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Abstract
Five novel ionic liquids (ILs), 1,3-dibutylimidazolium bromide [BBMIm][Br], 1-pentyl-3-butylimidazolium bromide
[BPMIm][Br], 1-hexyl-3-butylimidazolium bromide [BHMIm][Br], 1,1'-(butane-1,4-diyl)bis(3-butylimidazolium) bromide
[C4(BMIm)2][Br2], and 1,1'-(butane-1,4-diyl)bis(3-methylimidazolium) bromide [C4(MIm)2][Br2], were prepared and used in
situ to react with bis(trifluoromethane)sulfonamide lithium salt to extract the myclobutanil, tebuconazole, cyproconazole, and
prothioconazole from water samples. The results showed that mono-cationic ILs had much better recovery than dicationic ILs,
and mono-imidazolium IL bearing butyl groups at N-1 and N-3 sites had the best recovery. When the length of the alkyl
substituent group was more than four carbons at N-3 site, the recovery decreased with increase of alkyl chain length of 1-
butylimidazolium IL. The extraction efficiency order of triazoles from high to low was [BBMIm][Br], [BPMIm][Br],
[BHMIm][Br], [BMIm][Br] (1-butyl-3-methylimidazolium bromide), [C4(BMIm)2]Br2, [C4(MIm)2]Br2. An in situ ionic liquid
dispersive liquid–liquid microextraction combined with ultrasmall superparamagnetic Fe3O4 was established as a pretreatment
method for enrichment of triazole fungicides in water samples by using the synthetic [BBMIm][Br] as the cationic IL and used to
detect analytes followed by high-performance liquid chromatography. Under the optimized conditions, the proposed method
showed a good linearity within a range of 5–250 μg L−1, with the determination coefficient (r2) varying from 0.998 to 0.999.
High mean enrichment factors were achieved ranging from 187 to 323, and the recoveries of the target analytes from real water
samples at spiking levels of 10.0, 20.0, and 50.0 μg L−1 were between 70.1% and 115.0%. The limits of detection for the analytes
were 0.74–1.44 μg L−1, and the intra-day relative standard deviations varied from 5.23% to 8.65%. The proposed method can be
further applied to analyze and monitor pesticides in other related samples.

Keywords Ionic liquids . In situ ionic liquid–dispersive liquid–liquid microextraction . Pretreatment . Triazole fungicides .

Ultrasmall superparamagnetic Fe3O4

Introduction

Triazole fungicides are the most commonly used fungicides
in the world because of their high efficiency and broad

spectrum activity [1]. In the UK, triazoles account for up to
20% of fungicides used, among which epoxiconazole,
prothioconazole, and tebuconazole are the three most com-
mon [2]. Besides, triazole fungicides have high chemical and
photochemical stability, low biodegradability, and are easily
transported in the environment [3]. All these properties can
contribute to triazole fungicides persisting in the soil and
water for a long time [4]. Thus triazoles will further contam-
inate drinking water, agricultural products, and by-products
[5–7]; eventually, they will impact human health. After dou-
ble screening by the Environmental Protection Agency
Endocrine Disruptor Screening Program, epoxiconazole,
myclobutanil, and tebuconazole were all suspected as
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endocrine disruptors [8, 9]. According to another study,
tebuconazole increased nipple retention in male offspring,
and also increased the gestation period in pregnant rat dams
[10]. Therefore, most countries and regions have published
relevant standards and regulations for triazole residues. For
example, in the European Union, maximum residue limits
(MRLs) of triazole pesticides in food and fodder are regulat-
ed. The MRLs of cyproconazole, prothioconazole, and
tebuconazole are 0.05, 0.01, and 0.02 mg kg−1, respectively
[11]. The development of effective methods and instrumen-
tation for detection of trace triazoles in the environment is
critical for the achievement of environmentally viable and
safe technologies.

Many instruments can be employed to detect triazoles such
as gas chromatography–nitrogen phosphorus detector (GC-
NPD) [12], gas chromatography–flame ionization detection
(GC-FID) [13], and high-performance liquid chromatography
with UV–vis detector (HPLC-UVD) [14]. To achieve an ac-
curate determination result, mass spectrometry was also used
by coupling with HPLC or GC [15]. During the processes of
monitoring trace pesticide residues in environmental water,
the pretreatment method is the most important procedure. In
recent years, the determination of pesticides in water samples
by different pretreatment methods has been reported [16–18].
The traditional techniques, such as liquid–liquid extraction
and solid-phase extraction, are tedious, time-consuming, and
use large quantities of solvent. Therefore these methods are
gradually being replaced by new ones. Within these ap-
proaches, there is an important shift towards the development
of microextraction procedures, such as solid-phase
microextraction (SPME) and liquid-phase microextraction
(LPME). Both of these aim to eliminate or minimize the con-
sumption of organic solvents [7]. In order to save time and
cost, dispersive liquid–liquid microextraction (DLLME) was
employed [19]. In this method, the appropriate mixture of
extraction solvent and disperser solvent is injected into the
aqueous sample, and it generates a cloudy solution immedi-
ately. After centrifugation, the particles of extraction solvent
are precipitated in the bottom of the conical tube [20].
DLLME provides high recovery and enrichment factor within
a very short time (a few seconds). DLLME involves fine par-
ticles of extraction solvent which are entirely dispersed into
the aqueous phase.

Ionic liquids (ILs) are very simply molten salts which are
made of cations and anions. The structure of ILs can be de-
signed and the physicochemical properties are therefore mod-
ifiable. ILs have unique solvent properties, i.e., they are
oleophilic and hydrophilic, so they are able to substitute for
traditional organic solvents. As an accepted Bgreen solvent^,
ILs have no detectable vapor pressure, ignorable environmen-
tal toxicity, and can also be recycled [21, 22]. Besides, the
majority of ILs have good surface activity; consequently, they
can also replace organic solvent in DLLME. DLLME coupled

with ILs is a very popular pretreatment method in trace con-
taminant detection, such as triazole, silver(I), carbamate, py-
rethroid, benzoylurea, and so on [6, 23–26].

Centrifugation is a common process to separate in situ hy-
drophobic IL from water samples; however, the emulsion
formed is difficult to isolate absolutely. To overcome this
problem, magnetic particles are used for phase separation to
take the place of centrifugation. In our previous work, Fe3O4

ultrasmall magnetic nanoparticles were used to detect pyre-
throid pesticides in water samples [26]. The results showed
that Fe3O4 can quickly retrieve ILs by physisorption and elec-
trostatic interaction. Fe3O4 ultrasmall magnetic nanoparticles
have large surface area to volume ratio to adsorb in situ hy-
drophobic IL; owing to their superparamagnetic property, they
can be easily isolated from sample solutions by application of
an external magnetic field [27]. Some studies involving
DLLME have applied Fe3O4 ultrasmall magnetic particles
and proved the unexceptionable separation ability of Fe3O4

[28].
In this work, five novel imidazolium-based ILs were pre-

p a r e d a n d u s e d t o r e a c t i n s i t u w i t h
bis(trifluoromethane)sulfonamide lithium salt (LiNTf2),
which was combined with ultrasmall superparamagnetic
Fe3O4 to extract the triazole fungicides from water samples.
In order to find the relationship between the chemical structure
of the imidazolium ILs and the extraction recovery of the
triazoles, the influence of factors on extraction efficiency, such
as the amount of IL, the ratio of IL/LiNTf2, the kind of diluent,
the pH of water samples, and the extraction time, were inves-
tigated to get the optimized pretreatment method.

Experimental

Apparatus

The HPLC system used for the analysis and separation
consisted of two LC-20ATvp pumps and an SPD-M20Avp,
UV–vis photodiode array detector (Shimadzu, Japan). A
reversed-phase Kromasil ODS C18 column (250 mm × 4.6
mm, 5 μm, Sigma–Aldrich, St. Louis, MO, USA) for LC
system and LC solution Lite workstation were employed to
obtain and process chromatographic data. A Vortex-Genie
Mixer (Scientific Industries, USA) was used for the elution
of target compounds. An FA1004 electronic balance was pur-
chased from Beijing Electronic Balance Factory.

Chemical and reagents

Myclobutanil, tebuconazole (≥ 98%), LiNTf2, 1-butylimidazole,
1-methylimidazole, Fe3O4 (20 nm), and [BMIm][Br] were
purchased from Aladdin Chemical Reagent Corporation
(Shanghai, China). Cyproconazole and prothioconazole with
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purity ≥ 98% were purchased from Sigma–Aldrich (St. Louis,
MO, USA). 1,4-Dibromobutane, 1-bromobutane, 1-
bromopentane, and 1-bromohexane were obtained from
Tianjin Heowns Biochemical Technology Co. Ltd. (Tianjin,
China). Other chemicals and reagents were obtained from
Sinopharm Chemical Reagent Beijing Co., Ltd. (Beijing,
China). HPLC-grade methanol and acetonitrile were from
Fisher Scientific Company (UK). Ultrapure water was gener-
ated using a Milli-Q water purification system (Millipore, Co.
USA).

Synthesis of ILs

Mono-cationic ILs

Acetonitrile (50 mL) as solvent was added into a 100-mL
flask, and then mixed 1-butylimidazole (26 mmol) and
20 mmol of the corresponding 1-bromoalkane. The mixture
was heated at reflux for 24 h. After the reaction was finished,
the mixture was cooled to room temperature. The acetonitrile
was evaporated off under reduced pressure and the residue
was dissolved in pure water. The water layer was washed with
diethyl ether and concentrated. The residue was dried under
vacuum at 35 °C and a colorless liquid was obtained (Fig. 1,
Table 1). The data from the NMR spectra are shown in the
Electronic Supplementary Material (ESM, Figs. S1, S2, and
S3).

Dicationic ILs

[C4(BMIm)2][Br2]: The synthesis of [C4(BMIm)2][Br2] was
similar to that of mono-cationic ILs except that a different ratio
of 1-butylimidazole (50 mmol) and 1,4-dibromoalkane (20.5
mmol) was used.

[C4(MIm)2][Br2]: A mixture containing 1,4-dibromoethane
(20.5 mmol), 1-methylimidazole (50 mmol), and acetonitrile
(50mL) was added into a 100-mL flask and heated at reflux for
24 h. After the reaction was finished, the mixture was cooled to
room temperature. The precipitate was filtered and washed
with acetonitrile. The residue was dried under vacuum at 35
°C and a white solid was obtained. (Fig. 1, Table 1). The data
from the NMR spectra are shown in the ESM (Figs. S4 and
S5).

Sample preparation

Stock standard solutions of the four triazole pesticides were
prepared in acetonitrile at a concentration of 1000 mg L−1. A
certain amount was removed and diluted to different concen-
trations with acetonitrile to generated spiked samples. The
working solution (each analyte at 100 μg L−1) was diluted
with pure water and used to optimize the method. The work-
ing solutions of cationic ILs and LiNTf2 had the same

concentration (0.20 M). Pond, river, and lake water samples
were obtained from a local village, Nanchang He branch,
and Cuihu national urban wetland park (Haidian District,
Beijing), respectively. All water samples were stored at
−18 °C in a freezer and filtered through 0.45-μmmembranes
before use.

Pretreatment procedures

In this study, five kinds of newly synthesized ILs and a com-
mercial IL were tested in the in situ IL-DLLMEmethod. First,
500 μL of IL solution was added into a 15-mL conical centri-
fuge tube containing 10 mL of sample solution and then gent-
ly shaken to disperse the IL uniformly. Next, 500 μL of
LiNTf2 aqueous solution was added and a turbid solution
formed immediately. Then the tube was vortexed for 30 s to
strengthen the enrichment effect. Thereafter, 30mg Fe3O4 was
added into the tube. The tube was shaken thoroughly and a
magnet was positioned to adsorb hydrophobic IL, which
contained the target analytes, at the bottom of the tube. After
the supernatant solution was decanted, the adsorbed analytes
were eluted with 40 μL of acetonitrile under intense vortex for
30 s. Finally, 20 μL of analyte solution was injected into the
HPLC instrument for analysis. All the experiments were per-
formed in at least triplicate and the means of the results were
used for optimization.

Analysis of triazole fungicides

The analysis of four kinds of triazoles was accomplished by
HPLC. The mobile phase was a gradient of methanol/water
(0.2% acetic acid) in methanol: 0–10 min, 60–90%; 10–15
min, 90%. The flow rate was 1.0 mL min−1 and the injection
volume was 20 μL. The target compounds were monitored at
230 nm by a photodiode array detector.

Method validation

Because an exact quantitative analysis was needed in this
study, the external standard calibration method was used.
The four involved triazole fungicides in this study were used
as the external standard substances.

In accordance with previous studies [25, 26], limits of de-
tection (LODs) were calculated on the basis of the concentra-
tion of the target compounds, whose peak area was three times
the area of the noise of the blank (S/N ≥ 3) after the optimized
produce.

Enrichment factor, recovery, and LODs were calculated
using the formulas below:

Enrichment factor ¼ C1

C0
ð1Þ
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Recovery ¼ C1 � V1

C0 � V0
� 100 ð2Þ

LODs ¼ Sb

m
ð3Þ

C1 is the concentration of the target component in the elu-
tion phase; C0 is the original concentration of the target com-
ponent in the water sample; V1 is the volume of the elution
phase (40 μL); V0 is the volume of the water sample (10 mL).
Sb is the standard deviation of the blank signal and m is the
slope of the calibration curve after extraction.

The intra-day precisions were obtained by six replicates
within a day following the optimized produce, and the inter-
day precisions were prepared by two replicates in each of 3
days at the same optimized conditions. The standard deviation
error bars of all data were calculated by SPSS statistics soft-
ware (version 20.0).

Results and discussion

Factors affecting extraction efficiency

Effect of IL

ILs were used in this study to examine their selectivity towards
triazole fungicides. The IL should be soluble in water; after
addition of the ion-exchanger, the formed IL should have low
solubility in water so that the whole extraction system turns into
an emulsion instantly [29]. The hydrophobic ILs
[BBMIm][N(Tf)2], [BPMIm][N(Tf)2], [BHMIm][N(Tf)2],
[BMIm] [N (T f ) 2 ] , [C 4 (BMIm) 2 ] [N (T f ) 2 ] 2 , a nd
[C4(MIm)2][N(Tf)2]2 were synthesized through metathesis re-
action between bis(trifluoromethane)sulfonamide ion (N(Tf)2

−)
and bromine ion (Br−). During the optimization step,
[C4(MIm)2][N(Tf)2]2 did not show any enrichment capacity
for triazoles at all. As shown in Fig. 2a, the extraction efficiency

Table 1 Chemical structures of the synthetic ILs

Number Compounds Chemical name Structure

IL1 [BMIm][Br] 1-butyl-3-methylimidazolium bromide

IL2 [BBMIm][Br] 1,3-dibutylimidazolium bromide

IL3 [BPMIm][Br] 1-pentyl-3-butylimidazolium bromide

IL4 [BHMIm][Br] 1-hexyl-3-butylimidazolium bromide

IL5 [C4(BMIm)2][Br2]

1,1'-(butane-1,4-diyl)bis(3-butylimidazolium)

bromide

IL6 [C4(MIm)2][Br2]

1,1'-(butane-1,4-diyl)bis(3-methylimidazolium) 

bromide

Fig. 1 Synthesis of (1) mono-
cationic ILs (n = 0, 3, 4, 5); (2)
dicationic ILs (n = 0, 3)
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of triazoles was the highest when using [BBMIm][N(Tf)2],
followed by [BPMIm][N(Tf)2], [BHMIm][N(Tf)2],
[BMIm][N(Tf)2], and [C4(BMIm)2][N(Tf)2]2. [BMIm][Br] is
a commonly used extraction agent in the published articles
which involved IL-DLLME [30–32]. In this work, however, it

showed low extraction efficiency for triazole fungicides be-
cause [BMIm][N(Tf)2] could not form a stable microemulsion
system, which was easily able to revert to a pellucid solution at
room temperature. The two tested dicationic ILs also could not
f o rm a s t a b l e m i c r o em u l s i o n s y s t em ; o n l y
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Fig. 2 Factors affecting extraction efficiency. All working solutions were
100μg L−1 of each triazole fungicide, and each spiked water sample was 10
mL. MNPs (magnetic nanoparticles) 30 mg. a Effect of different ILs.
Conditions: each kind of IL 500 μg L−1, aq. solution (0.20 M), LiNTf2
aq. solution 500 μg L−1 (0.20 M), diluent with acetonitrile 40 μL, pH not
adjusted, extraction time 1 min. b Effect of diluent. Conditions:
[BB(MIm)][Br] aq. solution (0.20 M), LiNTf2 aq. solution 500 μg L−1

(0.20 M), each diluent added 40 μL, pH not adjusted, extraction time 1
min. c Effect of amount of [BBMIm][Br]. Conditions: equimolar ratio of

[BBMIm][Br]/LiNTf2, elution with 40 μL acetonitrile. d Effect of the ratio
of hydrophilic IL/anion-exchange reagent. Conditions: [BBMIm][Br] aq.
solution (0.20M), various volumes of LiNTf2 aq. solution (0.20M), elution
with 40μL acetonitrile. eEffect of pH. [BBMIm][Br] aq. solution (0.20M),
LiNTf2 aq. solution 500μg L

−1 (0.20M), acetonitrile 40μL, pH previously
adjusted with HCl and NaOH, extraction time 1 min. f Effect of extraction
time. [BBMIm][Br] aq. solution (0.20 M), LiNTf2 aq. solution 500 μg L

−1

(0.20 M), acetonitrile 40 μL, pH not adjusted. The bars in the figure repre-
sent standard deviation (±SD)
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[C4(BMIm)2][N(Tf)2]2 showed a low recovery. When equimo-
lar IL was added, [C4(MIm)2][N(Tf)2]2 formed the largest
amount of hydrophobic IL, and made the whole system more
turbid than the other ILs did; after a vigorous oscillation, hydro-
phobic IL was easily separated from the water. A possible rea-
son is that the stronger hydrophobicity of the cationic molecule
favors the aggregation of the ILs. Therefore, more monomers
are included in the IL aggregates, which could reduce the en-
richment efficiency because of partial extraction of the analyte
[26]. On account of the good concentration effect,
[BBMIm][Br] was used to extract triazole fungicides in water
samples in the next processes. According to the results, some
relationships between the chemical structure of the imidazolium
ILs and the extraction recovery of the triazoles can be deduced:
mono-cationic ILs had much better recovery than dicationic
ILs, and mono-imidazolium IL bearing butyl groups at N-1
and N-3 sites had the best recovery. When the length of the
alkyl substituent group was more than four carbons at the N-3
site, the recovery decreased with increase of alkyl chain length
of 1-butylimidazolium IL.

Effect of diluent

In DLLME, the diluent must be rather miscible with both
hydrophilic and hydrophobic ILs. It is therefore expected that
the presence of a diluent promotes desorption of hydrophobic
ILs which contained analytes out from the Fe3O4. For this
purpose, methanol, isopropanol, dimethyl sulfoxide
(DMSO), and acetonitrile were tested as diluents. The volume
of each diluent added was 40 μL and the results are shown in
Fig. 2b. When acetonitrile was used as the diluent, all four
triazoles had the best recoveries.

Effects of amount of IL and molar ratio of IL/LiNTf2

The effect of the amount of [BBMIm][Br] on recovery was
studied in the solution (0.20 M) with volume range of 200–
700 μL when keeping the molar ratio of [BBMIm][Br] to
LiNTf2 at 1:1. As can be seen from Fig. 2c, the optimal vol-
ume of [BBMIm][Br] was 500 μL corresponding to adding

0.0001 mol of [BBMIm][Br]. Higher amounts of
[BBMIm][Br] caused a decrease of extraction efficiency,
which could be due to the limited sample volume.

Different molar ratios ranging from 0.5:1 to 2:1 were tested
when the volume of [BBMIm][Br] aqueous solution (0.20 M)
was set to 500 μL (Fig. 2d). In the range of 0.5:1 to 1:1, the
extraction efficiency of triazoles was increased. Higher ratios of
[BBMIm][Br] to LiNTf2 showed a declining trend. Therefore,
0.0001 mol of [BBMIm][Br] and 500 μL of LiNTf2 aqueous
solution (0.20 M) were used in next experiments.

Effects of pH and extraction time

The pKa values of triazole fungicides are 1.21–5.39 [33].
Hence, the pH of water samples can affect the solubility and
hydrolytic degradation of pesticides. The pH also can influ-
ence the solubility of in situ hydrophobic ILs and the stability
of the formed microemulsion system. In natural conditions,
the pH value of water is 6.5–9.0; the maximum change per-
mitted as a result of a waste discharge must not exceed 0.5 pH
units [34]. Effects of pH from 3 to 8 on the recoveries of
triazoles were investigated as shown in Fig. 2e. Higher recov-
eries of triazoles can be achieved at pH 4. Therefore, samples
solutions were adjusted to pH 4 before enrichment by adding
HCl solution.

LLE involves exploiting the difference of solubility of the
analytes in aqueous phase and in immiscible organic phase,
and it needs time to achieve the extraction balance [35].
DLLME is carried out between the sample and a formed cloud
of fine extractant drops when the mixture of extraction and
disperser solvents is injected into the aqueous sample [36].
The contact surface between phases is widely increased and
leads to reduction of extraction time and improvement of en-
richment factor. Because the in situ hydrophobic ILs have abil-
ities both as a disperser and extractor, in situ IL-DLLME saves
more time than the original DLLME method does. In this re-
search, extraction time was from the point of adding the
LiNTf2 to the point of using the magnet to adsorb the IL.
Figure 2f confirms the expected result that in situ IL-DLLME
does not need much time, and 30 s can afford a good recovery.

Table 2 Method validation

Compound Linearity equation Linearity (μg L−1) r2 Intra-day precision
RSD (%)

Inter-day precision
RSD (%)

EFa LODb (μg L−1) Recovery (%)

Cyproconazole Y = 954.64X − 876.95 5–250 0.999 5.23 6.85 187 1.44 90.0

Myclobutanil Y = 2204.1X − 6171.9 5–250 0.999 5.24 5.81 323 0.74 101.5

Tebuconazole Y = 1404.6X − 6717.1 5–250 0.998 8.65 8.94 211 1.24 97.3

Prothioconazole Y = 1725.5X − 8942.2 5–250 0.999 6.69 6.95 247 0.83 87.4

aMean enrichment factor: calculated according to Eq. (1) by taking the average of six repeated EFs which were measured under optimized conditions. In
each repetition, C0 was 0.10 mg L−1

b Limits of detection for the HPLC method, calculated as described in the text
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Method validation

Under the optimized conditions, the proposed in situ IL-
DLLME was validated for LODs, linear range, determination
coefficients (r2), and enrichment factor, and the results are
shown in Table 2. Cyproconazole, myclobutanil, tebuconazole,
and prothioconazole exhibited good linearity with r2 = 0.999 in
the range of 5–250 μg L−1. The LODs ranged from 0.74 to
1.44 μg L−1 and enrichment factors were in the range of 187–
323. The intra-day relative standard deviations (RSDs) ranged
from 5.23% to 8.65% (n = 6). The inter-day RSDs ranged from
5.81% to 8.94% (n = 6).

Table S1 (see ESM) shows the comparison of the proposed
in situ IL-DLLMEmethodology with several reported methods
for extraction of triazoles in water samples followed by HPLC
[6, 7, 14, 16, 37]. It can be observed that the entire process time
is rather short (less than 3 min). There may be two reasons or
this: one is the excellent stability of the microemulsion system
formed by [BBMIm][N(Tf)2]2, and the another is the utilization
of ultrasmall superparamagnetic Fe3O4, which requires less
time for separation of phases. The developed in situ IL-
DLLMEmethod presented similar LODs to other studies when
used in combinationwithHPLC-UV.Moreover, the enrichment
factors, between 187 and 323, are relatively high.

Fig. 3 HPLC analysis of triazoles
in water sample. a Standards, b
pond water sample without
pretreatment, c pond water
sample after pretreatment, d
spiked pond water sample (10 μg
L−1) after pretreatment; 1/1'
cyproconazole, 2/2' myclobutanil,
3/3' tebuconazole, 4/4'
prothioconazole. Conditions: 10
mL sample, 500 μL
[BBMIm][Br] solution (0.20 M),
500 μL LiNTf2 solution (0.20M),
30 mg MNPs, elution with 40 μL
acetonitrile. HPLC conditions:
gradient of methanol/water (0.2%
acetic acid) in methanol: 0–10
min, 60–90%; 10–15 min, 90%;
flow rate 1.0 mL min−1, injection
volume 20 μL, photodiode array
detector 230 nm

Table 3 Recoveries of triazole pesticides in real water (RSD (%), n = 3)

Compounds Spiked level (μg L−1) Cyproconazole Myclobutanil Tebuconazole Prothioconazole

ER (%) RSD ER (%) RSD ER (%) RSD ER (%) RSD

Lake water 100 92.2 1.85 83.6 2.42 98.8 0.55 91.6 8.18

50 79.8 3.01 98.9 7.18 77.6 5.99 70.1 8.87

10 95.0 4.55 107.6 6.91 89.1 4.88 78.3 1.85

Tap water 100 85.2 8.20 81.0 7.64 71.6 8.04 87.4 8.35

50 86.0 6.93 72.5 1.50 98.8 1.15 79.7 10.7

10 92.7 3.20 95.8 4.17 99.4 3.65 83.5 5.68

River water 100 101.4 9.95 91.2 5.22 98.5 2.70 91.9 0.47

50 105.3 11.32 102.4 4.68 100.5 1.74 96.1 2.82

10 106.2 2.71 102.9 2.99 110.8 3.79 115.0 2.48

Pond water 100 102.0 1.48 86.2 6.38 103.1 8.31 80.9 0.48

50 112.5 9.84 93.3 3.29 92.3 1.41 98.7 9.44

10 94.2 2.02 96.0 2.98 101.6 8.35 83.7 3.46
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Application to real water samples

The validated method was finally applied to the analysis of
four real water samples. The analytes detected were quantified
by the standard addition method. All four triazoles were not
detected in this method. Figure 3 shows the typical chromato-
grams of pond water with in situ IL-DLLME optimized in this
study. As is presented in Table 3, the recoveries were more
than 70% for all target analytes, with RSDs ranging from
0.47% to 11.32% in tap, pond, river, and lake water samples.

Conclusions

In this work, five novel synthetic imidazolium-based ILs and a
commercial IL ([BMIM][Br]) were used to enrich triazoles in
water. Thus, [BBMIm][Br] (500 μL, 0.20 M) reacted in situ
with LiNTf2 (500 μL, 0.20 M) forming hydrophobic IL as the
extraction agent, and 30 mg of Fe3O4 was added to water
samples whose pH had previously been adjusted to 4 with
HCl; finally 40 μL acetonitrile was injected as the diluent.
Under these optimized conditions, high recoveries in pure
water (87.4–101.5%) and real water (70.1–115%), short pre-
treatment time (<3 min), and low extraction solvent consump-
tion were achieved. This method is promising and can be
further applied to analyze and monitor many kinds of pesti-
cides in other related samples.
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