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Evaluation of accuracy dependence of Raman spectroscopic models
on the ratio of calibration and validation points for non-invasive glucose
sensing
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Abstract
Optical monitoring of blood glucose levels for non-invasive diagnosis is a growing area of research. Recent efforts in this
direction have been inclined towards reducing the requirement of calibration framework. Here, we are presenting a systematic
investigation on the influence of variation in the ratio of calibration and validation points on the prospective predictive accuracy
of spectral models. A fiber-optic probe coupled Raman system has been employed for transcutaneous measurements. Limit of
agreement analysis between serum and partial least square regression predicted spectroscopic glucose values has been performed
for accurate comparison. Findings are suggestive of strong predictive accuracy of spectroscopic models without requiring
substantive calibration measurements.
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Introduction

Diabetes mellitus (DM) caused by impairment in the glucose
metabolism is a worldwide epidemic; it is estimated that by

the year of 2035, there will be approximately 592 million
people affected by this disease [1, 2]. DM is caused by a defect
in insulin secretion and results in a change in the blood glu-
cose levels. Therefore, DM is diagnosed or monitored by
measuring levels of glucose in the blood. It is important to
frequently monitor blood glucose levels and maintain it within
the prescribed range to avoid secondary complications includ-
ing strokes, heart attacks, blindness, and coma [3, 4]. In addi-
tion, DM patients with an established diagnosis of insulin-
dependent diabetes (all type I, and many type II) require fre-
quent glucose measurements for monitoring and adjustment
of insulin doses. Currently, DM patients use the hand-held
glucose-monitoring device to monitor the BG levels. The de-
vice requires small blood sample (< 1 μL) obtained by a
Bfinger-pricking^ followed by electrochemical sensing using
a portable Bglucometer.^ Unfortunately, the procedure is in-
convenient and painful, thus resulting in poor patient compli-
ance [5, 6]. Other clinical tests require either blood or intersti-
tial fluids for measurement of glucose levels. In this regard, it
is important to develop a device that can enable non-invasive
monitoring of blood glucose levels.

Significant research has been undertaken in the quest of
identifying a novel diagnostic tool for managing DM [7–9].
This research can be broadly categorized into electrochemical
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and optical sensing approaches. Electrochemical sensing of
blood glucose levels utilizes enzymatic or non-enzymatic
methods. Optical methods can be further subdivided into
fluorophores (fluorescein) and non-fluorophore-based ap-
proaches [10]. Recent advancement in the instrumentation
and analysis methods has provided a great momentum to
non-fluorophore-based approaches such as near-infrared
(NIR) absorption spectroscopy, optical coherence tomography
(OCT), photoacoustic spectroscopy, and polarization spec-
troscopy for glucose sensing [11, 12, 7, 13]. Our laboratory
has pioneered the applications of NIR Raman spectroscopy
(RS) for measuring blood glucose, urea, lactic acid, and cho-
lesterol levels [14–19]. RS is based on inelastic scattering of
light, where changes in the molecular polarizability lead to a
shift in the wavelengths associated with specific chemical
bonds and this, in turn, provides a molecular fingerprint with
both qualitative and quantitative information. Other benefits
of RS include non-destructive and label-free nature, no sample
preparation requirement, minimum water interference, and
real-time evaluation. Overall methodology of Raman spectro-
scopic glucose sensing involves transcutaneous spectral mea-
surement followed by feature extraction using multivariate
chemometric modeling approaches such as partial least square
regression (PLSR), principal component regression (PCR), or
support vector regression (SVR) followed by cross-validation.
Typically, a calibration model is developed by tying up the
blood glucose values with corresponding Raman spectra.
Leave-one-out or K-fold cross-validation methods are
employed to establish the accuracy of spectral models against
the reference values. Our long-term efforts in realizing the
goal of non-invasive Raman glucose sensing have been eval-
uated by clamping studies in animals and oral glucose toler-
ance test (OGTT) in humans [17, 20, 21]. Recently, Shao et al.
have shown that by focusing laser directly in to the blood
stream of mouse models, problem of strong background can
be avoided to some extent [22]. Shih et al. have demonstrated
feasibility of non-invasive transcutaneous measurement of
blood glucose using dogs [20]. Scholtes-Timmerman et al.
reported a human trial involving 186 subjects using a system
with fairly large spot size (8mm). PLSmodeling coupled with
cross-validation yielded encouraging results [23]. Weber et al.
developed a tabletop confocal Raman system to collect signals
from interstitial fluid and tested this set-up on a group of 35
patients [24]. Even though results of these studies have pro-
vided substantial evidence in support of RS for monitoring
glucose level, one of the major hindrances in successful trans-
lation of spectroscopic glucose sensors for routine clinical
usage is the unavailability of appropriate exit criterion for
analyzing the unknown samples [21]. Efforts have been made
towards developing a universal calibration model. However, it
is limited by non-linearity of glucose concentration, site, and
inter-personal-variance in terms of skin color and thickness,
basal metabolic rates, and hydration status [25]. To overcome

these issues, Bpatient-specific^ calibration strategies with min-
imum blood reference values are preferred. Our recent efforts
have been inclined towards minimizing the requirement of
blood reference values for calibration [26]. Here, we are pre-
senting a systematic investigation of the predictive accuracy
dependence of spectroscopic models on the ratio of calibration
and validation points. Three different calibration strategies
using 50, 30, and 18% of the total data as a reference have
been employed and prediction accuracies of spectroscopic
models are evaluated. In contrast to earlier studies where the
accuracy of spectroscopic models was mostly accessed by
Bleave-one-out cross-validation,^ here we have employed an
Bindependent test prediction^ approach to obtain a realistic
prospective read-out [17, 21, 20]. Also, an accurate reference
method based on serum glucose has been used for better cor-
relation. Findings of the study will be helpful in not only
reducing the requirement of unnecessary finger pricks and
associated discomfort but also providing an appropriate vali-
dation to RS methods with respect to the clinical OGTT.

Materials and methods

Oral glucose tolerance testing

This pilot study was conducted at the Clinical Research Center
of MU-Institute of Clinical and Translational Sciences,
University of Missouri–Columbia. The study protocol was
approved by Health Sciences Institutional Review Board
(Protocol number: 2002948) at University of Missouri–
Columbia. Written informed consent prior to participation
was obtained from each of the participants of the study. A total
of 23 healthy non-diabetic and non-pregnant volunteers aged
18 years or older (median age 33 years) were chosen for the
study. Of the 20 qualified volunteers, 45% were male and
remaining 55% were female. Fasting blood glucose (FBG)
values less than or equal to 125mg/dLwere set as an inclusion
criterion for the subjects in the study. The blood glucose levels
of the subjects were checked prior to the study and those
qualified were given a standard glucose drink, used in clinics
for OGTT (75 g of glucose-rich beverage Dextrose, Azer
Scientific Inc.). The spectral acquisition was initiated imme-
diately after the drink and thereafter every 10min for 160 min.
Serum glucose measurements were performed concurrently
every 10 min using YSI glucose analyzer. Finger prick mea-
surements were also performed every 30 min using
Accucheck™ blood glucose meters to corroborate YSI
measurements.

Raman set-up and spectral acquisition

In contrast to our previous free-space glucose Raman instru-
ments, a fiber-optic probe coupled glucose Raman unit was

6470 Singh S.P. et al.



used in the present study, Fig. 1A [17, 20]. A wrist support
with a small hole to hold the probe at the same tissue spot over
the course of the experiment was fabricated (Fig. 1B). This
wrist support minimizes unwanted light interference and al-
lows Raman measurements under the ambient room light. A
diode laser (Process Instruments) of 830 nm is used as an
excitation source. Excitation light is launched into the central
fiber of the probe. Fiber background signals are removed by
incorporating a short pass filter at the other end of the fiber.
The filtered excitation beam is delivered into the tissue
through a sapphire ball lens and back scattered signal is col-
lected by the same lens. The Rayleigh scattered light is elimi-
nated by a long pass filter in front of the six collection fibers
surrounding one central excitation fiber, and the filtered Raman
signal is delivered to the imaging spectrograph. Collection fi-
bers are aligned as a line at the spectrograph entrance and the
signal is dispersed by an imaging spectrograph (LS785,
Princeton Instruments). Dispersed spectrum is detected by a
back-illuminated deep-depletion CCD (Spec-10:400BR-XTE,
Princeton Instruments). The Raman instrument for glucose
monitoring is built inside of a portable cart (84 cm × 48 cm ×
100 cm) for easy transfer between laboratory and clinical re-
search center. Spectral preprocessing steps included standard
normal variate (SNV) correction to remove scaling differences
from the spectra followed by subtraction of third-order polyno-
mial function for objective baseline correction.

Data analysis

Partial least square regression (PLSR) and Clarke error grid
analysis using MATLAB-based in-house codes was
employed. Blood glucose values obtained by serum measure-
ments and corresponding Raman spectra at 17 time points
during the course of OGTT of 20 patients were recorded.
Data from two patients were not included due to poor spectral
quality. Three different calibration models using 50, 30, and
18% corresponding roughly to 9/17, 5/17, and 3/17 spectra of
individual OGTT were developed. Rest of 50, 70, and 82%
data were used as independent test data. Appropriate ranks of

PLS calibration ranging from 3 to 5 were used in accordance
with the general assumption of having samples numbers at
least three times to the rank of PLS calibration [27].

Results and discussion

In the present study, a calibration model is developed by tying
up serum glucose values with corresponding Raman spectra.
Typical transcutaneous Raman spectra acquired from one of
the subjects during the course of OGTT is shown in Fig. 2A.
Corroborating with the spectral profiles noted in our previous
studies, major spectral features are suggestive of collagen,
lipids, and structural proteins [26, 28]. Strongest peak at
1445 cm−1 is assigned to CH2 stretching; other features at
859 cm−1, 938 cm−1 (collagen), 1004 cm−1 (phenylalanine),
1273 cm−1, 1302 cm−1 (amide III), and 1655 cm−1 (amide I)
were also observed. Even though near-infrared (NIR) excita-
tion is used, as the spectra were obtained transcutaneous, large
fluorescence envelope is observed, Fig. 2A. Expectedly, small
Raman bands related to glucose are overwhelmed by the back-
ground and thus necessitating requirement of multivariate
analysis to identify these variations with respect to time and
serum glucose concentration. Mean OGTT curve along with
standard deviation with every 10-min read-out is shown in
Fig. 2B. OGTT is a standard diabetes screening procedure,
where a subject is given a glucose-rich drink to induce a sub-
stantive rise in the blood glucose level. Blood samples are then
withdrawn using an intravenous (IV) line at specific time in-
tervals (10 min) to investigate the rate of clearance of glucose
from the blood and therefore to infer the effectiveness of the
subject’s insulin-based glucose regulation mechanism.
Standard bell-shaped OGTT curve of subjects shown in
Fig. 2B suggests healthy nature of the participants in the study.

Choosing an appropriate Blocal calibration model^ is a pre-
requisite for employing regression analysis in spectroscopic
quantitative measurements. Raman spectra were acquired at
17 time points (0 to 160 min) on 20 patients during OGTT.
Random sampling approach was employed and in the first

Fig. 1 (A) Schematic of portable Raman system employed in the study. (B) Fiber-optic probe-holding adapter
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step, 50% of the total data was used for developing a calibra-
tion model. Rest of data were used as Bindependent test data.^
Clarke error grid analysis (EGA), approved by food and drug
administration (FDA), is one of the widely utilized methods
for evaluating clinical accuracy of new method/devices in es-
timating blood glucose with respect to a reference method [29,
30]. The Clarke error grid plots with independent test data
predictions are shown in Fig. 3. As per the FDA, guideline
zones A and B in the plots correspond to the area with ± 20%
error rate and are clinically acceptable. Rest of the areas C, D,
and E are clinically irrelevant and considered to be potentially
dangerous. As shown in Fig. 3A, most of the independent test
data fall into the clinically acceptable zone A (71%) and zone
B (26%) region of the error grid. Further, we reduced the
number of calibration point to 30 and 18% of the total data
using random sampling approach. As can be seen from
Fig. 3B, C, a total of 97 and 96% of the test data for these
two calibrations strategies, respectively, are still in the clini-
cally relevant zones of the Clarke error grid. Overall findings

of EGA are suggestive of high accuracy of spectroscopic
models for predicting analogous glucose values. As shown
in Table 1, clinically valid predictions obtained with three
calibration strategies further support applicability of transcu-
taneous spectroscopic measurements for glucose monitoring.

The measurement of a variable with two different methods
will always have some degree of error as neither can provide
unequivocally same value. An accurate estimation of the de-
gree of agreement can provide valuable information about the
efficiency of both methods. The correlation coefficient (r) and
coefficient of determination (r2) are two widely utilized pa-
rameters to access the linear relationship between two mea-
surements [31]. As shown in Table 1, an average correlation
value of ~ 63% was observed. However, this value is not reli-
able as it measures only the strength of relation or percentage
common variance between two variables, not the agreement
between them. Limit of agreement (LOA) is quantified by
defining mean and standard deviation(s) of the difference be-
tween two methods. The difference between the measure-

Fig. 3 Clarke error grid plots showing independent test prediction accuracy of spectroscopic models with different numbers of calibration points. (A)
50%. (B) 30%. (C) 18%
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Fig. 2 (A) Typical transcutaneous Raman spectrum acquired over the course of OGTT. Spectrum at time points 0, 100, and 160 min is marked as T0,
T100, and T160, respectively. (B) Mean OGTT curve along with standard deviation obtained from all the participants of the study



ments (A −B) is plotted against the mean of difference (A +
B)/2. Two different methods are considered to be in good
agreement if ~ 95% data points are in the ± 2 standard devia-
tions (1.96) of the mean difference. Bland-Altman (B&A) plots
are generally employed to perform Bthe analysis of dif-
ference^ between two quantitative measurements [32]. The
analysis of difference plots using YSI analyzer values as a
reference method against Raman spectroscopic predictions is
shown in Fig. 4. Parameter Bbias^ is an indicator of the aver-
age difference in the predicted and reference glucose values.
As shown in Table 1, spectral models with 50, 30, and 18%
calibration points have bias of − 1.02, 1.23, and − 4.47 mg/dL,
respectively. Most of the points (> 95%) are in the Brange of
agreement^ suggesting analogous blood glucose values pre-
dicted by Raman measurements. Overall, the results obtained
are an indicator of the high accuracy of spectroscopic models
in predicting independent test samples even with minimum
number of calibration points.

As glucose constitutes less than 0.1% of human tissue by
weight, spectral differences induced by concentration changes
are mitigated by skin variations during transcutaneous mea-
surements [3, 25]. Therefore, use of multivariate algorithms to

identify the subtle changes in a temporal manner becomes a
necessity. Regression methods coupled with different cross-
validation strategies have been employed largely to link the
spectral changes with glucose concentration. However, even
though cross-validation is widely used, its validity for the
larger data set and prospective predictions is debatable [33].
As the probability of having an equivalent pair of spectrum
and reference blood glucose values increases in larger data set,
the root mean square error calculation can turn overly opti-
mistic. Therefore, partitioning of samples into independent
calibration and validation sets is a preferred approach.
Although it has not been studied in great detail with respect
to glucose sensing, available reports suggest it to be a heuristic
task [33]. Random sampling approach for selecting a repre-
sentative sub set of calibration and validation samples from
the pool of data is commonly employed because of its sim-
plicity and the fact that group of data randomly extracted from
a larger set follows the statistical distribution of the entire set
[34]. The main objective of spectroscopic glucose sensing
methods is to replace/reduce the finger pricks or blood with-
drawals required for glucose monitoring. However, all the
spectroscopic devices require a calibration framework to

Table 1 Summary of predictive accuracy of spectroscopic models with different calibration strategies

Spectral model Independent predictions in A
region of the Clarke error grid

Independent predictions in B
region of the Clarke error grid

Correlation
coefficient (R
values)

Bias among reference and
predicted glucose values (mg/dL)

50%
calibration +
50% validation

71.05% 26.31% 69.36% − 1.02

30%
calibration +
70% validation

70.23% 27.90% 65.61% 1.23

18%
calibration +
82% validation

60.65% 36.06% 53.33% − 4.47

Fig. 4 Bland-Altman plot demonstrating degree of agreement between reference and Raman predicted values with different numbers of calibration
points. (A) 50%. (B) 30%. (C) 18%. (LOA, limit of agreement)
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predict unknown concentrations. Minimizing the number of
calibration steps needed for continuous monitoring using non-
invasive devices can help in comprehending the ultimate goal.
In the present study, we have evaluated prediction accuracy of
Raman spectroscopic sensors with different numbers of cali-
bration points during OGTT. Spectra were randomly divided
into three different calibration sets with 50, 30, and 18% of the
total data set. In all three cases, ~ 97% of the independent test
data falls into the clinically acceptable area of the Clarke error
grid. The rise in number of predictions in zone B of the error
grid with reducing calibration points is expected due to non-
linear nature of spectroscopic signatures and decreasing vari-
ance cover. Further, the fact that random sampling approach
employed in the present study does not always guarantee the
inclusion of borderline samples in calibration models could be
another factor. The bias between the predicted and reference
value is a good indicator of the predictive power of calibration
models. As per the ISO15197 guidelines, a difference of
15 mg/dL (for values < 100 mg/dL) or 15% (for values ≥
100 mg/dL) is considered to be acceptable accuracy of new
devices [35]. As shown in Bland-Altman plots and Table 1,
the bias between predicted and reference blood glucose values
was minimal for spectral model with highest number of cali-
bration points (50%) followed by 30 and 18%. These values
were in the acceptable range, suggesting small number of
calibration points can also lead to a good predictive accuracy,
provided accurate blood referencing methods are used.

Overall findings of the present study further provided evi-
dence in support of the prospective application of Raman
spectroscopic methods for non-invasive glucose monitoring.
In contrast to earlier studies, by utilizing an accurate reference
method, we have successfully demonstrated the strong predic-
tive accuracy of spectroscopic models with minimum calibra-
tion information. Further efforts are underway to examine the
predictive accuracy in DM patients. Our future studies will
also focus on improving the accuracy by replacing random
sampling methods with new algorithms for more effective
partitioning of calibration and validation sets to improve the
predictive ability and robustness of the resulting model.
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