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Abstract
Supercritical fluid chromatography (SFC), which employs pressurized carbon dioxide as the major component of the mobile
phase, has been known for several decades but has faced a significant resurgence of interest in the recent years, thanks to the
development of modern instruments to comply with current expectations in terms of robustness and sensitivity. This review is
focused on the recent literature, specifically since the introduction of modern systems but in relation to older literature, to identify
the changing trends in application domains. Typically, natural products, bioanalysis, food science, and environmental analyses
are all strongly increasing. Together with reduced extra-column volumes in the instruments, the advent of sub-2-μm particles and
superficially porous particles in the stationary phases is favoring ultra-high-performance SFC (UHPSFC) allowing for improved
resolution and faster analyses, but without the constraints of viscous liquids encountered in ultra-high-performance liquid
chromatography (UHPLC). Hyphenation to mass spectrometry is also more frequent and opened the way to new application
domains, and raises different issues from liquid chromatography mobile phases, especially due to decompression of carbon
dioxide. It is also shown that the frontiers between SFC and HPLC are fading, as switching from one method to the other, even
within the course of a single analysis, is facilitated my modern instruments. The present review is not intended to be exhaustive
but rather giving a snapshot of recent trends in supercritical fluid chromatography, based on the observation of about 500 papers
published in English-written peer-reviewed journals from 2014 to 2018.
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Introduction

As names may be deceiving, modern supercritical fluid chro-
matography (SFC) does not necessarily employ a supercritical
fluid as mobile phase [1]. Early developments in the technique
employed several different fluids in their supercritical state
(with both pressure and temperature above the critical values)
[2], namely, fluorocarbons, ammonia, or carbon dioxide were
most often employed. Among all possible fluids, carbon diox-
ide is the only one to have survived significantly through the
ages, for several excellent reasons:

(i) the critical values of pressure and temperature are mod-
erate (7.3 MPa and 31 °C);

(ii) it has interesting features for health and safety, being
non-flammable, non-corrosive, and with limited toxicity;

(iii) it is cheap as is obtained as a side-product from many
industries; it can be recycled when large amounts are
necessary (at preparative scales);

(iv) it is miscible to most organic solvents, allowing for wide
possibilities to optimize chromatographic separations
and dissolve a wide array of analytes.

Indeed, while early developments principally reported one
pure fluid in the supercritical state, modern SFC employs
mixtures of carbon dioxide and co-solvents as mobile phase.
This mixture is not necessarily a supercritical fluid, as pressure
may be above the critical pressure while temperature is often
below the critical temperature [3]. This is not causing any
issues to the chromatographers, as the advantages of supercrit-
ical fluids are retained: the mixed fluid has a lower viscosity
than usual liquids employed in high-performance liquid chro-
matography, which has a number of interesting consequences:
high flow rates may be employed as pressure restrictions are
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less significant than with liquids, and analyte diffusivity is
high. These features combined together allow for fast and
highly efficient separations.

While most people practicing this technique wish to retain
the name of supercritical fluid chromatography, some publi-
cations may refer to the same technique with other names
(subcritical fluid chromatography, convergence chromatogra-
phy, etc.). In this review, no distinction will be made among
them as there is no fundament to distinguish them.

Recent instrumental developments

The recent resurgence of SFC is majorly due to the introduc-
tion of modern instruments. Prior to the years 2010s, most
systems available had significant defects that rendered them
unfit for current expectations of the analytical scientists. Most
importantly, they had limited robustness causing poor repro-
ducibility of the analyses, extra-column volumes were high,
yielding significant extra-column band broadening, and base-
line noise with UV detectors (most frequently used at that time
for all sorts of applications) was too high to reach the low
detection limits that are desired for pharmaceutical, clinical,
or environmental applications. In chromatography laborato-
ries, where ultra-high-performance liquid chromatography
(UHPLC) had rapidly developed in the years 2000s, such
defects were strongly felt. Then, a number of major chroma-
tography manufacturers (Agilent, Waters, Jasco, and
Shimadzu) released improved systems addressing the above-
mentioned defects [4, 5], so much so that the performance of
modern SFC is now very near that of UHPLC.

Hyphenation to mass spectrometry (MS) has been largely
facilitated (as will be further discussed in the fundamental
research section below), so much so that MS is now by far
the most employed detection mode, appearing in two thirds of
the papers published in the years 2014–2018.

An interesting recent development is the on-line coupling
of supercritical fluid extraction (SFE) to SFC. SFE has long
been a favorite in the field of natural products [6] but most of
the time, the extracts were analyzed with gas chromatography
(GC) or UHPLC. However, when a fluid is good for extrac-
tion, it seems logical that it should also be good for the sepa-
ration of the extracted analytes as solubility is ensured.
Shimadzu has thus recently released a system allowing for
on-line SFE-SFC-MS. Transferring the extracted analytes
from the SFE cell to the SFC chromatographic column is
achieved with a trap column so as to re-focus the analyte band
prior to elution through the chromatographic column. The
stationary phase employed in the trap columnmust be adapted
depending on the target analytes. Another possible interface
could be based on a split-flow introduction system proposed
by Bamba and co-workers [7]. A few papers have been pub-
lished to illustrate the benefits of the SFE-SFC-MS system in

the field of natural products analysis to extract interesting
bioactive components from food products [8, 9] or to extract
contaminants from soil [10]. Other applications have appeared
for bioanalysis, where lyophilized bacteria, dried urine, or
dried serum spots were extracted to analyze metabolites or
biomarkers [11–13]. This original hyphenated system should
thus find use in many different application areas in the future.

Besides, the combined use of conventional liquids and car-
bon dioxide-based mobile phases is especially interesting as
reversed-phase HPLC and SFC conducted on polar stationary
phases are often found to be highly orthogonal. While several
examples exist to illustrate the interest of off-line combination
of LC and SFC separations [14, 15], commercial hyphenated
systems are desirable that would allow for improved quality of
separation. No commercial solution is available yet but a few
examples have appeared in the literature to illustrate the ben-
efits and difficulties of such combinations [16–20]. Two-
dimensional SFC × SFCwould be equally desirable, as chang-
ing stationary phases polarity in SFC allows for tremendous
changes in separation selectivity; thus, SFC can be said to be
orthogonal to itself. However, while neat carbon dioxide of-
fers facilitated solutions (comparable to those employed in GC
× GC) [21], practical solutions offering the possibility to use
more complex mobile phases would be desirable to extend the
application range of such devices [22].

Recent developments in stationary phases

Concomitantly to the development of modern instruments,
several column manufacturers producing stationary phases
for liquid-phase chromatography started to develop novel sta-
tionary phase chemistries designed for SFC use and some-
times improved packing procedures to take account of oper-
ating pressures and of the chemical nature of the SFC mobile
phase. For instance, in addition to hybrid silica previously
developed to sustain ultra-high pressures in liquid chromatog-
raphy, special bonding chemistry on silica particles was de-
veloped by Waters to ensure that retention would not degrade
over time with the formation of silyl ethers [23, 24].
Regarding stationary phase chemistries, a large variety of sta-
tionary phases, from the most polar silica to the least polar
well-endcapped or densely bonded alkyl-bonded silica, is now
available [25] allowing for a diversity of selectivities. In the
most recent papers (2016–2018), it appears in Fig. 1a that the
most frequently cited stationary phase in achiral analytical
applications (nearly a quarter of them) is a 2-ethylpyridine-
bonded silica phase (2-EP). This stationary phase chemistry
was first introduced by Princeton Chromatography in the
years 2000s and was always very successful, especially for
applications involving the analysis of basic compounds. It
was later imitated by other manufacturers. The second most
frequently used phase is bare silica (or hybrid silica) in 20%
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achiral applications, followed by octadecyl-bonded silica
(C18). The latter is often employed in the analysis of lipids
[26–29], when intra-class separation is desired (according to
carbon chain length and double bonds) but has been found to
be useful in many other applications like phthalate esters [30],
polyaromatic hydrocarbons [31], pesticides [32], or drug can-
didates [33]. The fourth most frequently cited stationary phase
is a diol-bonded silica, which was, for instance, often selected
in the analysis of natural products [34–37], but also for
lipidomics when a separation based on the polar head is de-
sired [38, 39], or in bioanalysis [13, 40]. Other frequently cited
phases are 1-aminoanthracene (1-AA) that may be used for
fat-soluble vitamins [41]; 2-picolylamine (2-PIC) that is a

recent variation of the 2-EP; triacontane-bonded silica (C30),
which was often employed for the separation of carotenoid
pigments [8]; phenyl-bonded silica; diethylamine-bonded sil-
ica (DEA) [42], and pentafluorophenyl-bonded silica (PFP)
[43]. Many other stationary phases have been employed, with
a short selection of them appearing in Fig. 1 (for instance,
aminopropyl-bonded silica [44], cyanopropyl-bonded silica,
amide [45] or sulfobetaine [46, 47]). As the screening of sta-
tionary phases is usually the first step in developing a method
in achiral SFC, diversity of stationary phase chemistry is high-
ly desirable and should still progress in the years to come.

For chiral applications at the analytical scale (Fig. 1b),
modified polysaccharide stationary phases are the most often
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used with amylose tris-(dimethylphenylcarbamate)
(ADMPC) being cited in about half the analytical applica-
tions. Cellulose tris-(dimethylphenylcarbamate) (CDMPC)
and cellulose tris-(3-chloro-4-methylphenylcarbamate)
(CClMPC), and several other sorts of modified polysaccha-
rides were employed in recent papers. The Pirkle-type phase
WhelkO-1 was also present in recent studies [48], especially
as it is now available with sub-2-μm particles.

Similarly to the evolutions seen in high-performance liquid
chromatography, smaller particle size (inferior to 2 μm) [49]
and superficially porous particles [50–52] were both introduced
to SFC practice. For chiral stationary phases, the switch to
smaller particles is more recent and has thus not been seen in
many papers yet. The different trends in particle size stationary
phases can be observed in Fig. 2, where it appears that achiral
analytical-scale applications are now majorly conducted on
sub-2-μm stationary phases (77% in the most recent publica-
tions, years 2016–2018) while chiral separations are still essen-
tially conducted on larger particle sizes (2.5, 3, and 5 μm).

The joint use of efficiency-optimized instruments and mod-
ern stationary phase technologies is producing ultra-high effi-
ciency separations [53] in what is often termed now Bultra-
high-performance supercritical fluid chromatography^
(UHPSFC). As mentioned in the BIntroduction^, the low vis-
cosity of the fluids employed in SFC causes less pressure
issues than the liquids employed in UHPLC. Thus, current
SFC systems have pumping pressure limits of 40 to 66 MPa,
depending on the manufacturer. For instance, a 40-MPa upper
pressure limit allows the use of a 100 × 3.0 mm column
packed with 1.7-μm particles at 1–2 mL/min (depending on
operating parameters). Obviously, a higher pressure may still
be desirable when large proportions of co-solvent are desired,

or if higher flow rates or longer column lengths would be
necessary for faster analysis or for higher efficiency. Typical
column lengths employed are mostly in the 100–150-mm
range (about 90% of the analytical applications), with rare
examples of shorter columns for faster analysis [54–56] (for
instance when the SFC separation must be the second dimen-
sion of a two-dimensional chromatographic system [17, 18]),
or longer columns for higher efficiency [57]. In this respect,
superficially porous particles offer the extra advantage over
fully porous particles to allow for much longer column lengths
without creating so much pressure drop [50, 58].

Who is publishing SFC science?

Reviewing the recent literature, from 2014 to early 2018,
about 500 papers, majorly referenced in Scopus database,
were examined in preparing this article, taking all sorts of
papers into account (fundamental research, applications, or
reviews). This is not an exhaustive search, as, for instance,
only papers published in English were reviewed. Spanning
on a large number of publishers, the observations presented
here should however be representative of the overall SFC
production. Several features of this production were examined
to gain a clear view of current SFC chromatographers.

First, the geographical origin of the corresponding author
was noted. A heat map representing the proportion of papers
published per country is presented in Fig. 3. It appears that the
USA and China are the two major sources of SFC science, with
about 23 and 18% papers reviewed respectively. China would
probably have a higher share if papers published in Chinese had
also been counted. This observation is especially interesting
when related to the fields of applications, as will be further
discussed below. From Asian countries, another significant part
of the production is issuing from Japan (5% of the total) and, to
a lesser extent, from India (2%). Europe is actually the first
major region for SFC-related articles, with 45% papers origi-
nating from this area. In Europe, most active countries are
France (10%), Belgium (6%), Sweden, and Switzerland (5%
each). Not far behind is Czech Republic (4%), followed by
Germany, Austria, and Italy (about 2% each).

Secondly, another feature of the authors was observed; this
time taking all authors into account, the academics, industry
users, or manufacturers were observed (Fig. 4). Not surpris-
ingly, academics make up the largest part of the production,
with 71% papers being produced solely by academic institu-
tions. Industry users are thus still present, with 17% papers
produced solely by industry chromatographers. Eight percent
of the papers were produced by academics and industry chro-
matographers working together. Finally, manufacturers were
little present with 1% papers produced by manufacturers only,
and 3% by collaborations between academics and manufac-
turers. Possibly, taking account of application notes would
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increase the share of manufacturers, but as these are mostly
published on the manufacturer’s websites and not in peer-
reviewed journals, they are not referenced by major biblio-
graphic search engines and were not counted to prepare this
review. These proportions have changed over time.
Understandably, in the early years of SFC developments, in
the 1980s and 1990s, academics were the major producers of
SFC research. But in the years 2000s, when university re-
searchers had deserted the field, the portion of industry papers

was more significant, reaching as high as 35% contribution. It
may be taken as a good sign that university chromatographers
are again investing the field, as the fundamental understanding
of the technique still requires some work.

Fundamental studies

From the beginnings of SFC to the years 2000s, the part taken
by fundamental papers was essentially decreasing, which
seems rather logical as early developments of a technique
require fundamental investigations prior to clever applica-
tions. The renewal of the technology has brought a surge of
new fundamental studies. They now make up about 20–25%
of the articles published in the years 2014–2018. Note that the
frontier between fundamentals and applications is not always
easy to trace, hence the imprecision in the statistics.

Apart from instrument developments described above, fun-
damental studies are mainly related to the following topics.

(i) Efficiency issues [59–63] and the best means to evaluate
efficiency were mostly investigated in the years 2012–
2014, when new instrument technologies were released,
but are now less explored. Extra-column band broadening
is however still a concern, and should be addressed by
further improvements in systems [53, 62, 64, 65].

(ii) Injection and dilution solvent effects at the analytical
scale [62, 66, 67] or preparative scale [68] are a concern
to avoid peak deformation that may be due to limited
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miscibility of the diluent solvent and the mobile phase
(especially at the beginning of a gradient elution program
where carbon dioxide proportion may be high) and to
avoid viscosity mismatch causing viscous fingering.
While this was long a concern at the preparative scale,
it has most recently been explored also at the analytical
scale.

(iii) Several mobile phase-related issues have been explored,
namely, the adsorption of mobile phase components on
stationary phase [69] and its effect on peak shapes
[70–73]; the effects of additives (acids, bases, salts) on
chromatographic quality in achiral or chiral modes
[74–77]; and the acidity caused by carbon dioxide com-
ing into contact with water or alcohols [78, 79].

(iv) Stationary phases have been explored for their durability
[23, 80] and selectivity (achiral or chiral separations)
[24, 25, 81], and have been compared to liquid-phase
behavior [82, 83]. The interest of combining two sta-
tionary phase in tandem column systems was also inves-
tigated [84, 85].

(v) Retention behaviors in SFC, both in achiral [86] and
chiral [77, 87, 88] modes, are still a matter of interest.
In addition, retention modeling [89–91] is desirable to
facilitate method development with computer-assisted
processes and compound identification in complex sam-
ples. As tendency curves relating retention to mobile
phase composition or operating parameters (temperature,
pressure, flow rate) are usually not linear over a large
range of conditions (and sometimes not even monoto-
nous), modeling retention is not as straightforward as it
may be with GC or reversed-phase HPLC.

(vi) Preparative scale has been the major topic of a series of
papers from the group of Fornstedt [92, 93], inspired by
a seminal paper from Guiochon and Tarafder [94]. In
particular, transferring methods between analytical and
preparative scale [95–97] is also setting some additional
problems as compared to liquid-phase scaling up, due to
compressibility of the fluid.

Finally, the hyphenation to mass spectrometry (MS) has
been the topic of many recent studies. First, the ways of hy-
phenating the chromatographic system to the mass spectrom-
eter have experienced many changes over the years [98, 99],
partly due to the fact that the preferred ionization source has
changed (from atmospheric pressure chemical ionization
APCI to electrospray ionization ESI) [100]. Most recently, a
new design of atmospheric pressure ionization source was
introduced called UniSpray and was evaluated for the analysis
of 120 natural compounds [101]. This source was found to
provide improved sensitivity to certain classes of analytes, and
decreased sensitivity for others, when compared to ESI.
Secondly, it was shown on several occasions that the MS
response may vary depending on the SFC mobile phase

composition, even though a make-up fluid is most often intro-
duced prior to the MS [74, 102, 103]. Akbal and Hopfgartner
thoroughly investigated the effect of post-column addition on
20 analytes belonging to different classes (beta-blockers, HIV
protease inhibitors, steroids, and polar metabolites), with var-
iations of make-up flow rate, solvent composition, pH level,
and buffer concentration. They concluded that the introduc-
tion of ammonia in the make-up fluid was useful, especially
when it was not previously introduced in the chromatographic
mobile phase. Ammonia would perhaps counteract the acidi-
fication of the mobile phase by carbon dioxide. In addition,
dimethylsulfoxide (DMSO) was found to be particularly use-
ful in enhancing SFC-ESI-MS response. The post-column ad-
dition may also be advantageously employed to favor ioniza-
tion of certain species, as was demonstrated by Touboul and
co-workers with the use of lithium iodide to favor the detec-
tion of acetogenins [104]. Finally, matrix effects are a very
significant topic, especially when analysis of complex
biofluids (urine, serum etc.) is concerned. In particular,
Haglind et al. [105] indicated that the abundant presence of
alkali ions (sodium and potassium) in biological fluids (plas-
ma and urine) was causing major ion suppression for the
analytes co-eluting with them. Sample preparation to get rid
of these ions, or adjustment of chromatographic conditions
could both be successful strategies to avoid these complica-
tions. Comparing matrix effects between SFC-MS and GC-
MS [55] is generally to the advantage of the former, while
comparing SFC-MS and LC-MS shows that both of them
may be positively or negatively impacted by matrix effects
[106–108].

Application domains

While the number of fundamental studies has increased only
moderately in the recent years, application papers have faced a
tremendous increase. Meanwhile, the trends in application
domains have greatly changed. Figure 5 presents the most
significant application domains. In addition to the expansion
of SFC technology, the increased accessibility to mass spec-
trometers has favored SFC-MS application to new domains,
where simpler, less informative detections modes like UVare
not considered sufficient. Therefore, while SFC-MS studies in
2014 represented about 35% of analytical applications, they
have reached 75% in 2017.

Only 10 years ago, about 75% of the papers related to SFC
concerned the pharmaceutical industry, either for analysis or
purification of synthetic drugs [109, 110], mostly in chiral
separations. In 2014, still 40% of the analytical applications
were related to this topic. Considering the 2014–2018 years,
the analysis of chemical pharmaceuticals (as opposed to nat-
ural products) is now only the third application domain in
terms of number of papers published (Fig. 5). Possibly,
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because pharmaceutical analysis with SFC has been explored
for a long time, there are perhaps less expectations in this area
than in other, less investigated domains. However, there are
still interesting features to explore with modern SFC of phar-
maceutical products. Most importantly, the capability of ana-
lytical SFC or UHPSFC to comply with the requirements of
good manufacturing practice (GMP) [111] and to obtain
methods that can be validated [42, 112] according to the rec-
ommendations of the International Conference of
Harmonization (ICH) are the topic of several recent studies.
This is especially important in order for the technique to
spread in quality control laboratories. Other concerns in this
field are related to the determination of generic conditions to
achieve analytical separations of chemical or chiral impurities
with minimal effort [33, 74, 113] or to the acceleration of
analysis, either through ultra-fast separations [114–117] or
through multiple injections within a single run [118], in cases
when large numbers of samples must be analyzed within a
short time. Apart from active pharmaceutical ingredients and
impurities, other components of drug formulations or contam-
inants have been analyzed like polymers [119] and plasticizers
issuing from plastic medical devices [120]. In the future, it
may be expected that the analysis of full drug formulations
will be seen, because SFC is equally capable to handle polar,
non-polar, ionic [121], small and large chemical species.

While chemical and enantiomeric analyses of drug com-
pounds are not as significant as they used to be, chemical
pharmaceuticals still explore in pharmacokinetic studies, in
urine, or in plasma samples. Thanks to SFC-MS expansion
[122], the years 2014–2018 have seen a strong increase in

bioanalysis applications [123], which are now the second
mos t impo r t a n t a pp l i c a t i o n doma i n f o r SFC .
Pharmacokinetic studies constitute about a half of these
bioanalysis studies. The other half comprises forensic appli-
cations (doping agents [40, 108] or drugs of abuse [124–126]),
and a significant portion of lipidomics [127–131].

Another portion of pharmaceutical applications may be
found in the Bnatural products^ section. As pointed out above,
China is now one of the most productive countries regarding
SFC publications. However, traditional Chinese medicine
(TCM) is based on natural products. China has started the
huge project of investigating these natural products in more
details to improve knowledge on the bioactive species. This
task requires several high-performance separation methods
with orthogonal selectivities in order to achieve the broadest
picture of these TCM. In this respect, SFC has a natural place
next to reversed-phase liquid chromatography, of which it is
generally found to be complementary [56, 132]. Also for qual-
ity control of TCM, modern SFC has found its place [133].
Similarly, natural products are being (re-)examined in occi-
dental medicine and their SFC analysis has produced several
publications [134]. The variety of structural families having
been explored in this field is an excellent example of the
versatility of the technique. Indeed, while it had been known
for a long time that lipids [29, 50, 135] or carotenoid pigments
[136–141] were well soluble in pressurized carbon dioxide
mobile phases, other molecular families have been observed
in recent papers such as alkaloids [37, 132, 142, 143], anthra-
quinones [144, 145], coumarins [146, 147], furostanol sapo-
nins [36], triterpenoid saponins [148], flavonoids [43, 149],
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carbohydrates [45, 150, 151], or nucleobases and nucleosides
[152]. Some papers related to medicinal cannabis have also
shown that SFC can be an interesting complement to UHPLC
for this fast rising application field [48]. The variety of possi-
bilities is now making natural products the first application
domain for analytical SFC (Fig. 5). Natural products have also
been a significantly growing field at the preparative scale [35,
37, 153–162], not only at the analytical scale. In addition to
the above examples of structural families, purification of
lignans [14] and polyphenols [163] with preparative SFC
has been demonstrated.

Natural products are also a part of the food science appli-
cation domain, which appears as the fourth most significant at
the analytical scale.Most papers in this field relate the analysis
of lipids (not only in vegetable oils but also in milk products
[164, 165]), carotenoids and lipophilic vitamins [41, 166].

The food industry is increasingly concerned with contam-
inants, which may issue from packaging [167], drug residues
from contaminated irrigation or, most frequently, pesticides.
Here again, China has been the most productive in the inves-
tigation of the latter.

Pesticides (along with other contaminants) may also be
looked for in soils [168–174], water [46], or wastewater
[175, 176], thereby belonging to the field of environment ap-
plications. Other environmental applications were observed
with the analysis of emerging contaminants in aqueous eco-
systems [177], allergenic textile dyes [178, 179], flame retar-
dants [180], and halogenated pollutants [181, 182].

Petroleum products have been a classical application do-
main for SFC for a long time [183]. As petroleum components
have limited polarity, it is feasible to analyze them with neat
carbon dioxide and thus maintaining compatibility to GC-like
detectors (typically flame ionization detector). However, the
field of energy is changing with the growing introduction of
biomass-related products. Biodiesel is a new type of energy
source requiring deep investigation. In conjunction with other
chromatographic methods, SFC may furnish interesting infor-
mation in the composition of such samples [184–186].

A small portion of papers related to cosmetic applications
is emerging [187, 188]. The cosmetic industry is currently
highly demanding of natural ingredients produced with envi-
ronmentally friendly solvents and processes, which should
naturally place SFC as a favorite method in this field.

Finally, a word should be said regarding the relative pro-
portions of achiral and chiral separations. While chiral sepa-
rations used to be the major application field for SFC, it is no
longer the case, with only 20% of the analytical applications
related to chiral separations in the years 2014–2018. However,
analytical chiral SFC is still in use especially to measure the
enantiomeric excess of synthetic compounds [189, 190], in
pharmacokinetic studies [191, 192], to assess the fate of chiral
pesticides [168, 170, 173, 193, 194] and chiral drugs in the
environment [195] and as a first step of method development

prior to purification with preparative-scale chiral SFC
[196–199]. At the preparative scale, chiral separations still
make up about 60% of the publications.

Trends in method development

The use of design of experiments (DoE) to develop analytical
SFC methods is increasing. Most often, an initial screening of
stationary phase with either isocratic or gradient conditions is
done, and then an experimental design is proposed to optimize
the conditions of mobile phase composition, temperature,
pressure, or even flow rate [42, 73, 91, 200, 201]. The impor-
tance of measuring the exact conditions inside the system
rather than relying on instrument settings was pointed out in
several occasions [93, 202–204]. Considering most recent pa-
pers (years 2016–2018), methanol is still the most frequently
employed co-solvent in achiral analytical applications as can
be seen in Fig. 6a. Acetonitrile, which was rarely employed in
the past, is progressing, especially in mixtures with an alcohol.
For chiral applications, methanol is also dominant but
isopropanol is also very frequently used. The use of water in
ternary mobile phase compositions, along with carbon dioxide
and a major co-solvent (alcohol or acetonitrile), has been not-
ed in many recent achiral applications (about 17% of the re-
cent papers). A large portion of the applications (50 and 60%
of the achiral and chiral applications respectively) is based on
the sole use of such simple mobile phase compositions, name-
ly carbon dioxide, major co-solvent, and sometimes water.
Other applications mention the additional use of acids, bases,
or salts to favor the elution with satisfactory peak shapes or to
improve resolution. For achiral applications, the recent years
have seen increasing use of ammonium formate, ammonium
acetate, and ammonium hydroxide, along with formic acid.
All of them are usually observed to favor chromatographic
quality in addition to mass spectrometric response with
electrospray ionization.

The advantages of the so-called enhanced-fluidity liquid
chromatography (EFLC) region (when carbon dioxide is the
minor component of the mobile phase, as opposed to SFC
where it is the major component) have long been known and
explored, principally byOlesik and co-workers [45, 205, 206].
The interest in introducing a small portion of carbon dioxide
in an aqueous reversed-phase HPLC system was to improve
efficiency and reduce analysis time through reduced mobile
phase viscosity. This is also allowing to elute analytes with
higher polarities than normally encountered in Bmore
classical^ SFC conditions with a larger portion of carbon di-
oxide. Amost innovative paper from the team of Bamba [207]
has demonstrated the SFC-MS analysis of a mixture of lipo-
philic and hydrophilic vitamins in a single run, with a wide
elution gradient starting in classical SFC conditions (large
proportion of CO2, low proportion of co-solvent), moving to
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EFLC and finishing with a pure liquid (methanol-water 95:5
v/v) mobile phase. This was definitely breaking the imaginary
barrier between SFC and HPLC. Since this fundamental pa-
per, other research have been produced to investigate in details
the Btransition^ from HPLC to SFC [208]. More research is
expected in the near future, which will show that the former
views on operating conditions are no longer valid and that
using the full gradient range from 0 to 100%, co-solvent
should open new application possibilities, especially for sam-
ples containing a wide diversity of analyte polarities.

Outlook

Supercritical fluid chromatography is clearly facing changing
trends in many respects: less chiral but more achiral applica-
tions; less preparative-scale but more analytical-scale applica-
tions; less pharmaceutics applications but more natural prod-
ucts, food science, bioanalysis, and environmental applica-
tions. Many of these application domains have benefited of
the increasing availability of mass spectrometry. Also, the way
of developing methods is changing, with less trial-and-error
and more design of experiment processes. Still, some im-
provement in retention modeling is desirable to help predict
the outcome of a separation and favor analyte identification in
complex mixtures. The improvements in instruments and de-
velopments of innovative stationary phases have both been
great contributors to these changes but further improvement,
especially in reducing extra-column volumes and expanding
stationary phase diversity, should be observed in the near fu-
ture. The frontiers between SFC and HPLC are fading and
more versatile methods, moving from one to the other within
the course of a single analysis, should be seen in future papers
to expand the range of analyte polarities eluted within one
experiment. SFC research is very active in many geographical

regions of the world and it is hoped that it will further develop
in the years to come.
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