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Abstract Toxicity assessment of water is of great important to
the safety of human health and to social security because of
more andmore toxic compounds that are spilled into the aquat-
ic environment. Therefore, the development of fast and reliable
toxicity assessment methods is of great interest and attracts
much attention. In this study, by using the electrochemical
activity of Shewanella oneidensis MR-1 cells as the toxicity
indicator, 3,5-dichlorophenol (DCP) as the model toxic com-
pound, a new biosensor for water toxicity assessment was
developed. Strikingly, the presence of DCP in the water sig-
nificantly inhibited the maximum current output of the
S. oneidensisMR-1 in a three-electrode system and also retard-
ed the current evolution by the cells. Under the optimized
conditions, the maximum current output of the biosensor was
proportional to the concentration of DCP up to 30 mg/L. The
half maximal inhibitory concentration of DCP determined by
this biosensor is about 14.5 mg/L. Furthermore, simultaneous
monitoring of the retarded time (Δt) for current generation
allowed the identification of another biosensor signal in

response to DCP which could be employed to verify the elec-
trochemical result by dual confirmation. Thus, the present
study has provided a reliable and promising approach for water
quality assessment and risk warning of water toxicity.
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Introduction

Water toxicity has become of great concern over the past de-
cade as more and more toxic contaminants are spilled into the
water owing to the fast development of modern industry and
agriculture [1, 2]. These toxic contaminants in water seriously
threaten the safety of human health as well as the ecosystem
on the earth, which might also result in serious social prob-
lems [3]. Thus, various methods have been developed to mon-
itor the toxic contaminants in water. Conventional physical-
chemical methods including gas/liquid chromatography or
coupled with mass spectrometry provide an accurate and sen-
sitive method for determination of the quantity of specific
contaminating compound [1, 4]. However, the water contam-
inations became more and more complex, where the diversity
of the toxic compounds dramatically increased, and emerging
or inter-react contaminants also occurred [5–8]. It is quite a
challenge to quantify all the toxic compounds in contaminated
water samples fast with the conventional methods. Moreover,
due to the presence of inter-react or synergetic toxicity, the
composition of chemical compounds and the quantity of spe-
cific compounds in Bcombined pollutants^ or Bco-
contaminations^ may not accurately reflect the toxicity of
the contaminations, which is a more direct and meaningful
indicator for the water quality [9]. Therefore, it is urgently
needed to develop a new method for fast determination of
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the toxicity of the water, which is of great importance for
water quality assessment and toxicity risk warning.

During the past decades, various methods have been devel-
oped to detect the water toxicity. Living organisms including
vertebrate model organism zebrafish and algae are often used
as biological recognition elements for toxicity biosensor de-
velopment, due to its inherent advantage of providing the
biological effects which might be more meaningful than the
information of chemical composition or quantity [9–11]. The
water toxicity usually affected the key biological processes
such as detoxification, photosynthesis, stress response, or res-
piration, which could be monitored by various biochemical
methods, and could therefore provide the information on tox-
icity level [9, 10, 12]. However, these higher organism-based
biosensors suffered from long incubation time (cell doubling
time, days or weeks) and complicated operation.
Microorganism which grows much faster (cell doubling time,
minutes to hours) and with easier operation procedure can
meet this challenge to provide a simple, fast, low-cost, and
easy operation method for toxicity assay [13]. More impor-
tant, microorganisms showed quick and sharp response to
various toxins/toxic compounds [13, 14]. Thus, toxicity bio-
sensors based on microorganism showed great promise and
have been extensively studied.

The biosensors based on living microorganism (especially
for bacteria) could be categorized as electrochemical, optical,
and spectroscopic sensors on the basis of the signal-
transducing technology. Among them, the electrochemical
biosensor attracted much attention owing to its simple instru-
ment requirement, readable signal provided, and easy opera-
tion [11, 15]. Thus, various whole-cell-based microbial elec-
trochemical biosensors have been adapted and are emerging as
a unique alternative to other analytical methods for water tox-
icity assessment [15]. This kind of biosensor usually relied on
the determination of toxin/toxic compound inhibition on the
respiratory/metabolic activity of the cells, which could be es-
timated by the oxidation current of electronmediators/shuttles.
Because the mediator/shuttle could be used as the intracellular
electron carrier and could be reduced by the cellar respiratory
chain or enzymatic events within the cells to form a reduced
mediator, which would be reoxidized at the working electrode
surface resulting in a current flow [16, 17]. For example, by
using benzoquinone as the mediator, the toxicity of heavy
metal ions, phenol, or pesticides was determined by bacterial
biofilm composed of Escherichia coli or mixed culture [15,
18, 19]. Besides, other bacterial species such as Psychrobacter
[16] and Bacillus [15] have been employed for biosensor de-
velopment, and other chemicals such as ferricyanide ion and
dimethylferrocene, are also used as the mediator [15].

Recently, another kind of bacterial species called
exoelectrogens which is capable of self-wiring the intracellu-
lar electrons to the solid electrode showed great promise in
developing various whole-cell-based electrochemical devices

[6, 20, 21]. It is speculated that exoelectrogens might be an-
other ideal choice for construction of whole-cell-based elec-
trochemical biosensor for toxicity detection. In this work, a
whole-cell-based electrochemical toxicity biosensor was de-
veloped using the model exoelectrogen of Shewanella
oneidensis MR-1. The effects of different sensing parameters
on the analytical performance of the biosensor were also ana-
lyzed. Impressively, it was found that this biosensor could
generate dual signals in response to the model toxic com-
pound of 3,5-dichlorophenol (DCP). With the cross confirma-
tion of dual signals, this biosensor provided a more reliable
way for toxicity detection and water quality assessment.

Materials and methods

Bacteria strains and chemicals

Shewanella oneidensis MR-1 was routinely cultivated in
Luria-Bertani (LB) broth (peptone 10 g/L, yeast extract 5 g/
L, NaCl 5 g/L, pH 7.0) at 30 °C with shaking (150 rpm) [22].
After being cultured in LB broth to the OD of 2.0, the cells
were harvested by centrifugation and resuspended with the
electrolyte (95% M9 mineral medium plus 5% LB broth,
10 mM lactate, 5 μM riboflavin) [22, 23] to the designed cell
density. The cell suspension was then used for biosensor as-
sembly. DCP and riboflavin with analytical grade were pur-
chased from Sinoreagent (Shanghai, China) and directly used
without further purification.

Electrochemical measurement

All electrochemical measurements and analyses were per-
formed by CHI-660E electrochemical workstation (Chenhua
Instruments Co., Ltd., Shanghai, China) equipped with a
three-electrode system (platinumwire counter electrode, a sat-
urated calomel electrode (SCE, + 0.243 V vs. SHE) as refer-
ence electrode, and a carbon cloth (1 cm × 2 cm) working
electrode). All potentials mentioned are reported versus
SCE. The electrochemical cell used is a 15-mL cylindrical
borosilicate glass bottle. All tests are performed in triplicate.

Biosensing system assembly and biosensing operation

For biosensing system assembly, a three-electrode system was
firstly equipped in the electrochemical cell (see Electronic
Supplementary Material (ESM) Fig. S1). Then, 12 mL cell
suspension (suspended in electrolyte with designed cell den-
sity) was added into the electrochemical cell. Next, DCP,
Cu2+, or Cr6+ with the designed concentration was injected
into the electrochemical cell and incubated for another 1 h.
After that, a poised potential was applied to the working elec-
trode and the current output was monitored with the CHI-
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660E electrochemical workstation. All assays were conducted
at 30 °C. The electrochemical cells and the electrolyte were
autoclaved under 121 °C for 20 min, and all the electrodes
used were sterilized by 75% ethanol and UV illumination.

Results and discussion

Biosensing system development and dual-signal
generation

S. oneidensis MR-1 is a typical exoelectrogen that is capable
of efficient electron transfer between bacteria and the elec-
trode [22, 24] (ESM Fig. S2). It was proved that the electron
flow between cells and the electrode was associated with the
metabolic activity of the cells [25, 26] (ESM Fig. S2). It was
also successfully used for electrochemical detection of differ-
ent biomarkers by analyzing the relationship between the elec-
tron flow and corresponding biological reactions [27–29].
Thus, S. oneidensisMR-1 was considered as an ideal bacterial
species for construction of bioelectrochemical system for bio-
sensing.With the aim to determine the water toxicity using the
electrochemical activity of bacteria as the indicator, the elec-
trochemical response of S. oneidensis MR-1 to the model
toxic compound DCP was determined.

Although most of the whole-cell-based electrochemical
biosensors need long time for biofilm growth [6] or compli-
cated procedure for cell immobilization on the electrode sur-
face [15], we tried to directly use suspension cells for electro-
chemical detection to simplify the operation and reduce the
time consumption. In accordance with previous report [30],
the cells generated significant current output under a poised
potential on the working electrode in the three-electrode elec-
trochemical cell (Fig. 1). After the ~ 500-s adaptation, the
current output gradually increased. Impressively, after about
1100 s, the current output increased exponentially and reached
the maximum current of about 3.8 μA (i0) at about 1250 s.
After DCP addition, the trend for current generation by
S. oneidensisMR-1 was similar to that without DCP addition;

i.e., after a lag phase with stable baseline current, the current
gradually increased and followed an exponential increase and
finally reached a stable plateau with the maximum current
output reached. As expected, the maximum current output
reached was dramatically inhibited by DCP addition. It was
found that the maximum current output is only about 2.0 μA
(i0) when 20 mg/L DCP was presented. The inhibition ratio
calculated for 20 mg/L DCP was 47.4%. The inhibition might
be due to the repression of DCP on the metabolic activity of
the bacterial cells, which, in turn, limited the extracellular
electron transfer between cells and the electrode. More strik-
ingly, after DCP addition, there was a longer lag phase
(t20 = 1854 s) than that of the control (t0 = 1187 s) for cell
adaptation observed (Δt = 667 s), which might be another
indicator for the toxicity of DCP. Thus, the results indicated
that the electrochemical activity of S. oneidensisMR-1 was in
response to the toxicity of DCP, and suggested that the elec-
trochemical cell inoculated with the S. oneidensisMR-1might
be used as a biosensor for water toxicity.

Effect of biosensing conditions on the analytical
performance

For toxicity biosensor, the time for incubationwith the toxicity
is an important parameter that determined the performance of
the biosensor. Theoretically, longer incubation time might in-
duce more serious damage to the microorganism and thus
resulted in higher inhibition ratio. However, the cells survived
during the incubation might gradually repair and recover by
themselves after prolonged culture. In addition, there is also a
trade-off between the detection time and the analytical perfor-
mance. Therefore, optimization of the incubation time was of
great importance to the toxicity biosensor. The biosensor re-
sponse to 20 mg/L DCP with different incubation times rang-
ing from 10 to 300 min was then determined. As shown in
Fig. 2a, the inhibition ratio increased along with the prolonged
incubation time from 10 to 60 min. After that, the incubation
time did not significantly affect the inhibition ratio. The po-
tential poised on the working electrode is another determining
parameter for the biosensor output. It was found that, when the
working electrode was poised at 0 or 0.5 V, the inhibition ratio
(55 ± 3.4% for 0 V, 58 ± 3.2% for 0.5 V) obtained was much
higher than that from the electrode poised at 0.2 V (38 ± 2.6%)
or 0.3 V (48 ± 4%) (Fig. 2b). Moreover, the current signal
output generated from the biosensor at 0.5 V was about 50%
higher than that from the biosensor at 0 V. Thus, 0.5 V was
selected as the optimum potential as higher current output is
crucial for the biosensor sensitivity. In addition, as cells served
as the biocatalyst for electron generation in this biosensor
system, the density of the cells in this system was believed
to significantly affect the performance of the biosensor. As
expected, the current output increased along with the elevated
cell density (OD 0.5 to OD 2.0) (Fig. 2c). However, the
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Fig. 1 The amperometric response of S. oneidensis MR-1 to DCP. The
sensing conditions are as follows: preincubation with DCP for 300 min,
working electrode potential at 0.5 V, and cell density at OD600 = 0.5

Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical... 1233



inhibition ratio reached its maximum at OD 1.0 (62 ± 2.5%)
and then decreased to 41 ± 5.6% at OD 1.5 or 39 ± 6.0% at OD
2.0. According to these results, the optimum conditions for
biosensing should be set as follows: incubation time of
60 min, working electrode poised at 0.5 V, and cell density
maintained at OD 1.0. Under the optimized condition, the
interference resistance and storage stability of this biosensor
were tested (ESM Fig. S3). It was found that the biosensor
output was not significantly affected by the addition of chem-
ical interferences such as glucose and lactate (ESM Fig. S3a).
Moreover, as most of the bacterial species is non-electroactive
which cannot produce obvious electric signal output, bacterial
contamination (Pseudomonas aeruginosa or Escherichia coli)
also only showed marginal influence on the biosensor output
(ESM Fig. S3a). Storage stability is another important

consideration for biosensor development. As S. oneidensis
MR-1 is resistant to low temperature, the biosensor can be
stored at 4 °C and the biosensor output did not show a signif-
icant decrease after 1 week storage (ESM Fig. S3b). These
results substantiated that the biosensor developed here is ro-
bust enough and showed great potential for practical
applications.

Determination of water toxicity with the developed system

Next, the biosensor response to different concentrations of
DCP was determined at the optimized conditions. The i-t
curves of the biosensor at different DCP concentrations
showed the similar sigmoid trends; i.e., there is a stable base-
line current output with about 0.5 μA immediately generated
after the biosensor was set up; then, the current output expo-
nentially increased after a lag phase; finally, the current output
reached its plateau and formed a stable maximum current
(Fig. 3). It was found that the current output was inhibited
by the addition of DCP, and the inhibition ratio increased
along with the elevated concentration of DCP (Fig. 3). More
interestingly, the time (tr) needed for biosensor to reach the
maximum current output was varied when different concen-
trations of DCP were added. It was speculated that the bacte-
rial cells under normal growth condition required additional
time (lag phase) [31] to adapt to the electrochemical condi-
tions probably by optimizing or reconstituting the extracellu-
lar electron transfer machinery [32]. Moreover, the adaptation
process might be affected by the bacterial viability and meta-
bolic activity which directly associated with the DCP concen-
tration added. As shown in Fig. 3, the lag phase and tr in-
creased along with the elevated DCP concentration. Thus,
the tr could be considered as another signal to determine the
DCP toxicity.

The relationship between the inhibition ratio and the DCP
concentrations was analyzed. As shown in Fig. 4a, the inhibi-
tion ratio increased linearly below the concentration of 20 mg/
L and then increased slowly above 20 mg/L. Based on the
linear dependency (R2 = 0.9755) between the inhibition ratio
and the DCP concentration ranging from 0 to 20 mg/L, the
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Fig. 2 The effect of (a) preincubation time (working electrode potential
set at 0.5 V, the cell density is OD600 = 0.5), (b) poised potential
(preincubation with DCP for 60 min, the cell density is OD600 = 0.5),
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without DCP addition at designed condition was used as the control for
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half maximal inhibitory concentration (IC50) of DCP deter-
mined was 14.5 mg/L, which is comparable with other assays
with activated sludge (Respirometer [33] or Cellsense [34])
(ESM Table S1). However, the results obtained from assess-
ment with activated sludge might show a significant differ-
ence which is even not comparable between different labora-
tories due to the variation of the bacterial community between
different activated sludge [15]. The IC50 obtained here is also
comparable with E. coli- or P. aeruginosa-based colorimetric
biosensors [14, 35] and much lower than Vibrio fischeri-based
Cellsense assessment [34] (ESM Table S1). Moreover, this
biosensor showed good dose-dependent response to the heavy
metal ions and could be applied for determination of heavy
metal toxicity (Cu2+ and Cr6+) (ESM Fig. S4).

In good agreement with the DCP toxicity determined by
the current output, the response of Δt to different concentra-
tions of DCP (Fig. 4b) showed the similar trends with that of
the current output (Fig. 4a). Strikingly, it was found that an

excellent linear dependency (R2 = 0.9989) could be
established between Δt and the DCP concentration (below
20 mg/L). The results confirmed thatΔt could serve as anoth-
er signal output for toxicity detection (Fig. 4b). Moreover, the
relationship between Δt and inhibition ratio was analyzed. It
was found thatΔt showed a linear dependency (R2 = 0.9541)
upon the inhibition ratio of biosensors with different DCP
concentrations (Fig. 4c). Therefore, the results indicated that
the toxicity of DCP determined by inhibition ratio with current
signal output could be confirmed by another signal output
(Δt) and thus guaranteed a reliable detection result. To the
best of our knowledge, this is the first whole-cell-based tox-
icity biosensor with dual-signal confirmation, which would be
promising for reliable toxicity assessment. To create the credit
of this biosensing method, simulated real samples were pre-
pared using river water spiked with different amount of DCP
and toxicity analyses were performance with this newly de-
veloped biosensor. It was found that the recovery obtained by
the biosensor was over 85% and the variation was less that
6%, indicating good accuracy and repeatability (ESM
Table S2).

Conclusion

In this work, a bioelectrochemical biosensor with dual-signal
generation for water toxicity determination was developed.
By using the model exoelectrogen S. oneidensis MR-1 cells
as the recognition and signal generation elements, the electro-
chemical response (current output) of cells to the model toxic
compounds was determined. More impressively, this biosen-
sor generated another signal output (Δt) besides the current
response, which showed excellent linear relationship with the
DCP concentration and could be used as another confirmation
signal for the electrochemical assessment. The toxicity assess-
ment method developed here provided a simple, fast, and re-
liable tool for water toxicity detection, and the idea of dual-
signal confirmation would be promising for new toxicity bio-
sensor design.
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