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Abstract A rapid lateral flow immunochromatographic
strip (ICS) using fluorescein isothiocyanate (FITC) la-
beled antigen and antibody was developed for the detec-
tion of Acidovorax citrulli (Ac) in melons and vegetable
samples. In the ICS, signal amplification was realized
based on antigen Ac and anti-Ac monoclonal antibody
(McAb) 4F conjugated with FITC, respectively, which
were forming two probes. The control line and the test
line were obtained by immobilizing the goat anti-mouse
IgG antibody and anti-Ac McAb 6D on both sides of the
nitrocellulose membrane. The visual detection limit of the
strip was 105 CFU/mL, which was 10-fold sensitive com-
pared to the strip of FITC only labeling antigen or antibody.
Signal amplification ICS was successfully applied to the
detection of Ac in melon and vegetable samples with less
detection time and operation procedures compared to the
traditional enzyme-linked immunosorbent assay (ELISA)
and PCR methods. This is the first report of using FITC
labeled antigen and McAb as dual fluorescent probes to
develop a direct-type immunofluorescence strip for the rap-
id and sensitive detection of Ac, which demonstrates a pow-
erful tool for rapidly screening Ac in plant materials and
other samples.
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Introduction

Bacterial fruit blotch (BFB) caused by gram-negative bacteri-
um Acidovorax citrulli (Ac) is a devastating bacterial disease
to many cucurbitaceous plant species, e.g., watermelon, mel-
on, cucumber, pumpkin, and other cucurbits [1]. Ac, as a seed-
borne pathogen, can infect seeds, seedlings, and fruits, and the
infested seeds are usually the most important source for BFB
outbreaks [2]. Since the first report in commercial products in
1965 [3], BFB has caused millions of dollars of loss around
the world, such as United States, Australia, Brazil, Turkey,
Japan, Thailand, Israel, Iran, Hungary, Greece, and China.
So far, there are still no commercial species that could
completely resist BFB [4]. Hence, relatively effective BFB
management is early detection, diagnosis, and clearance of
Ac from all commercial seeds and seedlings.

As we all know, membrane-based lateral flow
immunochromatographic strip (ICS) has been a powerful tool
for simple, rapid, and low-cost detection. The assay procedure
could be significantly simplified to avoid the requirements for a
long incubation time and complex operation steps, which is es-
pecially suitable for personal detection or in places where com-
plicated equipment is not available. Lately, ICS tests based on
colloidal gold as a tracer have been widely used for the detection
of foodborne pathogens [5], mycotoxins [6], pesticide residues
[7], heavy metal ions [8], prohibited additives [9], antibiotics
residues [10] etc. However, ICS based on colloidal gold shows
a serious limit when high sensitivity is needed. Many strategies,
such as selecting new labels, e.g., quantum dot [11] and
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upconverting nanophosphors [12], combining with other reagent
or other techniques [13], e.g. magnetic capture [14] and PCR-
basedmethods [15], designing new patterns [16], and developing
signal amplification system [17], were applied to enhance the
sensitivity of lateral flow immunoassay.

Fluorescein isothiocyanate (FITC), a fluorochrome dye,
which could emit a visible yellow-green light after absorbing
blue or ultraviolet light. As a fluorescent probe, FITC has been
widely used to show the intracellular localization of pathogens
[18], visualize live cells [19], trace drugs in vivo delivery [20,
21], estimate in vivo counts during passage of probiotics [22],
and other fields. FITC was also regarded as a promising tracer
for immunochromatographic assay duo to the unique properties,
such as strong luminescence, photo-stability, satisfactory label-
ing effect, and low cost. These propertiesmake it possible to be a
new label material for developing highly sensitive ICS assays.

Recently, monoclonal antibody (McAb) 4F and 6D against
Ac have been prepared in our lab, which possessed sufficient
sensitivity and specificity for the analysis of Ac. In this study, a
novel signal amplification fluorescent immunoassay method
based on a common fluorochrome dye, FITC, was developed.
ICS was successfully applied with the target bacteria as a novel
fluorescent probe after incubation with FITC and the FITC la-
beled McAb 4F as the second fluorescent probe. The results
indicated that the dual labeled method could enhance the sensi-
tivity for the detection of Ac, and the assay would be a useful
tool for the early diagnosis, prevention, and control of BFB in
the future.

Materials and methods

Bacterial strains and materials

TheMcAbs (6D and 4F) against Ac were produced in our lab as
previously reported [23]. Strains used for testing the cross-
reaction of the strip are listed in Table 1. All the strains were
obtained from the Chinese Academy of Inspection and
Quarantine (Beijing, China). Brain heart infusion (BHI)medium
was purchased from Land Bridge (Beijing, China). The nitro-
cellulose (NC) membrane, sample pad, conjugate pad, and ab-
sorbent pad were purchased from Millipore (Bedford, MA,
USA). FITC ≥ 90% (HPLC) and dimethylsulfoxide (DMSO)
were purchased from Sigma (St. Louis, MO, USA). All solvents
and other chemicals were of analytical reagent grade.

Conjugate of antibodies to FITC

Bicarbonate/carbonate buffer at pH 9.0 was used to dilute the
purified monoclonal antibody (McAb) 4F from 10 mg/mL to
4 mg/mL. Freshly prepared FITC solution dissolved in
DMSO was added slowly dropwise to the antibody solution
until a final concentration of about 150 μg FITC per mg

McAb. The mixture was kept in the dark and reacted at room
temperature for 2 h. Then the reaction mixture was dialyzed to
separate the conjugated antibody from the free FITC. The
labeled antibody was stored at 4 °C before use.

Bacteria culture and sample pretreatment

Freshly prepared FITC solution dissolved in DMSO was added
to BHI medium, which was used for bacteria culture. A single
colony was added to the modified BHI (45 mL) containing plant
juice sample (5 mL) and incubated at 37 °C overnight. Bacterial
concentration was diluted by sterile saline and determined by
plate count or by microplate reader (SpectraMax M2;
Molecular Devices, Sunnyvale, CA, USA). The fluorescence
intensity of bacteria was determined by flow cytometry
(Becton Dickinson, Franklin Lakes, NJ, USA).

The optimum concentration of FITC

The concentration of FITC solution for sample incubation
could influence the background and final fluorescence inten-
sity of the test line. Freshly prepared FITC solution was dilut-
ed to different concentrations of 10 μg/mL, 25 μg/mL, 50 μg/
mL, 100 μg/mL, 200 μg/mL, 300 μg/mL, 400 μg/mL to cul-
ture Ac. After incubating at 37 °C for 12 h, fluorescence in-
tensity was detected by flow cytometry.

Fabrication of the immunoassay strip and results
judgment

The immunofluorescence strip is usually composed of the fol-
lowing five parts: a sample pad, a conjugate pad, a NC mem-
brane, an absorbent pad, and a plastic backing board. A sche-
matic presentation of the test strip is shown in Fig. 1a. The
sample pad (2.5 × 30 cm) and conjugate pad (0.5 × 30 cm) were
made of the same type of glass fiber, and the adsorbent pad (3 ×
30 cm) was made of cellulose fiber. The anti-Ac McAb 6D and
goat anti-mouse IgG were transferred onto both sides of the NC
membrane (2.5 × 30 cm) using anXYZ arrayer (Bio-Dot, Irvine,
CA, USA) with 1 μL/cm volume at 4 cm/s dispensed rate to
form test line and control line, respectively. FITC labeled anti-
AcMcAb 4Fwas dispensed onto the conjugate pad followed by
drying at room temperature. The spotted NC membrane, absor-
bent pad, conjugate pad, and sample pad were assembled se-
quentially on the backing board (8 × 30 cm) with approximately
2 mm overlap. The assembly was cut into 3 mm wide strips
using a guillotine cutter (Bio-Dot). All strips were sealed with
desiccant and stored at room temperature.

The preparation of the strip is based on the classic double
antibodies sandwich theory. The complex FITC Ac from sam-
ple was first combinedwith FITC-4F coated on conjugate pad,
and then the complex FITC Ac-4F FITC flowed through the
NC membrane via capillary action. Subsequently, the FITC
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Ac-4F FITC bound toMcAb 6Dwas immobilized on test line,
which formed a tripolymer FITC 4F-FITC Ac–6D in test line
area. Accumulative FITC displayed yellow-green

fluorescence under ultraviolet light as shown in Fig. 1b.
Conversely, if there was no Ac in the samples, the FITC did
not accumulate on the test line (Fig. 1c).

Sensitivity and specificity of the test strip

To evaluate the sensitivity, the SD01 strain diluted to 104–108

CFU/mL concentrations were analyzed with the strip. The Ac
detection was carried out by applying 75 μL sample solution
to the sample pad. Modified BHI medium containing FITC
was used as negative control. After 10 min, the results of test
line and control line were visualized in a black box equipped
with an ultraviolet light source and a fluorescent filter of
525 nm (Semrock, Rochester, NY, USA), and then recorded
with a digital camera.

The strip was stored at room temperature for 1, 2, and 3 mo
to assess the stability by evaluating the sensitivity in 105 CFU/
mL. The same test was conducted as described above.

Eight strains of Ac (SD01, ATCC 29625, 99-5, xj112,
PLSB1, 00-1, plsb91, tw31) and six strains of Ac genetic
nearly plant pathogens (ATCC 33996, NCPPB 961, ATCC
19307, NCPPB 2597, NCPPB 540, NCPPB 2975) were cul-
tured in modified BHI medium and tested to evaluate the
specificity of the strip. All bacterial suspensions were adjusted
to the same concentrations using a microplate reader.

Application to real samples and comparison with PCR
methods

The Ac free plant samples collected from the field, including
watermelon, muskmelon, cantaloupe, luffa, wax gourd,
pumpkin, cucumber, and summer squash, were verified by
PCR methods. The modified BHI (45 mL) containing juice
(5 mL) from plant samples was used to cultivate SD01 strain.

Table 1 Strains used in this study
No. Species/strains Host Origin PCR

1 Acidovorax citrulli SD01 Watermelon Shandong, China +

2 Acidovorax citrulli ATCC 29625 Watermelon Georgia, USA +

3 Acidovorax citrulli tw31 Watermelon Taiwan, China +

4 Acidovorax citrulli plsb91 melon Inner Mongolia, China +

5 Acidovorax citrulli xj112 Cantaloupe Xinjiang, China +

6 Acidovorax citrulli 99-5 Cantaloupe Georgia, USA +

7 Acidovorax citrulli PLSB1 melon Inner Mongolia, China +

8 Acidovorax citrulli 00-1 Watermelon Georgia, USA +

9 Acidovorax konjaci ATCC 33996 Konjac Japan +

10 Acidovorax cattleyae NCPPB 961 Unknown Unknown +

11 Acidovorax avenae ATCC 19307 Sugarcane Reunion +

12 Xanthomonas Cucurbitae NCPPB 2597 Curcurbita maxima New Zealand +

13 Pseudomonas Lachrymans NCPPB 540 Cucumber Denmark +

14 Erwinia tracheiphila NCPPB 2975 Cucumis sativus USA +

a

b c

Fig. 1 (a) Schematic presentation of the test strip; (b) positive result of
the test strip; (c) negative result of the test strip
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Then, these inoculums were diluted to 105 CFU/mL for strip
detection. The purpose was to determine whether the impuri-
ties in the juice from the plants could impact the smallest
detectable concentration.

Results

Optimization of parameters

To develop the strip, many factors should be optimized to
increase the sensitivity. After incubation at different FITC
concentrations of 10 μg/mL, 25 μg/mL, 50 μg/mL, 100 μg/
mL, 200 μg/mL, 300 μg/mL, 400 μg/mL, the Ac was with
different fluorescence intensity. As shown in Fig. 2, the Ac
without fluorescence was distributed in M1 region (Control),
and the fluorescent bacteria were distributed in M2, M3, or
M4 areas according to the fluorescence intensity from 10 to
104. The percentage of fluorescent bacteria (in M2+M3+M4
area) and the distribution in M2, M3, or M4 areas were differ-
ent. Since there were almost no bacteria in the M4 region, the
proportion of bacteria distributed in M3 region was the basis
for determining the optimum FITC concentration.

Comparison with the proportion of the M3 area, 25 μg/mL
was considered to be the optimal FITC concentration for de-
tection. In addition, when the FITC concentration was at 25
μg/mL, the proportion of fluorescent bacteria (M2+M3+M4)
was up to 98.9%, which was higher than others. Figure 3 was
the morphological picture of Ac cultured with FITC viewed
under fluorescent microscope with blue light. After incubating
with FITC, the bacteria became fluorescent probe.

The concentration of McAb 6D is also important for the
performance of the strip since the color of the test line deep-
ened with the increase of 6D concentration. However, the
blank control had a false-positive result when the 6D concen-
tration was higher than 2 mg/mL. Thus, the optimal concen-
tration of 6D was determined to be 2 mg/mL. The concentra-
tion of FITC-4F measured by NanoDrop (Thermo, Waltham,
MA, USA) was 2 mg/mL.

Sensitivity and stability of the ICS

To identify the sensitivity, a diluted gradient of SD01 (108–
104 CFU/mL) was added to the sample pad of the dual FITC
labeled ICS. As shown in Fig. 4c, the yellow-green light of
the test line was evident for concentrations ranging from
108 to 105 CFU/mL. When the concentration was below
104 CFU/mL, there were no lines observed, which indicated
that the detection limit was 105 CFU/mL. However the im-
munoassay strip based on FITC just labeling antigen (Fig.
4a) or antibody (Fig. 4b) displayed the sensitivity of 106

CFU/mL. All the results indicated that the method of
FITC labeling antigen and antibody successfully achieved
the effect of signal amplification, which realized a 10-fold
increase in sensitivity compared with FITC just labeling
antigen or antibody.

The stability of the strip was assessed through the sensitiv-
ity test. After storing at room temperature for 1, 2, and 3 the
sensitivity test was performed and no exceptional results ap-
peared. Therefore, we concluded that the strip could be stored
for at least 3 mo without losing stability.

Fig. 2 The fluorescence intensity detected by flow cytometry. M1: bacterial with fluorescence intensity of 1–10; M2: bacterial with fluorescence
intensity of 10–102; M3: bacterial with fluorescence intensity of 102–103; M4: bacterial with fluorescence intensity of 103–104
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Specificity of the ICS

Since the common antigen of most bacteria, including Ac, is
still unknown, the detection of different serotypes to evaluate
the specificity of the strip are of critical importance. The spec-
ificity of the ICS was evaluated using eight strains of Ac and
six genetically similar species to Ac. As shown in Fig. 5, eight
strains of Ac (1 to 8) demonstrated positive results, and the
other strains similar to Ac (9 to 14) produced negative results,

which indicated that the strip possessed high specificity for the
detection of Ac.

The fluorescence intensity of the control line for the posi-
tive results (1 to 8) was visibly higher than the fluorescence
intensity of the negative results (9 to 14). The fluorescence of
control line for positive results was from fluorescent bacteria
and 4F-FITC, and the fluorescence was just from 4F-FITC
after 4F-FITC combining with goat anti-mouse IgG antibody
for negative results.

Sample analysis

To ensure the applicability and accuracy of the strip in real
samples, eight species of cucurbitaceous plant, including wa-
termelon, cantaloupe, muskmelon, pumpkin, cucumber, luffa,
wax gourd, and summer squash were used to simulate Ac
infection. As shown in Fig. 6, all Ac samples presented pos-
itive results, indicating the impurities in plant juice would not
impact the accuracy of detection results, and the smallest de-
tectable concentration in real samples was 105 CFU/mL,
which was consistent with the PCR results (Fig. 7).

To further confirm the specificity of the strip and the detec-
t ion performance for real samples, 14 strains of
cucurbitaceous common pathogen, including eight strains of

Fig. 5 The cross-reaction results of the strip. 0: Blank control; 1: SD01;
2: PLSB1; 3: xj112; 4: 00-1; 5: plsb91; 6: 99-5; 7: tw31; 8: ATCC 29625;
9: ATCC 19307; 10: NCPPB 961; 11: ATCC 33996; 12: NCPPB 2975;
13: NCPPB 540; NCPPB 2597

Fig. 4 The sensitivity of the ICS (CFU/mL). 0: blank control; a:
immunoassay strip based on FITC labeling antigen; b: immunoassay
strip based on FITC labeling antibody coated on conjugate pad; c:
immunoassay strip based on FITC labeling antigen and antibody

Fig. 3 The morphological picture of Ac cultured with FITC viewed
under fluorescent microscope with blue light
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Ac and six stains of plant pathogens, were mixed with water-
melon juice for strip test. As shown in Table 2, the detection
results were not affected by the juice, indicating the strip pos-
sessed high specificity and was suitable for the detection of Ac
in real samples.

Discussion

In this study, a new antigen and antibody dual labeled method
using FITC was developed. FITC was used to make the bac-
teria fluoresce during bacterial enrichment process; the fluo-
rescence stability of the labeling method has been proven
before. The assay of FITC-labeled probiotic during gastroin-
testinal transit in broilers [22] and FITC-BSA-loaded chon-
droitin sulfate-chitosan nanoparticles upon Caco-2 cell uptake
[24] verified that the bacterial fluorescence was very stable
and was not quenched after entering the cell. In summary,
the labeling method in vivo could make the bacteria emit
stable and bright fluorescence.

Many methods for Ac detection were reported in recent
years. The sensitivity of ELISA [25] and microsphere-based
assay [26] were 104 CFU/mL with long time incubation and
complex steps. PCR-based methods [27, 28] with the sensitivity
of 32 and 10 CFU/mL, required trained technicians and precise
instruments. Recently, DNA strip [29] has gained much atten-
tion owing to the high sensitivity of 4 nM. However, the process
of pretreating sample to obtain DNA before detection was com-
plex and time-consuming. The colloidal gold-based strip for Ac
detection has been reported with the detection limit of 105 CFU/
mL, while the chemical and colloidal instability in biological
environment may lead to inaccurate result [30].

Compared with the methods mentioned above, antigen and
antibody dual labeled immunofluorescence strip developed in
this study is simple, fast, convenient, and easy to operate. The
detection limit was successfully realized to 105 CFU/mL,
which was 10-fold more sensitive compared with the strip of
FITC only labeling antigen or antibody. In addition, there was
a positive correlation between the Ac concentration and the
fluorescence intensity of test line. The developed strip could
detect the majority of Ac and had no cross-reactions with other

Table 2 The specificity of the strip for real samples

No. Species/strains Detection by ICS

1 SD01 +

2 ATCC 29625 +

3 tw31 +

4 plsb91 +

5 xj112 +

6 99-5 +

7 PLSB1 +

8 00-1 +

9 ATCC 33996 _

10 NCPPB 961 _

11 ATCC 19307 _

12 NCPPB 2597 _

13 NCPPB 540 _

14 NCPPB 2975 _

Fig. 7 The PCR results of artificial contaminated samples in 105 CFU/
mL. M: marker; 1: Watermelon; 2: Cantaloupe; 3: Muskmelon; 4:
Pumpkin; 5: Cucumber; 6: Luffa; 7: Wax gourd; 8: Summer squash

Fig. 6 The detection results of artificial contaminated samples in 105

CFU/mL. 0: blank control; 1: Watermelon; 2: Cantaloupe; 3:
Muskmelon; 4: Pumpkin; 5: Cucumber; 6: Luffa; 7: Wax gourd; 8:
Summer squash
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plant pathogens. This antigen and antibody dual labeled, one-
step Ac detection method have many advantages, such as reduc-
ing the cost and possessing high stability, which will be a more
popular and useful tool for the early diagnosis, prevention, and
control of BFB in the future.
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