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Abstract Chemometrics has achieved major recognition and
progress in the analytical chemistry field. In the first part of
this tutorial, major achievements and contributions of
chemometrics to some of the more important stages of the
analytical process, like experimental design, sampling, and
data analysis (including data pretreatment and fusion), are
summarised. The tutorial is intended to give a general updated
overview of the chemometrics field to further contribute to its
dissemination and promotion in analytical chemistry.
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Introduction (historical perspective)

Chemometrics in analytical chemistry originated from several
sources.

An important historic catalyst was quantitative analytical
chemistry. Although early acknowledged reports stretch back
to the sixteenth century, with attempts to assay the amount of
gold and silver, it was not until the early twentieth century that
quantitative analysis became a widespread discipline. All an-
alytical chemists are aware of concepts of precision, accuracy,
errors (or uncertainty), which gradually coevolved together
with quantitative analytical chemistry.

By 1949 Mandel describes the use of least squares regres-
sion, experimental designs and analysis of variance, ANOVA
[1] in analytical chemistry, nearly 25 years before the word
Bchemometrics^ was invented. Over many years, statistical
methods have always been a cornerstone of modern analytical
chemistry.

The second catalyst, multivariate methods, was first report-
ed in a modern context of physico-analytical chemistry as a
method for determining the number of components in spectra
of mixtures in the early 1960s [2, 3]. However, these early
pioneering papers, appearing throughout this decade, were
primarily written from the point of view of theoretical chem-
istry. Determining the number of components in a spectrum of
mixtures was viewed as a problem of similar interest to that of
obtaining a quantum mechanical model for the lines in a spec-
trum. These methods however did not immediately reach
laboratory-based analysts with more limited access to comput-
ing power.

Another, separate, influence over multivariate methods
came via applied statistics following on from pioneers includ-
ing Pearson and then Fisher [4] whose work in the 1920s and
1930s defined much of our modern thinking and terminology
in multivariate analysis. The early work of these applied
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statisticians was primarily in agricultural statistics, although
applications widened to psychology and finance over that pe-
riod. Ideas such as principal component analysis, factor anal-
ysis and discrimination were developed.

Only in the 1970s did the two strands of multivariate think-
ing, from physical chemistry and from applied statistics, start
to converge. Terminology in both areas was quite different and
most of our modern terminology arises from statisticians.
Departmentalisation of academic research and publishing at
the time meant that mainstream statisticians rarely encoun-
tered quantitative chemists, and with separate libraries and
usually buildings, were rarely aware of each other’s work.

A third and important catalyst in the 1960s was the growth of
available computer power. Most computers accessible to scien-
tists up to the late 1970s were large off-line mainframes, pro-
grammed in languages such as Fortran. Originally only mathe-
maticians had good access to computers. Many of the multivar-
iate methods were of very limited applicability without reason-
able computer power. However, as the decades progressed, it was
increasing possible for applied scientists to get access to com-
puters. Crystallography was a major early application of com-
puters to the analysis of instrumental chemical data.

In the late 1960s, there started to emerge an interest in
machine learning. A strong influence had been the NASA
moon mission which led organic chemists to develop the area
of artificial intelligence for structure elucidation [5]. This led
to a variety of spin-off projects within chemistry, of which the
pioneering work of Kowalski, Jurs and Isenhour introduced
computerised pattern recognition to analytical chemists [6].

During the 1970s, the three themes of statistics in analytical
chemistry, multivariate statistics and computing started to con-
verge. The first paper to use the name chemometrics (in
Swedish) was published byWold but was on the topic of cubic
splines [7]. However, it took about a decade for this term to
become widespread. Many of the other pioneers used the term
Bchemical pattern recognition^ instead.

By the 1980s, several events provided visibility for the
subject. Of particular importance was a NATO sponsored
meeting held in Cosenza, Italy, where many of the early ex-
perts presented their work [8]. After this, the name
Bchemometrics^ took off. There were conferences, journals,
software packages and books that became widespread. In
Europe, several research groups, mostly in analytical chemis-
try, embraced the field of chemometrics, with Massart and
colleagues producing one of the earliest comprehensive texts
[9].

The early applications over this period were primarily in
quantitative analytical chemistry such as NIR calibration,
HPLC resolution and UV/Vis deconvolution. There was also
a growing application in the area of Multivariate Statistical
Process Control.

In the twenty-first century, another revolution occurred—
the rapid growth of cheap computing power, allowing

powerful algorithms that in the past took hours on desktops,
or required access to mainframes, to become routine tools for
the laboratory chemist. Hand in hand with this was the growth
of rapid, automated, instruments so large datasets (often called
megavariate data) could be generated, using approaches such
as hyphenated and multidimensional chromatography or
NMR.

This data explosion meant that chemometrics was no lon-
ger primarily focused on improving the quantitative perfor-
mance of analytical instruments. Pattern recognition [8–10]
became a widespread tool. Applications included biomedical
data, especially metabolomics [11] but also food chemistry
[12] as well as more recently developing areas including fo-
rensics and cultural heritage studies among others.
Chemometrics has developed as a widespread tool for the
applied analytical chemist as well as a more theoretical meth-
od to assist the improvement and development of instrumental
methods.

Chemometrics has moved far from the original vision of
the pioneers of the 1960s who would have envisaged it very
much as restricted to a tool from physical chemistry improv-
ing quantitative analysis, into a widespread technique integrat-
ed into many applications of applied laboratory-based analyt-
ical science. Figure 1 displays the workflow of chemometrics,
from data, information to knowledge and the usual steps
involved.

Experimental design

Early uses of statistical experimental design appeared in the
scientific literature of the eighteenth and nineteenth centuries,
introducing concepts such as randomization and blocking, but
it was not until the 1920s that statisticians started to introduce
a formalised approach. R.A. Fisher and colleagues at
Rothamsted Research Centre in the UK introduced many of
the concepts that we regard as the building blocks of modern
statistical thinking and his 1935 book BThe Design of

Fig. 1 Chemometrics workflow and steps involved
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Experiments^ is the first comprehensive treatise of the area
[13].

In the 1940s, statistical principles were gradually being
adapted by the chemical manufacturing industry and a new
generation of statisticians promoted this thinking, with em-
phasis on efficient process optimisation. G.E.P. Box was a
notable leader, originally working within Imperial Chemical
industries, ICI, until he moved to the USA. His book together
with Hunter and Hunter [14] is widely regarded as a bench-
mark for the modern era. As the 1970s passed, readily avail-
able computing power started to become a tool of the scientist,
and so an understanding of statistical experimental design was
no longer the exclusive province of the professional statisti-
cian. Analytical chemists became interested, for example to
tackle problems of HPLC optimisation or improving extrac-
tion procedure, where many factors influenced the desired
outcome. S.N. Deming was a powerful advocate [15] within
the analytical literature of the 1970s and 1980s. Using user-
friendly packages and spreadsheets, common designs, origi-
nally requiring complex mathematical calculations, became
widely available and understood.

There are many motivations for statistical experimental de-
sign. One of the foremost among analytical chemists is that
different factors interact, and so changing one factor at a time
can lead to false optima. For example, if a process is depen-
dent on both pH and temperature, to first keep the temperature
constant and then change the pH, then use this optimum pH
and change the temperature, may not lead to the true optimum.
This is because the temperature-dependent behaviour differs
according to pH and these factors cannot be considered inde-
pendently. The traditional approach is called One Factor At-a
Time (OFAT). In fact, OFAT can be used successfully in sci-
ence, for example, if we want to study Newton’s second law, a
good idea would be to keep the mass of an object constant and
then change the force, or to keep the force constant and change
the mass, in both cases to measure acceleration. However, for
more complex cases where the exact parametric relationship is
unknown (and would be too time-consuming to study), or
where we believe factors interact, we need a formalised set
of statistical rules.

Statistical experimental designs (or Design of Experiments,
DoE) are also needed to minimise experimental time. For
example, if we wanted to study the effect of pH and temper-
ature on a process, we could study all possible combinations
of 10 temperatures and 10 pH values in 100 experiments, but
this may be impracticable. In cases such as optimising an
extraction, where there may be 10 or more factors, we would
not have the resources to perform 1010 or 10 billion experi-
ments. Hence, we need formalised approaches to safely get to
our answer with a short amount of effort.

Formalised designs follow several steps. Firstly, identify
the factors that are likely to influence an experimental out-
come, and also the response(s) you may be interested in.

Then, code the factors, which involves transforming physical
variables such as temperatures onto a common mathematical
scale, typically +1 for high and −1 for low, over the experi-
mental range. Third, perform a set of experiments, usually
using a well-established statistical protocol, such as a factorial
design, or a central composite design or a mixture design. In
some cases, we already know which factors are significant,
but in other cases, we first have to ‘screen’ the factors, to
reduce them to perhaps 3 or 4 that are really interesting: under
such circumstances the initial step might involve a Plackett
Burman or partial factorial design [13–15], prior to detailed
modelling of the influence of a small subset of factors. The
fourth stage involves modelling the data, which could for ex-
ample provide an optimum or a quantitative model or both, as
desired.

Analytical chemists tend to be less interested in important
concepts such as stratification, blocking or randomisation,
which are hugely important in biology, psychology, social
sciences and so on, primarily because a laboratory experi-
ments can be controlled quite effectively. For example, a re-
action using specified conditions should give very similar re-
sults anywhere in the world as almost everything is known
about the reaction conditions. For a biological experiment, this
will not usually be so, as genetics, phenotypes, environment
etc. cannot be perfectly controlled so we have to be careful
about evening out these unknown variations. Hence, a book
aimed at a chemist may have a different flavour to that aimed
in medicine. Nevertheless, it is useful that analytical chemists
have some consideration of these concepts, for example, a
GCMS instrument may vary with time and we do not wish
to confound these factors with the ones we are interested in.

Most literature over the past century has been concerned
with univariate responses. If more than one is to be studied,
traditionally each response is approached independently to
reach a consensus. However, there has been considerable in-
terest in multivariate responses over the past decade. This has
led to the application of a variety of methods to tackle cases
where both the factors (or x block) and responses (or y block)
are multivariate, including multilevel methods, ANOVA si-
multaneous component analysis (ASCA) [16], ANOVA prin-
cipal component analysis [17] (ANOVA-PCA) and ANOVA-
target projection [18]. Such approaches are gaining accep-
tance in metabolomics where there may be complex responses
from designed experiments.

Sampling

One thing chemometricians know for a long time is that prop-
er sampling is fundamental for achieving a good description of
the system being analysed. Why are then sampling issues so
often neglected in chemometric-based published material? It
is true that it is actually very difficult to find in the literature

Chemometrics in analytical chemistry—part I: history, experimental design and data analysis tools 5893



papers using chemometrics at different levels that properly
describe issues directly related with sampling. There are many
reasons behind this evidence but none can be explained by the
lack of scientific background or theoretical models as there is
extensive literature in this field [19, 20]. Geladi and Esbensen
[21] warn against the indiscriminate use of chemometric
methods focussing only on algorithms, and that do not con-
sider the importance of population assumptions, of sampling
plans, of the theory of sampling and that perform an indiscrim-
inate use of resampling strategies (e.g. cross-validation) to
compensate for inadequate sampling strategies. Sampling
may be required for multiple purposes: (1) describing an ob-
ject/material/lot globally or in detail; (2) monitoring an object
or a system and (3) controlling a system or process. As stated
in Petersen et al. (2005), ensuring system representativeness
prior to analytical/data analysis is critical and known for more
than 60 years. Errors derived from non-appropriate sampling
procedures can exceed the analytical errors by 10–1000 times.
It is also true that the growth of chemometrics since the 80s
had a particular influence on the sampling strategies, where
tackling correlation within objects allows a more effective
sampling process.

Very often, data used for chemometric analysis are pro-
duced according to good practices such as resourcing to ex-
perimental design (DoE). This usually suffices to justify the
quality of the data and the effective variance encompassed in
the population of samples that derive from that DoE. Very
seldom however, there is reference to the sampling procedures
which are totally distinct from the DoE definition and analyt-
ical methodologies used to analyse the produced samples.
Moreover, DoE dedicated to define optimal sample plans are
proposed in [21, 22]. How samples will actually describe the
heterogeneous material from which they were derived is still
neglected and very often explain the incongruences in the
reported results. Indeed very often there are references to ho-
mogeneous (e.g. a gas inside a container or an aqueous solu-
tion of some analyte) and heterogeneous (e.g. soil sample or
soybean beans) materials being the latter more difficult to
sample. Real homogeneous materials are rare or even should
not be defined as such and all materials or systems should be
treated as heterogeneous. Heterogeneous materials may be
characterised by some random distribution of the property
(when samples can be intentionally produced) or more often
characterised by a correlated distribution of random properties
[19, 23].

The theory of sampling (TOS) was in many ways a conse-
quence of the works by Pierre Gy [19] and it is now perfectly
established and fitted with all aspects that a scientific theory
requires. The theory of sampling, that will be not described in
detail here, refers to a scientific-based process of obtaining
representative samples from a heterogeneous material (or
lot) [22], (which intrinsically is a mass reduction step). TOS
provides the fundamental background for an appropriate

sampling procedure. It gives the tools to guarantee represen-
tative samples. TOS defines specimens as samples that do not
represent the material from which they were collected or ex-
tracted. In TOS, lot is the sampling target or the material
subject to sampling (other TOS definitions can be found in
[22]). TOS states that only a full inspection of a sampling
process can ensure representative samples. It distinguishes
truly representative samples (those derived from a validated
sampling process or samples) from incorrect samples (undoc-
umented samples also designated by specimens). In general,
the TOS intends to minimise the sampling error (or grade
deviation) defined as the difference between the mass fraction
of the analyte in the sample and the corresponding mass frac-
tion in the lot divided by the latter. According to the TOS, the
Fundamental Sampling Principle (FSP) encompasses the
criteria for ensuring correctness of the sampling procedure,
namely stating that the sampling process should be accurate
(zero bias). Sampling errors or correct errors (that cannot in
general be prevented at all) are segregated in fundamental
sampling error and grouping and segregation error. Incorrect
errors exist when the fundamentals of the TOS are not follow-
ed and therefore can be minimised if the good practices de-
fined in the TOS are followed (a comprehensive explanation
of these errors is available in [22, 23]). The most frequent
operations encompass heterogeneity characterisation, mixing,
use composite sampling and reduction in particle size. In the
context of the chemometric or statistic literature, this sampling
process should be referred as physical sampling.

Sampling or resampling is referred in the chemometric lit-
erature with different meanings. Notably more often, this ter-
minology is found in the literature referring to a methodology
that resources on a training set to optimise models’ structure,
access models’ prediction performance, estimating uncertain-
ty among others. This is statistical sampling where one draws
individuals from a population assuming that they are similar in
all aspects (except for the amount of some property of inter-
est). Statistical sampling is totally different from the physical
sampling where objects are materially drawn from a pool of
objects originated from the system under study and therefore
constitute a subpart of some lot material. In particular, statis-
tical sampling or resampling is often used and designated as
cross-validation. Cross-validation is intended to optimise
models resourcing on a training set towards optimal perfor-
mance for future datasets. In [21], it is shown that the exten-
sive and generalised use of cross-validation methods based on
segmented procedures does not find a theoretical justification
for the purpose. Indeed, cross-validation is known to be sub-
optimal for simulating a model performance in the presence of
a test set. However, this is being completely ignored by the
community as the methodology keeps being used indiscrimi-
nately regarding application or chemometric method. This
approach simply ignores several fundamental issues, of which
ignoring the sampling variance is probably the most critical.
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The TOS is critical within the principles of proper statistical
validation [21, 22] as it provides the tools to incorporate in
models all variance-related factors, fundamentally addressing
the critical so-called incorrect sampling errors that cannot in
general be corrected with statistical/chemometric methods. A
thorough discussion on this issue is given by Geladi &
Esbensen (2010) [21], which demonstrates undoubtable insuf-
ficiency of cross-validation methods and highlights the critical
importance of following TOS principles for proper validation
(e.g. using external datasets).

It is known fromTOS that it is not possible to keep constant
the sampling bias when dealing with heterogeneous materials.
Additionally, it is not generally possible to compensate this
variability with statistical methods, which is precisely what it
is found in the literature where statistical or chemometric
methods are being used precisely for this function [24]. The
paper from Dardenne et al. (2000) [25] illustrates very well
using different case studies that the performance of chemo-
metric models (they used from multiple linear regression to
feedforward artificial neural networks) is much more depen-
dent on the quality of the data than of the method itself.

Despite the existence of sufficient and accessible information
in the literature for many years regarding good practices for
performing sampling and alerts concerning the result of
neglecting appropriate sampling muchmore effort must be done.
Even if training events on the TOS are available periodically,
essentially in the form of post-graduate courses, these concepts
should be better integrated in undergraduate courses. This will
considerably impact transversal areas like chemistry, health sci-
ences, engineering, environmental sciences, amongmany others.

Data preprocessing

Experimental data should be often pretreated. In many cases,
the necessary transformations are determined by the type of
instrument used for data acquisition. For example, warping
methods are used for peak alignment. They are employed
for NMR and chromatographic data. Data preprocessing im-
plies in many circumstances signal processing and signal ex-
traction procedures (like filters and wavelets) and they should
be also considered an integral part of chemometrics.
Multiplicative scatter correction (MSC) is used to eliminate
the light scattering from the near infrared spectra. Standard
normal variate (SNV), baseline correction, and de-trending
are applied for various types of spectral data. More general
transformations, such as smoothing and differentiation, are
also used for various multivariate data. The above-
mentioned transformations are simultaneously applied to all
variables of an object or sample, i.e. the entire spectrum or
chromatogram is transformed according to the selected meth-
od. These transformations are referred to as row-wise
methods.

Column-wise methods represent another type of prepro-
cessing. They are applied to all objects or samples of every
variable. Centering and weighting/scaling are the most popu-
lar methods. Column-wise centering is applied in more than
90% of applications, because it shifts the zero of the coordi-
nate system to the center of the multivariate data cloud.

Column-wise scaling is mainly applied when variables are
collected from various sources and/or expressed in various
units, e.g. when dealing with process control variables or mul-
ticomponent ICP-MS trace element analysis. Here, column-
wise scaling by standard deviation of the corresponding col-
umn brings all variables to a common base and enables simul-
taneous analysis of variables of a different kind.

Thus, the main objectives of data preprocessing are (1)
elimination of artefacts caused by a specific instrument and
sample geometry/condition; (2) data de-noising; (3) pretreat-
ment of a raw data set in a way that makes it suitable for
further data processing. The subject of data pretreatment has
been covered in detail in different works such as [26–29].

It is important to emphasise the following issue. When
gathering data for further multivariate analysis, it is strongly
recommended to make sure that all results are obtained under
the same experimental set-ups, unless the parameters of the
experiment are considered to be variables of interest. For ex-
ample, it is recommended to conduct spectra acquisition in a
consistent range and resolution for all samples; it is recom-
mended to keep the value of pH on the same level for all
mixtures, etc. Otherwise, the collected data should be addi-
tionally re-sampled with extra noise introduced in the data
prior to conducting simultaneous analysis.

Projection methods

Data analysis tools can be classified as univariate, multivariate
or megavariate, depending on the number and amount of var-
iables considered in the analysis of a single sample at a time.
Multivariate and megavariate chemical data, as well as
methods used to handle and analyse them, are the realm of
chemometric methods. They can also be classified as first-,
second-, third- or higher-order methods [30] using notation
from tensor algebra, or, similarly, taking into account the num-
ber of directions, ways or modes of measurement, as zero-,
one-, two- three- or multiway or multimode methods, using
notation from other related data analysis fields, such as psy-
chometrics. Typical cases are the analysis of two-way, or sec-
ond-order, data obtained for a sample using chromatographic
methods coupled with spectroscopic multichannel detection,
or the analysis of spectral data collected for a set of samples.
More complex data structures are obtained when more than
two directions are collected during a particular analysis pro-
ducing data cubes, such as data from excitation-emission fluo-
rescence spectroscopic analysis of a set of samples.
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Many chemometric tools can be introduced as data projec-
tion linear methods [30], which compress raw data, uncover
hidden correlations, and separate useful information from
noise. Projection methods provide a very intuitive and visual
approach for data analysis. Factor analysis [31] and principal
component analysis (PCA) [32, 33] are some of them and they
represent the cornerstone of the majority of tools used in che-
mometric exploratory analysis. PCA transforms a set of data
with correlated variables into a set of uncorrelated principal
components (PCs), which are obtained as linear combination
of initial variables. PCs are calculated in such a way that the
maximum portion of variance is explained by the first princi-
pal component and, progressively, smaller shares of variance
are explained by each subsequent component. The PCA mod-
el is presented by an orthogonal decomposition of a data ma-
trix, X = TPT + E, with a specified number of principal com-
ponents. The model consists of a structural part, TPT, and an
error part,E. The structural part (information) is intended to be
used for interpretation or prediction, whereas the error part
(noise) should be balanced for the model to be reliable. One
important aspect is the presentation of data complexity using a
minimal number of components that explain the experimental
data within the limits imposed by experimental error.

PCA models are developed in a way that the structure of
data matrix X can be understood better than by just looking at
the raw data. T matrix, called the scores matrix, presents ob-
jects in a new, reduced space. The scores plot, also called Bthe
map of samples^, shows the inter-location and inter-
connections of samples under investigation and may be used
for unsupervised data clustering. P matrix, which is called the
loadings matrix, reflects the importance of each variable in the
projection. The loadings plot, also called Bthe map of
variables^, shows the influence and inter-connections of the
variables in the data set. The axes defined by PCA may be
rotated to enhance the interpretability of the data variance
sources, for instance in terms of their possible physical nature,
and several procedures can be found in the literature [31, 32].

In general, presentation of the original matrix X as a prod-
uct of two matrices (structure part, TPT) is called bilinear
decomposition. Other types of projection methods have been
proposed for similar bilinear decompositions of multivariate
data sets. Two of them have become popular and widely used
in the field of chemometrics. One of them is independent
component analysis (ICA) [34] and the other one is multivar-
iate curve resolution (MCR) [35]. In ICA, the components are
extracted using the criterion of their independency. ICA and
its variants can provide more interpretable projections in com-
parison with PCA, in case additional constraints like non-
negativity are implemented.

MCR is a family of methods used to solve a ubiquitous
problem of mixture analysis. During the last 40 years, the
MCR methods [35] have slowly evolved as powerful tools
used to investigate data of (partially) known chemical origin.

The goal of MCR is to decompose mixed raw data into a
bilinear decomposition of physically understandable pure
component profiles, for example, a product of a matrix of pure
concentrations and a matrix of pure spectra. The possibility to
resolve a particular multicomponent system without ambigu-
ities depends on many circumstances, including application of
constraints related with the physical nature of the factors or
components, with their selectivity, and with the previous
knowledge of the system under study.

It is worth emphasising that the bilinear decompositions
expressed in the different methods, either PCA, ICA or
MCR, are similar, but their objectives and the ways how these
decompositions are performed are different.

Analytical data sets of higher-order (multiway or multi-
mode) structures can be investigated using unfolding
methods, which present multiway data in a simplified matrix
mode, or by mean of a direct multilinear decompositions [36],
using such methods as Tucker 3 and PARAFAC [37]. For
example, the PARAFAC method has been successfully ap-
plied in the mixture analysis of fluorescent compounds or in
environmental source apportionment studies over time.
Multiway data analysis is still a growing chemometric sub-
field which finds more and more applications due to the in-
creasing complexity of data sets, and to the advent of the data
fusion and big data analysis new paradigm.

Data fusion

Data fusion methods are nowadays the subject of active re-
search in computational statistics and chemometrics [38].
These methods allow for the simultaneous analysis of datasets
coming from different analytical platforms, omic levels, or-
ganisms or sample types. From a chemometrics point of view,
data fusion strategies can be applied at low-level, mid-level
and high-level [39]. High-level fusion (i.e. integration) implies
optimal preprocessing and modelling procedures for each data
block separately. The outputs of the different models are then
jointly evaluated to provide a global overview. In the case of
high-level data fusion methods, each dataset is analysed indi-
vidually using traditional chemometric methods for feature
detection [40], before feature integration for a global interpre-
tation. In contrast, low-level and mid-level fusion strategies
aim to combine original raw data blocks to obtain later an
improved joint interpretation. Low-level fusion generates big
size fused data with a large number of variables; whereas mid-
level fusion is based on a previous dimensionality compres-
sion of data blocks, where only a reduced number of new
variables (either the most relevant or the latent variables) from
each data block are fused and jointly interpreted. The methods
found in the literature for mid-level data fusion try to identify
the common and specific variance coming from each one of
the analysed blocks after a feature selection to reduce the size
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of the dataset, like GSVD (generalised singular value decom-
position) [41], O2PLS (two-way orthogonal projections to
latent structures) [42] as well as OnPLS (multiblock orthogo-
nal projections to latent structures) [43], DISCO-SCA (dis-
tinctive and common components with simultaneous compo-
nent analysis) [44], JIVE (joint and individual variation ex-
plained) [45], CMTF (coupledmatrix and tensor factorization)
[40] and CCSWA (common components and specific weights
analysis) [46] methods. Some of these mid-level data fusion
methods can also be used for low-level data fusion depending
on the raw data characteristics (appropriate block scaling often
is required). Finally, other methods are also available for direct
low-level data fusion like the multivariate curve resolution
alternating least squares (MCR-ALS) [35, 47] method.
MCR-ALS allows the joint analysis of multiple datasets from
different samples (experiments) or techniques, or from differ-
ent samples and techniques simultaneously.

Concluding remarks

The increasing number of hyphenated and multidimensional
analytical instruments and of all type of chemical measure-
ment devices, providing huge amounts of analytical (big) data
and information about complex natural samples require the
use of more advanced chemometric data analysis tools.
Chemometrics has emerged in the last years as a very success-
ful data analysis approach in the Chemistry field, reaching
multiple milestones. Chemometrics has been spread over a
large number of applications, especially in analytical sciences,
where it has penetrated with force, revolutionising most of the
analytical process steps and contributing at the same time, to
the solution of more involved and difficult analytical prob-
lems, related in many circumstances to new challenges and
societal needs.

In this first part of this feature article on chemometrics,
several fundamental aspects of this discipline have been cov-
ered including sampling, experimental design, data prepro-
cessing and data fusion strategies, and projection methods
for data exploration and factor analysis. Many of these aspects
are closely related with analytical chemistry and its goals. In
the second part of this tutorial, other aspects will be covered,
like regression methods, method validation, some successful
applications of chemometric methods and the future perspec-
tives of this discipline.
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