2,2′-(oxydimethanediyl)bis(2-ethylpropane-1,3-diol)
and pentaethylene glycol, which are presumed unlikely to
ionize using ESI because of the lack of ionizable functional
groups. It is possible that these anomalies represent a small
pool of false negative or positive findings. Careful examina-
tion and interpretation of each finding at the substance level is
beyond the scope of the current investigation. However, more
exhaustive analyses, comparing ENTACT results across mul-
tiple laboratories, will be the focus of future efforts designed to
match individual substances, and classes of substances, to
suitable NTA detection methods.

Discordance was observed for a surprising number of sub-
stances when comparing results of the first and second analy-
ses. Notable features observed in the first analysis but not the
second include TDCPP, propylparaben, and ethionamide.
Example features observed in the second analysis but not the
first include amiloride hydrochloride, 2H-3,1-benzoxazine-
2,4(1H)-dione, and dl-norgestrel. The side-by-side compari-
son of mixture 502 results showed that discordance stemmed
from (1) real features being missed by the peak picker, (2)
inaccurate or weak formula assignments, and (3) overly-
stringent feature filtering criteria. It is very likely that discor-
dant features across mixtures 500 and 508 stemmed from
these same issues. It is further likely that discordance across
methods is driven by ionization efficiency issues related to
selected mobile phase solvents and buffers. For example, the

use of methanol in negative mode has been shown to improve
spray stability leading to better sensitivity [27]. Effects of
mobile phases and buffers on substance identification will be
further considered in future investigations of larger ENTACT
datasets.

Sample integrity considerations

One hundred sixty-nine spiked substances could not be iden-
tified despite screening with two analytical chemistry methods
(ESM Fig. S5). The possibility exists that individual sub-
stances may not have been observed for reasons other than
method suitability. First, sample purity and stability may have
affected detection rates, particularly for mixture 508. Second,
individual substances may have interacted within a mixture
and formed compounds that went uncharacterized. Indeed,
ESM Table S5 indicates that many features observed in the
mixtures were not associated with spiked substances. The ef-
fects of sample purity and stability will be the focus of future
efforts that consider ENTACT results across multiple labora-
tories. Focus will be given to substances that were never ob-
served, regardless of the applied NTA techniques and instru-
mentation, and to substances that were only observed using
specific methods. The goal is to use ENTACT data to calculate
the likelihood that a given substance would be observed using
a specific NTA method. This will help laboratories optimize
methods for specific chemical classes, guide comprehensive
strategies for broad-scale chemical characterizations, and in-
form the use of NTA data in decision contexts.

Conclusions

Based on the collective findings of this study, it is clear that (1)
a single NTA method, even when optimized, can likely char-
acterize only a subset of ToxCast substances (and, by exten-
sion, other CECs), (2) the selection of an NTA method will
affect which substances are observed as true positives and
missed as false negatives, (3) MS2 reference libraries must
be expanded to enable improved compound identifications,
(4) rigorous quality control is required to achieve acceptable
reliability in NTA studies, and (5) performance evaluation
using well-characterized samples should be a requirement of
labs generating NTA data to support exposure and health stud-
ies. This investigation, although not exhaustive, serves as a
guide for those looking to performNTA self-evaluations using
synthetic mixtures or other well-characterized samples. Our
statistics further provide a baseline against which results of
future experiments can be compared to quantify gains in
NTA performance.
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