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Abstract
There are emerging advancements in the strategies used for the discovery and development of food-derived bioactive peptides
because of their multiple food and health applications. Bioinformatics and peptidomics are two computational and analytical
techniques that have the potential to speed up the development of bioactive peptides from bench to market. Structure–activity
relationships observed in peptides form the basis for bioinformatics and in silico prediction of bioactive sequences encrypted in
food proteins. Peptidomics, on the other hand, relies on Bhyphenated^ (liquid chromatography–mass spectrometry-based)
techniques for the detection, profiling, and quantitation of peptides. Together, bioinformatics and peptidomics approaches
provide a low-cost and effective means of predicting, profiling, and screening bioactive protein hydrolysates and peptides from
food. This article discuses the basis, strengths, and limitations of bioinformatics and peptidomics approaches currently used for
the discovery and analysis of food-derived bioactive peptides.
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Introduction

Bioactive peptides derived from food have attracted signifi-
cant interest in the food and health sectors. However, the clas-
sic approach to food peptide production (involving reacting a
protein with different proteases and conducting bioactivity
assays on the hydrolysates) is laborious, time-consuming,
and therefore not cost-effective for industrial-scale production
[1–3]. To circumvent the limitations, the use of bioinformatics
tools has emerged as a strategic approach for the production of

known and novel peptide sequences from food proteins. This
approach is used to indicate the occurrence of bioactive pep-
tides encrypted in protein sequences and also to give an indi-
cation of the types and specificities of proteases that have a
high probability to release the bioactive peptide sequences.
With this approach, initial mining of bioactive peptides is
performed with in silico tools, and this allows researchers to
focus on a small number of peptide candidates that are most
likely to have high potency of the desired biological activities.
This approach is highly desirable as it eliminates guesswork
and allows technologists to predict beforehand the kinds and
potency of peptides that can be released from a food protein,
and the most suitable protease to be used, before wet labora-
tory work is undertaken with the selected combination of pro-
tein and enzyme(s) [4]. The bioinformatics approach to the
discovery of bioactive peptides also allows the peptides gen-
erated to be characterized for their theoretical physicochemi-
cal, bioactive, and sensory properties [1]. The ability of bio-
informatics to predict physicochemical properties can help in
designing a cascade of purification steps that will be suitable
for separating peptides of interest during the wet laboratory
stage [3]. Furthermore, the ability to predict the desirable bi-
ological (e.g., antimicrobial, enzyme inhibition) properties as
well as the potency is important for the development of novel
bioactive peptide sequences. Also, knowledge of the
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undesirable biological properties (e.g., allergenicity, toxicity)
is useful when the peptides are intended for functional food or
pharmaceutical applications [5]. This information will help
the food technologist to take steps to remove or limit the
production of allergenic or toxic peptides, or to change the
protein–enzyme combination to one that is low in encrypted
allergenic or toxic peptides. Moreover, knowledge of the taste-
evoking potential of peptides (especially bitterness) is vital for
the development of food and drug formulations intended for
oral consumption since taste has a significant impact on con-
sumer acceptability of a product [1, 6]. The bioinformatics
approach has been used to study encrypted bioactive peptides
in cereal proteins (ribulose-1,5-bisphosphate carboxylase/ox-
ygenase, RuBisCO) [7, 8], soybean proteins [9], egg proteins
[10], milk proteins [11], cheese [12] and meat proteins
[13–15].

On another note, the use of Bhyphenated^mass spectromet-
ric techniques is gaining much interest for the analysis, dis-
covery, and quantitation of the food peptidome, peptides, and
food protein hydrolysates [16]. Peptidomics affords an
untargeted approach for rapid detection and quantification of
a wide range of peptides [17], as well as their in vivo bioac-
tivity networks and signaling systems [18]. Considering that
the human body contains several proteases, it is expected that
dietary peptides will be subjected to degradation at some point
in the body, leading to the release of several smaller peptides
or amino acids, with concomitant loss or retention of biolog-
ical properties. Because of the capability of handling a large
quantity of data, peptidomics could be useful for tracking the
fate of food peptide sequences and their adsorption, digestion,
metabolism, and excretion profile en route in the human body.
Figure 1 shows a schematic of the development of food-
derived bioactive peptides by combination of the predictive
power of bioinformatics and the high-throughput analytical
capabilities of peptidomics. This article discusses the pros-
pects and limitations of combining bioinformatics with
peptidomics for the discovery and analysis of food-derived
bioactive peptides.

Databases and in silico tools used
in bioinformatics-driven discovery
of bioactive food peptides

Databases for protein selection and in silico digestion

One of the outcomes of advancements in proteomics research is
the large datasets of protein structures. The pioneering studies of
Sanger [19], who sequenced the first protein in 1952, paved the
way for several other proteins to be characterized and for their
sequences to be deposited in searchable online databases [20]. It
is estimated that the amino acid sequences of more than eight
million proteins are available in databases [21]. This is an impor-
tant storehouse of amino acid sequences that can be explored in
the discovery of bioactive peptides. Bioinformatics discovery of
bioactive peptides typically begins with the acquisition of the
amino acid sequences of proteins (mostly food proteins) from
databases such as UniProtKB (UniProt Consortium), Protein
(National Center for Biotechnology Information), and the
Protein Data Bank (Research Collaboratory for Structural
Bioinformatics). Following the selection of proteins of known
primary sequence, an in silico digestion is conducted that uses
Bprotein/peptide cutting^ functions of protein digestion data-
bases. This allows the user to select single proteases or combina-
tions of proteases, whose cleavage specificities are taken into
account in the generation of peptides from the selected protein.
Two of the most widely used bioinformatics tools for in silico
protein digestion are BIOPEP BEnzyme action^ and ExPASy
PeptideCutter. After digestion, these databases generate a map
of the protein sequence with an indication of cleavage sites
(ExPASy PeptideCutter) or a list of cleaved peptides (BIOPEP)
for further processing. A list of other protein databases and tools
for in silico digestion is provided in Table 1. A number of com-
putations (also called Bdescriptors^) are undertaken to identify
the frequency and plausibility of release of bioactive peptides
from a protein. For example, the BIOPEP database uses descrip-
tors or parameters such as A, B, AE, andWas described in Eqs. 1,
2, 3, and 4 [22, 23]. Descriptor A measures the frequency of

Fig. 1 Strategy for the discovery of bioactive peptides using tools in bioinformatics and peptidomics. GI gastrointestinal, LC liquid chromatography,MS
mass spectrometry
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occurrence of bioactive peptide fragments in a given protein
sequence, and B estimates the potential of a protein to have a
particular biological activity; for example, angiotensin-
converting enzyme (ACE) inhibition. Parameters A and B are

calculated by the following formulae:

A ¼ a=N ; ð1Þ

Table 1 In silico databases and bioinformatics tools for discovery and development of bioactive peptides

Databases and tools

Databases of protein sequences RCSB Protein Data Bank, https://www.rcsb.org/pdb/home/home.do

UniProtKB, http://www.uniprot.org/

NCBI Protein, http://www.ncbi.nlm.nih.gov/protein

BIOPEP, http://www.uwm.edu.pl/biochemia/

PepBank, http://pepbank.mgh.harvard.edu/

BioPD, http://biopd.bjmu.edu.cn/

SwePep, http://www.swepep.org/

EROP-Moscow, http://erop.inbi.ras.ru/

MilkAMP, http://milkampdb.org/

PeptideDB, http://www.peptides.be/

AMPer, http://marray.cmdr.ubc.ca/cgi-bin/amp.pl

Databases of proteolytic enzymes and in silico digestion platforms BIOPEP, http://www.uwm.edu.pl/biochemia/index.php/en/biopep

PeptideCutter, http://web.expasy.org/peptide_cutter/

POPS, http://pops.csse.monash.edu.au/pops-cgi/index.php

Enzyme Predictor, http://bioware.ucd.ie/~enzpred/Enzpred.php

Identification and characterization of peptides, including
tools for chemometrics

PubChem, https://pubchem.ncbi.nlm.nih.gov/

ProtParam, https://web.expasy.org/protparam/

FooDB, http://foodb.ca/

Chemical Entities of Biological Interest (ChEBI), https://www.ebi.ac.uk/chebi/

AAindex, http://www.genome.jp/aaindex/

Human Metabolome Database (HMDB), http://www.hmdb.ca/

METLIN, https://metlin.scripps.edu/

Peptigram, http://bioware.ucd.ie/peptigram/

In silico tools for molecular docking of peptides DOCK Blaster, http://blaster.docking.org/

1-CLICK DOCKING, https://mcule.com/apps/1-click-docking/

BSP-SLIM, https://zhanglab.ccmb.med.umich.edu/BSP-SLIM/

SwissDock, http://www.swissdock.ch/

FlexPepDock, http://flexpepdock.furmanlab.cs.huji.ac.il/

Prediction of potential bioactivity (including potency) PeptideRanker, http://bioware.ucd.ie/~compass/biowareweb/

BIOPEP, http://www.uwm.edu.pl/biochemia/index.php/en/biopep

AntiBP2, http://www.imtech.res.in/raghava/antibp2/

PeptideLocator, http://bioware.ucd.ie/

Toxicity/allergenicity prediction ToxinPred, http://www.imtech.res.in/raghava/toxinpred/

AlgPred, http://www.imtech.res.in/raghava/algpred/

Allerdictor, http://allerdictor.vbi.vt.edu/

EPIMHC, http://bio.dfci.harvard.edu/epimhc/

SORTALLER, http://sortaller.gzhmu.edu.cn/

ProPepper, https://propepper.net/

Prediction of tastant potential BIOPEP, http://www.uwm.edu.pl/biochemia/index.php/en/biopep

BitterDB, http://bitterdb.agri.huji.ac.il/dbbitter.php

BitterPredit, http://bitterdb.agri.huji.ac.il/dbbitter.php#BitterPredict

NCBI National Center for Biotechnology Information, RCSB Research Collaboratory for Structural Bioinformatics
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where a is the number of peptide fragments in the protein se-
quence with a specific bioactivity and N is the total number of
amino acid residues in the protein, and

B ¼
∑k

i
ai

IC50i

N
; ð2Þ

where ai is the number of repetitions of the ith bioactive property
of interest in the protein sequence, IC50i is the concentration of
the ith bioactive property of interest corresponding to its half-
maximal activity in micromoles per litre, k is the number of
different fragments with the bioactive property of interest, and
N is the number of amino acid residues in the protein.

Moreover, there are descriptors for the frequency (AE) and
relative frequency (W) with which bioactive peptide se-
quences are released from the protein sequence by the chosen
protease(s). These parameters are calculated by the following
formulae:

AE ¼ d=N ; ð3Þ
where d is the number of peptide fragments with a specific
bioactivity releasable from the protein sequence by the prote-
ase and N is the number of amino acid residues in the protein,
and

W ¼ AE=A; ð4Þ
where AE is the frequency of release of peptide fragments with
given activity by the selected protease(s) and A is the frequen-
cy of occurrence of bioactive peptide fragments in the protein
sequence.

The theoretical degree of hydrolysis (DHt) is also used to
estimate the percent degree of hydrolysis of the in silico di-
gestion process:

DHt ¼ d
D
� 100%; ð5Þ

where d is the number of hydrolyzed peptide bonds and D is
the total number of peptide bonds in the primary sequence of
the protein.

The significance of these descriptors is illustrated in the
following example. Suppose a researcher is interested in iden-
tifying (1) the kinds of bioactive properties and (2) the potency
of those bioactivities of peptides found in a given protein (e.g.,
RuBisCO large chain; UniProtKB accession number
P04991). Entering the primary sequence of P04991 in the
BIOPEP database, under the BCalculations^ option, will give
12 different bioactivities and their corresponding A values.
Among the bioactivities, dipeptidyl peptidase IV (DPP-IV)
inhibition and ACE inhibition have the highest A values
(0.4967 and 0.3783, respectively), meaning that peptides with
DPP-IV- and ACE-inhibitory activities are the most abundant
encrypted sequences in the large chain of RuBisCO.

Furthermore, to identify the most suitable protease(s) for re-
leasing the DPP-IV- and ACE-inhibitory peptides, the
BEnzyme action^ function is used for in silico digestion of
the sequence by the trialing of several enzymes and calcula-
tion for descriptors such as AE, W, and DHt. For instance, in
silico digestion of RuBisCO large chain with the enzyme sub-
tilisin (EC 3.4.21.62) gives respective AE values of 0.0214 and
0.0165 for DPP-IV- and ACE-inhibitory activities, whereas
chymotrypsin (EC 3.4.21.1) gives values of 0.0165 and
0.0146. Thus, subtilisin appears to be a better protease for
producing DPP-IV- and ACE-inhibitory peptides from
RuBisCO large chain. The BIOPEP descriptors are therefore
useful for providing a numerical evaluation of the suitability
of an enzyme–protein combination to give peptide sequences
with desired biological properties.

In silico tools for peptide characterization

Following digestion, the peptides generated are characterized
for their (1) physicochemical (molecular weight, theoretical
pI, aliphatic index, average hydropathicity, etc.), (2) biological
(bioactivities, toxicity, potential allergenicity), and (3) sensory
(presence of sweet, bitter, umami, and other taste-evoking
peptide sequences) properties. In silico characterization of
peptides uses chemometrics and cheminformatics techniques
as well as sequence homology in identifying potential bioac-
tivities of peptides [24]. Broadly, these techniques use com-
putational and statistical tools to collect and analyze biochem-
ical data, and design models for understanding and predicting
the behaviors of biochemical systems [25, 26]. It is possible to
use in silico and computational tools to study the properties
and potential biological activities of peptides because peptides
(like proteins) exhibit a high degree of structure–activity be-
haviors. The presence and sequence arrangements of certain
amino acid residues provide an indication of the properties
and potential bioactivities of a peptide. For example, a peptide
sequence with high amounts of cysteine as well as hydropho-
bic, aromatic, and/or amphiphilic amino acid residues is likely
to have antioxidative properties in emulsions [27].Most renin-
and ACE-inhibitory peptides contain small and hydrophobic
amino acids at the N-terminus, together with bulky or
aromatic/aliphatic amino acids at the C-terminus or penulti-
mate C-terminus [28]. Antimicrobial peptides, on the other
hand, often have longer chains and are often amphipathic with
a net positive charge [29]. Quantitative modeling of the rela-
tionship between physicochemical or structural and biological
properties (also called Bquantitative structure–activity rela-
tionship) is done by regression analysis using techniques such
as partial least squares regression, principal component anal-
ysis, and artificial neural networks [4, 30]. Examples of some
structure descriptors used in quantitative structure–activity re-
lationship studies to score principal properties of amino acid
residues/peptides include (1) the z score, which combines into
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descriptor scores the hydrophilicity/hydrophobicity (z1), mo-
lecular size/bulkiness (z2), and electronic properties/charge
(z3) of molecules [31]; (2) the molecular surface–weighted
holistic invariant molecular (WHIM) indices, a variant of
WHIM-based indices, which provide concise, Bholistic^
three-dimensional molecular surface recognition information
about amino acid/peptide–ligand interactions, on the basis of
molecular size, shape, symmetry, and atom distribution [32,
33]; (3) Markovian chemicals in silico design (MARCH-
INSIDE) descriptors, which use the Markov (stochastic or
probability) chain theory to model intramolecular electron de-
localization and time-based vibrational decay and codify this
information as a numerical description of molecular structure
[34]; (4) vectors of hydrophobic, steric, and electronic prop-
erties (VHSE) [35], which use the hydrophobicity, stericity,
and electronic property of molecules to predict their activity/
property; and (5) the divided physicochemical property scores
(DPPS) descriptor [36], which uses the same structural prop-
erties as VHSE in addition to hydrogen bonds.

Peptide bioactivity prediction can also be achieved by mo-
lecular docking studies. Molecular docking is often used for
the virtual screening of bioactive molecules and rational de-
sign of drug candidates [37, 38]. This technique has been used
in a number of studies to select peptides for biological evalu-
ation after peptidomic analyses. For instance, pharmacophore
mapping of six peptides from Coix glutelin hydrolysate iden-
tified peptides VGQLGGAAGGAF and QSGDQQEF as po-
tential ACE inhibitors [39].Molecular docking simulation and
optimization by in silico proteolysis were then used to dem-
onstrate that GGAAGGAF might have the highest ACE in-
hibitory activity of all the fragments derived from the peptides.
In vivo study then showed that the octapeptide effectively
decreased systolic blood pressure of hypertensive rats [39].
In another study, nine peptides were identified from weaver
ant protein hydrolysate fraction followed by in silico docking
that predicted favorable binding for only peptides FFGT and
LSRVP, which were then confirmed to display considerable
in vitro ACE-inhibitory activity [40]. Furthermore, molecular
docking and calculation of binding interactions and binding
free energies were used to explain the mechanism and potency
of ACE-inhibitory peptides derived fromMactra veneriformis
[41] and Kluyveromyces marxianus [42] proteins. A list of
tools and software used for molecular docking of peptides
on their biological targets, which are typically proteins, is
provided in Table 1.

Clearly, advancements in bioinformatics have provided im-
portant tools for efficient discovery of food peptides with bi-
ological activities, particularly for preselection of protease/
protein precursor candidates, analyzing large protein and pep-
tide datasets, and understanding interactions with biological
targets and structure–activity relationships. However, there are
a number of practical limitations in using the in silico tools.
Considering the short chain length of the food peptides

(mostly dipeptides and tripeptides), searching for the occur-
rence of bioactive sequences in other proteins is limited by the
capability of current similarity search tools (e.g., BLAST),
which require the input of longer peptide chains to return
results. Furthermore, in silico platforms do not have the com-
plete capability for comprehensive peptide analysis (e.g., the
lack of multienzyme hydrolysis function), except for BIOPEP.
This necessitates the use of multiple tools in peptide analysis.
As the platforms are not presently connected, it is cumber-
some to export data from one platform to another for further
analyses.

Peptidomic analyses of food peptides

As captured in Fig. 1, prediction of bioactive peptides can be
achieved with the in silico tools listed in Table 1. Thereafter,
the actual wet laboratory production of the peptide is under-
taken, followed by identification of peptides present in the
whole hydrolysate or in its fractions, often through compre-
hensive analysis with high-throughput peptidomics [43]. The
word Bpeptidomics^ was first introduced in 2001 to describe
the comprehensive structural characterization of peptides
present in a biological sample [44]. The approach has since
been applied to several areas of research, including food sci-
ence, where it is used to identify and quantify peptides of
nutritional or biofunctional relevance [22, 45], as well as for
product authentication [46]. Peptidomic studies are conducted
by liquid chromatography coupled with tandem mass spec-
trometry (MS). Hydrolyzed food proteins are complex mix-
tures, and generally contain hundreds of peptides of different
chain length and relative abundance, and this makes it chal-
lenging to detect all the peptides. To improve the analysis,
protein hydrolysates are often fractionated by various methods
[ultrafiltration, hydrophobic high-performance liquid chroma-
tography (HPLC), ion-exchange HPLC, capillary electropho-
resis] before peptidomic analysis [47]. Two main ionization
methods are used for MS analyses. The most common is
electrospray ionization (ESI) because about half of known
bioactive peptides in the literature contain fewer than ten ami-
no acids [16]. The other method is matrix-assisted laser
desorption/ionization (MALDI), which is used for larger se-
quences. Peptides of molecular mass less than 500 Da fall
within the low mass range, where matrix interference is over-
whelming. Consequently, the applicability of MALDI MS in
peptidomic studies is limited to detection of larger peptides.
However, matrix-free MALDI sample preparation, such as by
nano-assisted laser desorption/ionization, is gradually being
used to overcome this challenge [48].

In peptidomic analysis, MS/MS data are interpreted with
bioinformatics tools. MS/MS spectra that are used for identi-
fication (i.e., sequencing) are the result of automated signal
processing algorithms that transform raw spectra into generic

Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides 3467



lists of peaks. Numerous software programs developed for this
purpose over the years have been reviewed elsewhere [49].
Peptidomics approaches are used to obtain profiles of peptides
natively present in foods, in hydrolyzed proteins, or in frac-
tions obtained after purification. In general, methods such
membrane filtration and chromatography (ion-exchange, re-
versed-phase, and size-exclusion chromatography) are often
used to generate concentrated fractions with enhanced activity
before MS analysis. Peptidomics has been used to study the
properties of several food samples, especially milk from
humans, cows, and other mammals. For instance, Dallas
et al. [50] identified more than 300 peptides in human milk,
and concluded, on the basis of the data obtained, that proteol-
ysis in the mammary gland is selective because most of the
peptides were derived from β-casein and none was derived
from other major proteins such lactoferrin,α-lactalbumin, and
secretory immunoglobulin A. Moreover, about 600 peptides
were identified through peptidomics in gastric aspirates from
4- to 12-day-old infants, compared with about one third of that
number of peptides present in the mothers’ milk, with the
gastric aspirates containing peptides from lactoferrin and α-
lactalbumin [51]. This approach led to identification of pep-
tides with known immunomodulatory and antibacterial prop-
erties, which can be of clinical relevance in infant intestinal
health promotion. Also peptidomic analysis revealed that pro-
tease selectivity differs during pregnancy as the number of
endogenous peptides is greater in human milk after preterm
birth compared with after term birth [45].

Apart from bioactivity, peptidomics of milk was proposed
as a way to detect mastitis at the clinical and subclinical levels
with the observation of a 1.5-fold increase in the total number
of peptides in healthy versus subclinical mastitic milk [52].
Mastitis, an inflammation of the mammary gland, is a preva-
lent disease in cattle that results in low milk yield and quality.
Comparison of the peptidome of healthy versus mastitic milk
led to the identification of 154 peptides that can be used as
diagnostic biomarkers; in addition, it was possible to use 47 of
those peptides to distinguish whether the cause of mastitis
originated from infection by Streptococcus aureus or
Escherichia coli [53]. Furthermore, peptidomic analysis re-
sulted in the identification of two peptides that can be used
to detect adulteration of goat cheese with sheep milk, and the
method was capable of detecting up to 2% sheep milk in the
cheese [54]. Sassi et al. [55], identified specific peptide and
protein markers of fresh bovine, water buffalo, ovine, and goat
milk after direct peptidomic analysis of skimmed milk sam-
ples. The method can be applied for the detection of milk
adulteration or for profiling of the differences in seasonally
variable milk.

Peptides derived from food proteins by enzymatic hydro-
lysis have been characterized by the peptidomics approach. In
many cases, the outcome is the profiling of peptides in frac-
tions with biological activities. One area of interest has been

the identification of peptides in hydrolysates or fractions with
antihypertensive activity, and specifically the inhibition of
ACE [1]. For example, fingerprints of all possible peptide
peaks in antihypertensive salmon protein hydrolysate frac-
tions were obtained by peptidomics with an ESI MS system,
which revealed that the high bioactivity of the fractions com-
pared with the hydrolysate was due to the presence of a higher
number of inhibitory peptides with molecular mass less than
500 Da [56]. In a related study, 23 peptides were identified by
peptidomics in two HPLC fractions of hydrolyzed hemp seed
proteins with potent inhibitory activity against ACE and renin,
and five of the peptides (WVYY, PSLPA, WYT, SVYT, and
IPAGV) were later found to reduce systolic blood pressure in
hypertensive rats [57]. Moreover, size-exclusion chromatog-
raphy, successive revered-phase HPLC separations, and ESI
quadrupole time-of-flight MS/MS led to the identification of
FFGT and LSRVP, among nine peptides from weaver ant
proteins hydrolysate, as potent ACE inhibitors [40].
Peptidomics has also been used to identify peptides with
ACE-inhibitory activity in shrimp shell discard protein hydro-
lysate fraction [58], buffalo milk hydrolysates [59], low mo-
lecular weight fractions of Bifidobacterium longum-fermented
milk [60], fish skin gelatin hydrolysates [61], and marine bi-
valve Mactra veneriformis protein hydrolysates [41].
Peptidomics has also been used to generate a large database
of peptides with desirable (bioactive) structural features. For
instance, 181 peptides were identified in ACE-inhibiting cam-
el milk colostrum hydrolysates [62], more than 150 potentially
active peptides were identified from ACE-inhibiting soy pro-
tein hydrolysates [63], and about 39 ACE-inhibitory peptides
were identified from rice bran albumin hydrolysates [64].

To combat oxidative stress, associated cellular damage, and
the initiation of chronic health conditions such as inflamma-
tion, atherosclerosis, diabetes, and cancer [65–67],
peptidomics has been used in some cases to facilitate the iden-
tification of antioxidative peptides. For instance, peptides
WVYY and PSLPA were discovered to be free-radical-
scavenging antioxidants after peptidomic analysis of a hydro-
lyzed hemp seed protein fraction [57]. Moreover, ten peptides
(with up to 37 amino acid residues) were identified in two
fractions of hydrolyzed buffalo milk proteins that displayed
the highest radical scavenging activity [59]. A peptidomics
approach was also used to identify 20 peptides with relative
molecular masses between 417 and 1809 Da (5–21 residues)
from an antioxidant fraction of hydrolyzed fish gelatin [61].
Furthermore, two recent studies identified 65 and 50 peptides
in antioxidant oat protein hydrolysates produced with
Protamex and pepsin, respectively [68, 69], although bioac-
tivity of the individual peptides was not reported. In addition
to targeting oxidative stress, peptidomics has been used to
identify 16 peptides in two whey hydrolysate fractions with
DPP-IV-inhibitory activities, and for the selection of impor-
tant fractions for further evaluation based on desirable
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structural features (amino acid residues) [70]. DPP-IV de-
grades and inactivates incretin hormones, which are involved
in the stimulation of glucose-dependent insulin secretion after
food ingestion, and as such is a target for the management of
type 2 diabetes. In another study, a combination of
peptidomics (liquid chromatography–MS/MS analyses) and
bioinformatics (using BIOPEP tools) was used to profile the
peptidic composition of an albumin hydrolysate (molecular
mass less than 100 Da) that possesses α-glucosidase-
inhibitory activity, leading to the identification of 40 peptides
with potential antidiabetic activity [64].

Challenges in the application
of bioinformatics and peptidomics
in bioactive food peptide discovery

Bioinformatics

The bioinformatics approach predicts bioactivity of peptides
on the basis of the type and number of amino acid residues (or
peptide motif) within the sequence [71]. This is simplistic as
assumptions on enzymatic release and bioactivity are made on
the basis of only primary structures. In vitro, the tertiary struc-
ture and three-dimensional folded state of the protein will
invariably affect the accessibility of proteases to scissile pep-
tide bonds. This implies that the number of peptides generated
in silico, with use of the aforementioned bioinformatics tools,
may be more than the number of peptides generated in vitro.
Furthermore, in a biological system, the frequency of occur-
rence of bioactive motifs alone might not be adequate to pre-
dict the extent of bioactivity because of interfering conditions
encountered during laboratory work. For example, the pres-
ence of other molecules, the temperature, pH, and ionic
strength of the assay, or the biological matrix will invariably
affect protease activity, which may result in the production of
different or modified peptide structures when compared with
the in silico peptides. Therefore, future research on the design
of bioinformatics tools should take into account the possible
influence of the protein three-dimensional structure and reac-
tion conditions on the protease activity and release of bioac-
tive peptide from proteins. Moreover, peptide databases are
manually curated and updated by generous individual re-
search groups, and this may lead to delays in accessing the
most up-to-date information, duplication of efforts, and the
development of tools that address issues only within the area
of expertise of the group.

Furthermore, the bioinformatics approach currently used in
food peptide discovery does not take into account the possi-
bility of posttranslational modification (PTM), such as oxida-
tion, methylation, deamination, and acetylation, of amino acid
residues of peptides [72]. PTM of proteins and peptides is a
common phenomenon when the biomolecules undergo

downstream processing steps such as heating, drying, high-
pressure treatment, and dehydration. To overcome this chal-
lenge, a number of user-friendly and open-access integrative
bioinformatics tools have been designed to study protein and
peptide PTMs, including iPTMnet (http://research.
bioinformatics.udel.edu/iptmnet/) [73], STRAP PTM (http://
www.bumc.bu.edu/cardiovascularproteomics/cpctools/strap-
ptm/) [74], and jEcho (http://www.healthinformaticslab.org/
supp/) [75]. These tools can be integrated into existing food
peptide analysis methods, particularly for identifying possible
PTMs in prediction studies. Lastly, selection of protein
precursors by the current approach is limited to only proteins
whose primary sequences are available in open-access data-
bases, and this may exclude potential precursors, especially
minor proteins and proteins in alternative sources. This calls
for research in the area of protein sequencing, particularly of
proteins that can be produced sustainably. Apart from dairy
and animal proteins, food-grade microorganisms (single-cell
proteins), marine organisms, edible insects, and fungi are al-
ternative sources of proteins for the production of bioactive
peptides. The use of these proteins is possible only if their
protein sequences are available. Bioinformatics of food-
derived peptides will therefore benefit from advances in pro-
tein sequencing.

Peptidomics

A number of issues can impede bioactive food peptide devel-
opment, but advances in the field of peptidomics are providing
strategies to overcome some of these challenges. For instance,
it is challenging to separate and identify bioactive peptides
present in complex food matrices, protein hydrolysates, or
peptide fractions. The peptidomics approach can facilitate
peptide identification because it can be performed on samples
with minimal cleanup procedures. Although this approach has
the advantage of not requiring complete peptide separation,
there are some limitations. Co-elution of peptides is common
in liquid chromatography, and this makes the detection of less
concentrated peptides difficult or impossible. In addition, a
number of analyses focus on multiply charged ions (2+ to
5+). Although this eliminates the detection of non-peptides
and increases sensitivity, peptides smaller than 800 Da are
often omitted from the analysis. Food-derived peptides of mo-
lecular mass less than 1000 Da are often the ones with the
most potent biologically relevant activities and are also con-
sidered to be the most potentially bioavailable. It has been
proposed that the challenge of peptide co-elution can be over-
come by tandem fragmentation techniques such as collision-
induced dissociation, high-energy collision-induced dissocia-
tion, and electron transfer dissociation. A combination of
these three techniques has been shown to be effective for
complete profiling of peptides by liquid chromatography–
Fourier transform MS/MS of peptides [76]. Some other
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technological advances in peptidomic analysis are currently
used mostly in the biomolecular sciences, but the principles
can be transferred for the analysis of food peptides in complex
matrices. For example, imaging MS permits the visualization
of the spatial distribution of compounds, ion mobility MS
provides quick (millisecond) separation and mass detection
of compounds, and direct tissue/cell MALDI time-of-flight
analysis allows the profiling of peptides in intact tissue sam-
ples [77].

Prospects and future directions

Bioinformatics and peptidomics approaches for the investiga-
tion and development of bioactive peptides independently fa-
cilitate the discovery and analysis of a large number of pep-
tides of interest in a comprehensive and cost-effective manner.
Although it is thought that in silico results are not always
replicated in wet laboratory analysis because of the aforemen-
tioned reasons, there is a need to establish actual predictive
accuracy and comparison of the effectiveness of different in
silico tools and methods. Further work is also needed on
adapting recent peptidomics technologies for the discovery
and analysis of bioactive food peptides. In addition, a one-
stop platform that integrates all in silico tools and steps (pro-
tein/protease selection, hydrolysis, bioactivity screening, bit-
terness, toxicity, and allergenicity prediction, structure–activ-
ity relationship analysis, etc.) can be developed to enhance the
capability and efficiency of bioinformatics in food bioactive
peptide discovery and analysis. Also, it would be worthwhile
to establish a centralized peer-reviewed platform where re-
searchers can directly input new peptide sequences from the
literature, or as soon as they are discovered. This
crowdsourcing approach will lead to a comprehensive up-to-
date open-access database of functional peptides. Lastly, the
predictive capability of bioinformatics and the high-
throughput analytical capability of peptidomics can be com-
bined into a new, powerful tool for the discovery and analysis
of functional peptides present in food and other complex bio-
logical matrices.
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