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Abstract
A high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI)-MS-based metabolomics platform
was developed using a pre-fabricated microarray of nanoparticles and organic matrices. Selected organic matrices, inorganic
nanoparticle (NP) suspensions, and sputter coated metal NPs, as well as various additives, were tested for metabolomics analysis
of the turkey gut microbiome. Four NPs and one organic matrix were selected as the optimal matrix set: α-cyano-4-
hydroycinnamic acid, Fe3O4 and Au NPs in positive ion mode with 10 mM sodium acetate, and Cu and Ag NPs in negative
ion mode with no additive. Using this set of five matrices, over two thousand unique metabolite features were reproducibly
detected across intestinal samples from turkeys fed a diet amended with therapeutic or sub-therapeutic antibiotics (200 g/ton or
50 g/ton bacitracin methylene disalicylate (BMD), respectively), or non-amended feed. Among the thousands of unique features,
56 of them were chemically identified using MALDI-MS/MS, with the help of in-parallel liquid chromatography (LC)-MS/MS
analysis. Lastly, as a proof of concept application, this protocol was applied to 52 turkey cecal samples at three different time
points from the antibiotic feed trial. Statistical analysis indicated variations in the metabolome of turkeys with different ages or
treatments.
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Introduction

Mass spectrometry (MS)–based metabolomics research has
seen exponential growth in the past decade [1]. Most MS-
based metabolomics experiments make use of liquid
chromatography-electrospray ionization (LC-ESI). While
chromatographic separation provides comprehensive analysis
of a complex mixture, this technique requires long data

acquisition times, thus making large-scale analysis challeng-
ing due to limitations in time and cost [2–4]. Matrix-assisted
laser desorption/ionization (MALDI)-MS has been suggested
as an alternative to ESI-MS for high-throughput metabolo-
mics analysis [5, 6]; however, its application has been limited
due to (i) interference from matrix peaks in the low-mass
range, (ii) difficulty in compound identification because of
the lack of chromatographic separation, and (iii) limited me-
tabolite coverage depending on the choice of matrix. To over-
come the first limitation, matrices with no or minimum inter-
ferences have been developed, such as nanoparticles (NPs) [7]
or basic matrices in negative mode [8, 9], while high-
resolution mass spectrometry (HRMS) can partially overcome
the lack of separation.

The recent evolution of NPs as MALDI matrices has sig-
nificantly contributed to small molecule analysis by MALDI-
MS [10]. Most NPs have UVabsorption and can be homoge-
neously applied, which is useful for imaging applications and
to minimize spot-to-spot variation. They are especially useful
for the small molecule analysis due to their no or low matrix
background peaks [11]. Recently, our group has performed a
large-scale systematic LDI-MS screening of 13 different NPs,
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including metal oxide NPs, carbon-based NPs, and metal NPs,
for the analysis of two dozen small metabolite molecules [12].
As capping agents were not used for these NPs to avoid con-
tamination from these organic compounds, aggregation of
some NPs, especially metals, caused significant loss of ion
signals. To eliminate this problem, physical vapor deposition
(PVD), commonly known as sputter coating, has been recent-
ly used as a means to create NPs in situ, as demonstrated
previously for Au, Ag, and Pt [13–15].

Antibiotics are essential to animal health and production.
Sub-therapeutic levels of antibiotics have been commonly uti-
lized for growth promotion, but starting in 2017, FDA guid-
ance 209 restricted the off-label and feed-efficiency usage of
antibiotics determined to be important for human health [16].
Although antibiotics have long been known to disrupt the
gastrointestinal microbiome, the impact on the bacterial pop-
ulation (microbiota) and the metabolomic interplay is poorly
understood [17–19]. The relationship between the microbiota
and its metabolome is a dynamic system with tremendous
individual and temporal variations, which may not be revealed
by small sets of data. Large-scale studies are necessary to find
the correlation between microbiota membership and the gut
metabolome in each individual animal. However, the lack of a
high-throughput low-cost metabolomics platform is a serious
bottleneck toward that end.

Here, we propose a high-throughput MALDI-MS-based
metabolomics approach using a set of nanoparticles or matrices
in a microarray format. Due to differences in analyte selectivity
between matrices, a carefully chosen set of matrices can effec-
tively enhance metabolite coverage, thus allowing diverse clas-
ses of small molecule metabolites to be analyzed. While it is
impossible to achieve a metabolomic profile as comprehensive
as LC-MS-basedmetabolomics, we hypothesize it is possible to
grasp some important features with this approach. In the current
study, this platform was optimized and then, as a proof of con-
cept, applied to 52 turkey gut microbiome samples treated with
therapeutic or sub-therapeutic dosages of the antibiotic bacitra-
cin methylene disalicylate (BMD).

Materials and methods

Materials

Isopropyl alcohol (IPA), methanol (MeOH), water (H2O), ace-
tonitrile (ACN), piperidine (99%), triethylamine (> 99%), am-
monium hydroxide, formic acid (> 95%), sodium acetate (>
99%), and trifluoroacetic acid (TFA, 99%) were purchased
from Sigma-Aldrich (St. Louis, MO, USA); solvents were
purchased in CHROMASOLV LC-MS or Plus grade.
Organic matrices were purchased from Sigma-Aldrich (St.
Louis, MO, USA): 1,5-diaminonaphthalene (DAN, 97%),
2,5-dihydroxybenzoic acid (DHB, 98%), α-cyano-4-

hydroxycinnamic acid (CHCA, 99%), and 9-aminoacridine
(9AA, 98%) hydrochloride hydrate. The basic form of 9AA
was prepared by dissolving the hydrochloride salt in boiling
water and adding excess sodium hydroxide to precipitate the
free base. The product was isolated by filtration and rinsed
several times with cold water, then dried under vacuum.
Aluminum-doped zinc oxide (AZO; zinc oxide NPs doped
with 2 wt% aluminum oxide, 99.99%, 15 nm) was purchased
from US Research Nanomaterials, Inc. (Houston, TX, USA).
Iron oxide NPs (Fe3O4, 11 nm, no organic capping) and tita-
nium dioxide NPs (TiO2) were synthesized as previously de-
scribed [12]. Characterization of these NPs can also be found
in the supplementary information of the work by Yagnik et al.
[12]. The sputter targets were purchased from Ted Pella, Inc.
(Redding, CA, USA): silver (99.99%), gold (99.99%), titani-
um (99.6%), and copper (99.99%). The μFocus LDI plates
(5 × 16 circles, 600 μm) were purchased from Hudson
Surface Technology (Old Tappan, NJ, USA).

Animal experiment and metabolite extraction

All animal experiments were performed at the National Animal
Disease Center (NADC), USDA,Ames, IA, USA, following the
ethical guidelines set by the Institutional Animal Care and Use
Committee (IACUC) using the approved protocol ARS-2869.
As a part of a larger animal microbiome study (manuscript sub-
mitted), 240 day-of-hatch Nicholas turkey poults (Valley of the
Moon Hatchery, Osceola, IA) were obtained and allowed to co-
mingle and acclimate for 2 weeks. At 2 weeks of age, birds were
randomly separated into one of three rooms to begin antibiotic
treatment of 50 g/ton feed or 200 g/ton feed BMD for sub-
therapeutic or therapeutic treatments, respectively, or non-
medicated diet. Sub-therapeutic BMD was administered contin-
uously for 11 weeks. Therapeutic BMD was given for 5 weeks,
followed by reduction to sub-therapeutic concentration for
6 weeks. Ten turkeys were sampled from each group after eu-
thanasia, taken at 7, 35, and 78 after the start of the antibiotic
therapy. Two hundred milligrams of cecal contents from each
bird was flash frozen in liquid nitrogen for metabolomics analy-
sis. Lyophilized cecal contents (~ 5 mg) were placed in a 1.5-mL
centrifuge tube and then suspended in 1.0 mL of extraction sol-
vent with internal standards (5 μl of 10 mg/mL jasmonic acid,
5 μl of 10 mg/mL 13C-ribitol, 495 μL H2O, 495 μL MeOH).
Extraction proceeded with 10 min of vortexing (1400 rpm),
followed by centrifuging for 10 min (12,000 rpm). The hydro-
philic supernatant was transferred to a new 1.5-mL centrifuge
tube. The samples were dried under vacuum and re-suspended to
a final concentration of 1 mg/mL with ACN:H2O (50:50).

Workflow for LDI-MS analysis

The overall workflow for the experiments and an example of
the microarrays used in the initial optimization are illustrated
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in Fig. 1. Organic or NP matrix solutions were prepared by
dissolving or suspending in IPA at a concentration of 10 mM.
Organic matrices were vortexed for ~ 1 min and NP matrix
solutions were sonicated for ~ 1 h before spotting. For the
microarrays made from organic matrix solutions or NP sus-
pensions, 2 μL of matrix solution, followed by 2 μL turkey
cecal contents extraction and 2 μL additive solution (option-
al), was spotted on a μFocus LDI plate (Hudson Surface
Technology; Old Tappan, NJ, USA). All of the solutions were
spotted on a μFocus LDI plate pre-heated to 45 °C to ensure
uniform deposition. Spots were completely dried before the
next solution was spotted. CHCA, DHB, and Fe3O4 were
tested for positive mode, and 9AA, DAN, and AZO were
tested for negative mode. TiO2 was used for both ion modes.

For the metal NP microarrays deposited through PVD,
2 μL of cecal extract was spotted first, followed by 2 μL of
additive solution (optional), and then metal NPs were sputter
coated using a Cressington 108Auto (Ted Pella). The portion

of the plate that was not to be sputter coated was covered using
a glass slide. The optimized sputter times are 5, 10, 20, and
40 s for Ag, Au, Ti, and Cu, respectively. Both positive and
negative modes were used for all the sputter coated metals.

In order to improve the detection of unique features, three
different additives were tested in each polarity. For positive
ion mode, 0.1% TFA (v/v), 0.1% formic acid (v/v), and 10mM
sodium acetate were used. For negative ion mode, 1% piper-
idine (v/v), 1% triethylamine (v/v), and 10 mM ammonium
formate were used for this test. The additives were compared
to see which offered the most unique features.

Mass spectrometry analysis

A linear ion-trap Orbitrap mass spectrometer with a MALDI
ion source (MALDI LTQ-Orbitrap Discovery; Thermo
Scientific, San Jose, CA, USA) was used to acquire data in
imaging mode for each circle in the microarray, approximately
300–375 pixels per circle. The instrument was modified to use
an external frequency-tripled, diode-pumped Nd:YAG laser
operating at 355 nm and 60 Hz (UVFQ; Elforlight Ltd.,
Daventry, UK). Data was collected using a 150-μm raster step
size and a ~ 30-μm laser spot size. Laser pulse energies were
optimized individually for each matrix. MSiReader [20] and
Xcalibur (ThermoFisher Scientific) were used to define imag-
ing parameters and to acquire data, respectively. Mass spectra
were acquired with ten laser shots per spectrum using an
Orbitrap mass analyzer (resolution of 30,000 at a mass to
charge ratio (m/z) of 400) for an m/z scan range of 50–1000.

Estimation of potential metabolites based
on accurate mass

The total number of potentially identifiable metabolites (i.e.,
unique features) was estimated based solely on accurate mass.
The mass spectra over the entire circle were averaged and all
m/z values and their ion intensities were exported as .csv files
using MSiReader. Two levels of filtering were applied to ex-
tract only those m/z values that are meaningful. In the first
filtering, any m/z values at noise level with an absolute inten-
sity below 500 (signal-to-noise ratio of 20) were removed. In
the second filtering, matrix and contamination peaks (back-
ground outside the region of interest), as well as 13 carbon
isotopes, alkali metal adducts in positive mode, and a water
loss in negative mode, were removed using an in-house
Python script within a 5-ppm tolerance. MS images were then
generated for all remaining m/z values using MSiReader and
inspected to ensure they were not also present in the back-
ground. This final mass list was compared to the compound
list identified by Metabolon using an LC-MS/MS approach
(see the BLC-MS/MS-based identification of turkey gut
microbiome^ section). For the matching features based on
accurate mass within 5 ppm mass tolerance, MS/MS was

Fig. 1 a The overall workflow of matrix microarray experiment. An
extraction was conducted on the turkey cecal sample, followed by
spotting (or sputtering) the matrix, extract, and additives onto the
μFocus LDI plate. High-resolution Orbitrap scans were acquired and
the data was analyzed using MSiReader and Xcalibur. b Examples of
matrix spotted and metal sputtered coated microarrays. For pre-
fabricated pipet spotted microarray (plates 1 and 2, in positive and nega-
tive ion mode, respectively), 2 μL of matrix, followed by 2 μL turkey
cecum extract sample, and 2 μL additive were spotted on a LDI plate. For
PVDmicroarray (plate 3), 2 μL turkey cecum extract sample was spotted
first, followed by 2 μL of additive, and then the metal was sputtered
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performed using the ion-trap analyzer using an isolation width
of 2.0 Da. The collision energies were individually optimized
for each metabolite. MetFrag [21] and CFM-ID [22] were
used to aide metabolite identification.

LC-MS/MS-based identification of turkey gut
microbiome

Metabolomics analysis was performed by Metabolon
(Morrisville, NC) for a selected set of turkey gut microbiome
samples (manuscript submitted). In short, proteins were pre-
cipitated with methanol under vigorous shaking for 2 min
(Glen Mills GenoGrinder 2000) followed by centrifugation.
The resulting extract was divided into five fractions: two for
analysis by two separate reverse phase (RP)/ultra-performance
liquid chromatography (UPLC)-MS/MS methods in positive
ion mode electrospray ionization (ESI), one for analysis by
RP/UPLC-MS/MS with negative ion mode ESI, one for anal-
ysis by HILIC/UPLC-MS/MS with negative ion mode ESI,
and one sample was reserved for backup. All methods utilized
a Waters ACQUITY UPLC and a Thermo Scientific Q-
Exactive HRMS. Compounds were identified with the
Metabolon library based on authenticated standards that con-
tain the retention time/index (RI), mass to charge ratio (m/z),
and chromatographic data (including MS/MS spectral data)
for all molecules present in the library.

Results and discussion

Finding the optimal experimental conditions
for development of nanoparticle microarray

The overall workflow is illustrated in Fig. 1a. Samples were
directly deposited on a pre-spotted NP or matrix microarray,
which can be done in a high-throughput manner, especially
using a multichannel pipettor or robotic autosampler. The mi-
croarray was prepared using a μFocus MALDI plate and ma-
trix deposition was done on a heated plate to reduce signal
variation due to the inhomogeneity of matrix crystals. The
surface of μFocus MALDI plate is hydrophobic, except for
an array of small circles with hydrophilic surfaces, so that
samples in aqueous solutions can be focused onto small areas.
This study focused on utilizing various NPs as MALDI ma-
trices, as they are particularly useful in high-throughput small
molecule analysis due to their no or low matrix background
peaks as well as homogeneous application with minimal sig-
nal variation [12]. Then, after the microarrays were prepared,
MALDI-MS data acquisition was performed in as fast as a few
minutes for a set of matrices, and hundreds of samples can be
run in a single day without manual interruption using batch
mode operation.

Optimization of the microarrays was performed using cecal
samples from several pooled non-medicated, 93-day-old tur-
keys. Different matrices and additives were tested to find con-
ditions that yielded the most comprehensive coverage of me-
tabolites of interest. Three NPs from our previous study
(Fe3O4, AZO, TiO2) [12], four traditional organic matrices
(CHCA, DHB, 9AA, DAN), and four PVD metals (Ag, Au,
Ti, Pt) were selected in this preliminary study. Three different
additives were tested in each polarity in order to improve the
ionization efficiencies of unique features. For positive ion
mode, 0.1% TFA, 0.1% formic acid, and 10 mM sodium ac-
etate were used. For negative ion mode, 1% piperidine, 1%
trimethylamine, and 10 mM ammonium formate were used
for this test.

Venn diagrams comparing the number of unique features
detected when using different additives in negative and posi-
tive ion modes can be found in Electronic Supplementary
Material (ESM) Fig. S1. Unique features are defined as having
a signal-to-noise ratio of at least 20, and matrix peaks, known
contaminations, 13-carbon isotopes, and multiple adducts (see
experimental section for the details) were excluded. As can be
seen in ESM Fig. S1, there was little benefit of using additives
in negative mode. However, in positive ion mode, the use of
10 mM sodium acetate significantly increased the number of
unique features. For example, Fe3O4 and CHCA show ~ 2 and
~ 1.5 times more features, respectively, when sodium acetate
was used, compared to no additive, due to the efficient forma-
tion of sodium ion adducts. Figure 2 shows Venn diagrams
summarizing the number of unique features for various matri-
ces with 10 mM sodium acetate in positive mode and with no
additive in negative mode. In total, over one thousand unique
features are identified in each polarity. However, it would take
too long for data acquisition if all eight matrices were used in
each polarity.

Out of eight matrices in each polarity, the five most effec-
tive matrices were chosen from Fig. 2 in terms of total cover-
age: Fe3O4, CHCA, and Au in positive ion mode, and Cu and
Ag in negative ion mode. In positive mode, Ag has a slightly
higher number of unique features than Au; however, many of
these overlap with those from Fe3O4 (comparison not shown).
Additionally, Ag in positive mode results in silver adducts and
clusters which can complicate the spectrum. In negativemode,
Au has the same number of unique features as Cu, but Cu was
selected as many of the Au features overlap with Ag.
Figure 3a compares mass spectra from the pooled control
sample among the five matrices/NPs represented in a
barcode-like pattern to facilitate quick and easy comparison
of the distribution of features. The overlap is minimal in the
metabolite coverage for each matrix/NP. Cu and Ag have the
greatest coverage in the mass range ofm/z 100–300, due to the
tendency of metabolites effectively ionized in negative mode
to have lower masses, while Fe3O4 provides comprehensive
coverage over the entire mass range of m/z 100–500. Overall,
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this data suggests that these five matrices/NPs can be used to
detect a wide range of metabolites in the gut microbiome.

Proof of concept application using turkey microbiome
samples

The optimal experimental conditions were then applied to
cecal samples collected from 93-day-old turkeys that were
either non-medicated, or treated with sub-therapeutic antibi-
otics, or therapeutic antibiotics. Figure 3b compares the total
number of unique features for each sample type combined
from all five matrices/NPs that were detected consistently in
all three biological replicates. As a particular metabolite can
be detected with multiple matrices, the reported total numbers
of features in each sample type have been carefully screened
to remove any duplicate features. Over 1000 unique

metabolite features were detected in each sample type, and
several hundred of them are unique to each, suggesting the
potential of this approach for covering a diverse range of me-
tabolites. A total of approximately 2100 unique features are
detected combining all three sample types. The distribution of
the total detected features from each sample type for each of
the matrices/NPs used is shown in ESM Fig. S2.

Identifying all these compounds is not feasible, especially
without chromatographic separation and standard analysis.
Therefore, we focused our analysis to a handful of compounds
that were also detected with in-parallel UPLC-MS/MS-based
metabolomics performed by Metabolon (metabolon.com; a
separate manuscript in preparation) and that were confirmed
through MALDI-MS/MS. Metabolon performed extensive
metabolomics profiling using four different UPLC-MS/MS
runs (two in positive and two in negative mode, optimized

Fig. 3 aMicroarrayMALDI-MS results of turkeymicrobiome for optimal matrices, shown in a barcode-like pattern. bVenn diagram displaying the total
number of unique features observed across in all five matrices, using the optimized experimental conditions

Fig. 2 Venn diagrams displaying
the number of unique features
observed when comparing
different matrices in positive and
negative ion mode. The number
of unique compounds shown is
after the removal of adducts
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for hydrophilic and hydrophobic compounds each) and
compared these to over 3000 entries in an in-house standard
library. Selected samples from the 7, 35, and 78 days post-
treatment time points for each of non-medicated, sub-
therapeutic treated, and therapeutic treated were analyzed
(n = 6 per condition). A total of 712 unique metabolites were
chemically identified in the Metabolon study, while thousands
more unique features were unidentified. Among those identi-
fied in theMetabolon data, 96match features shown in Fig. 3b
within 5 ppm mass tolerance. MALDI-MS/MS was per-
formed for each of the 96 matching compounds, and 56 of
them were confirmed to match with the Metabolon-identified
chemical structures. The list of identified compounds is sum-
marized in ESM Table S1 along with fragment ions fromMS/
MS. Somemetabolites havemass differences that are less than
what can be isolated by the ion trap. In that case, they are
simultaneously fragmented and the combination of exact mass
and MS/MS information was utilized to identify the metabo-
lites. Assignments were made based on the presence of (i) a
unique precursor ion in the MS spectrum and (ii) at least one
corresponding fragment in the MS/MS spectrum. The results
of the metabolomics study performed by Metabolon are be-
yond the scope of the current work and will be presented in a
separate publication.

Mid-throughput screening comparing antibiotic
treatments

Previous studies usingMALDI-MS-basedmetabolomics have
targeted specific metabolites and thus have been limited in
scope mostly due to low metabolite coverage, resulting from
the lack of chromatographic separation [6, 23–25]. Here, we
use MALDI MS combined with a microarray platform for

metabolomics analysis to compare the gut microbiome of dif-
ferent antibiotic treated turkeys. As a proof of concept exper-
iment demonstrating that a nanoparticle microarray–based
MALDI-MS platform can be used for a large-scale high-
throughput analysis, this method was applied to a total of 52
turkey gut microbiome samples from three different antibiotic
treatment groups (therapeutic, sub-therapeutic, and non-med-
icated). After 2 weeks of co-mingling, young turkeys were
separated into three treatment groups, and samples were col-
lected at three time periods (7, 35, and 78 days) after the start
of treatment (n = 5 or 6 for each condition). We used a micro-
array MALDI plate with a spot size of 600 μm, and data was
collected for about 5 minutes per spot. The total data acquisi-
tion time was 2.7 days in the current study (52 samples × 5
matrix × 3 analytical replicates × 5 min), but it could be
shorted to a half-day for a 1-min data acquisition time using
a MALDI plate with smaller focus size. The same number of
experiments would take 1or 2 weeks using LC-MS–based
metabolomics. Additionally, to save data acquisition time, an-
alytical replicates are often ignored as there are multiple bio-
logical replicates; however, as discussed below, each individ-
ual animal is different and therefore shows slightly different
metabolomic profiles, presumably due to their different mi-
crobiota membership.

The signal intensities for the compounds listed in ESM
Table S1 were extracted for each cecal sample and then
uploaded to MetaboAnalyst (http://metaboanalyst.ca) [26]
for statistical analysis, after averaging over analytical
replicates and normalized to internal standard: the sum of
13C-ribitol adducts in positive mode (m/z 154.080, 176.062,
and 192.036 for [M + H]+, [M + Na]+, and [M + K]+,
respectively) or jasmonic acid in negative mode (m/z 209.
118 for [M-H]−). Figure 4a shows three-dimensional partial

Fig. 4 Three-dimensional partial least squares discriminant analysis (PLSDA) and box and whisker plots for selected metabolites for a day comparison
with non-medicated turkeys and b treatment comparison at day 7
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least squares discriminant analysis (PLSDA) for non-
medicated turkeys from the three studied time points as well
as box and whisker plots for selected differentiating metabo-
lites. Moderate separation is clear between different groups,
especially in the three-dimensional space. Metabolites shown
in Fig. 4a (indole-3-carboxylic acid, thymine, equol) have
significant increases in day 35, compared to day 7, and then
stabilize to lower levels at day 78. It is well known that poultry
microbiota changes in membership over time and with host
age, so these differences are likely due to aging [27, 28].
Figure 4b shows PLSDA of the treatment comparison at the
day 7 time point, which also shows moderate but clear sepa-
ration between groups as well as box and whisker plots.
Indole-3-carboxylic acid shows a dramatic increase for thera-
peutic and sub-therapeutic treatments compared to non-
medicated birds, whereas 1-myristoylglycerol and
pentadecanoate are decreased, indicating significant changes
in gut microbiome metabolites during antibiotic usage. Fatty
acids are known to be involved with antibiotics [29, 30] and
are constituents of bacterial membranes [31], particularly odd-
chain fatty acids like pentadecanoate. Indole-3-carboxylic ac-
id has been shown to play a role in intra- and inter-kingdom
signaling [32–34] and regulates expression of genes involved
in a variety of processes including metabolism and stress [34].
Additionally, microbial-derived indole metabolites have been
shown to be important drivers of intestinal health, binding
with the host aryl hydrocarbon receptor, modulating immune
responses along the mucosa [35]. Data like these may help
identify bacterial functions that can be targeted to improve
animal health. In all cases, the trend of these metabolites is
in good agreement with the data provided by Metabolon (not
shown).

Statistical analysis shows relatively moderate separation,
which is attributed to high variation among the individual
turkeys. Figure 5 shows an example demonstrating that bio-
logical variation is much greater than analytical variation for
these metabolites. Selected metabolites from four day 7 non-
mediated turkeys which were raised in the same room are

compared to show the biological and analytical variations.
The standard deviations for each metabolite (i.e., the analyti-
cal variation) are very narrow, whereas the differences be-
tween the mean values for each animal (i.e., the biological
variation) are quite large, especially for certain metabolites.
This is typical in animal studies with outbred animals. We
hypothesize this is likely due to the variability in the microbi-
ota composition and host genetics, between turkeys. 16S
rRNA gene sequence analysis has identified microbiota mem-
bership and compositional differences between treatment
groups, as well as inter-group variability (data not shown).
The correlation between members of the microbiota and me-
tabolites within the metabolome is currently under
investigation.

Conclusions

The use of microarray technology is a common analytical
platform for other types of analyses, most notably DNA or
RNA [36–38]. In the field of mass spectrometry, surface-
enhanced laser desorption (SELDI), a variation of MALDI-
MS, was developed in the early 1990s for protein analyses
[39]. In this technique, biological samples such as blood or
urine are spotted onto special microarray surfaces which bind
certain proteins whereas any others are washed away. Various
surfaces have been used for this purpose, mostly based on
chromatographic interactions, although chemically modified
reactive surfaces can also be used. This technology has been
commercialized by Biorad (http://www.bio-rad.com). SELDI-
MS, however, works only for large proteins and there has been
no microarray MALDI-MS platform for small metabolite
analysis.

In this study, we developed and optimized a pre-fabricated
microarray for high-throughput metabolomics analysis. It was
determined that the addition of sodium acetate yielded more
features in positive mode data than with no additive. Out of an
initial eight matrices/NPs in each polarity, a total of five

Fig. 5 Representative metabolites
signals of four turkeys (a–d) of
the same age raised in the same
room
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matrices/NPs were selected for inclusion in the final NP mi-
croarray platform: Fe3O4, CHCA, and Au in positive ion
mode, and Ag and Cu in negative ion mode. We were able
to successfully apply our microarray platform to compare a
large sample set of non-medicated, sub-therapeutic treated, or
therapeutic treated turkey cecal samples 7, 35, and 78 days
after the start of antibiotic treatment with our optimized con-
ditions. We detected thousands of unique metabolite features
and monitored their changes over time or with antibiotic
treatment.

The identification of thousands of unique features is the
current bottleneck in this approach. However, we demonstrat-
ed it could be partially mitigated through in-parallel LC-MS/
MS metabolomics analysis and MALDI-MS/MS of selected
metabolites. While the traditional chromatography-based
method gives more comprehensive coverage, the analysis of
all samples in a large-scale study with this method would be
costly and require extensive data acquisition time. Our high-
throughput microarray technology, however, can be used to
quickly acquire the large data sets needed for the study of a
dynamic system, such as the turkey gut microbiome, and, as
shown here, can be used in combinat ion with a
chromatographic-based study to enable high-throughput
metabolomics experiments.
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