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Abstract The discrimination of organic and conventional
production has been a critical topic of public discussion and
constitutes a scientific issue. It remains a challenge to establish
a correlation between the agronomical practices and their ef-
fects on the composition of olive oils, especially the phenolic
composition, since it defines their organoleptic and nutritional
value. Thus, a liquid chromatography-electrospray ionization-
quadrupole time of flight tandem mass spectrometric method
was developed, using target and suspect screening workflows,
coupled with advanced chemometrics for the identification of
phenolic compounds and the discrimination between organic
and conventional extra virgin olive oils. The method was op-
timized by one-factor design and response surface methodol-
ogy to derive the optimal conditions of extraction (methanol/
water (80:20, v/v), pure methanol, or acetonitrile) and to select
the most appropriate internal standard (caffeic acid or
syringaldehyde). The results revealed that extraction with
methanol/water (80:20, v/v) was the optimum solvent system
and syringaldehyde 1.30 mg L−1 was the appropriate internal
standard. The proposed method demonstrated low limits of
detection in the range of 0.002 (luteolin) to 0.028 (tyrosol)
mg kg−1. Then, it was successfully applied in 52 olive oils
of Kolovi variety. In total, 13 target and 24 suspect phenolic

compounds were identified. Target compounds were quanti-
fied with commercially available standards. A novel semi-
quantitation strategy, based on chemical similarity, was intro-
duced for the semi-quantification of the identified suspects.
Finally, ant colony optimization-random forest model selected
luteolin as the only marker responsible for the discrimination,
during a 2-year study.
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Introduction

The term Borganic food^ denotes products that have been
produced in accordance with the principles and practices of
organic agriculture [1]. Organic farming is a production sys-
tem which avoids the use of synthetically compounded fertil-
izers, pesticides, and growth regulators. Organic farming prac-
tices are based on the idea that each part of the farm operation
augments the other parts to form an efficient and sustainable
food production system, offering many advantages, such as
minimizing all forms of pollution and producing food of high
quality [1]. For these reasons, there is considerable increase in
consumer’s demand for organic foods, in a global scale.

In respect to consumer’s needs, many attempts have been
made in order to differentiate between organic and conven-
tional products, but the results were controversial [2].
However, new results arising from foodomics and
metabolomic studies have detected differences in minor food
components, such as polyphenols and other bioactive com-
pounds [3]. The term foodomics describes the discipline that
studies the food and nutrition domain through the application
of advanced omics technologies to improve consumer’s well-
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being, health, and confidence [4]. Among other applications,
foodomics can explore the effect of the agronomic environ-
ment on the metabolite profile of food. In this field, a lot of
studies have been conducted [5–12]. Koh et al. [5] compared
the chemical composition of organic and conventional spinach
using liquid chromatography-electrospray ionization-tandem
mass spectrometry (LC-ESI-MS/MS) and analysis of variance
(ANOVA), concluding that the content of flavonoids is higher
in organic products. These findings reported to affect the
carbon/nutrient balance theory and growth rate as well as
growth differentiation balance hypothesis, indicating the allo-
cation of plant metabolism toward higher carbon-containing
components (like flavonoids) [5]. In addition, Ren et al. [6] as
well as Vallverdu-Qurealt et al. [8] observed the same effects
in vegetables by means of target screening in LC-MS.
However, the studies on this subject for olive oil are scarce
in the literature, trying to investigate the correlation between
olive oil contents and production types, using metabolomics
and chemometrics [8]. Nonetheless, the comparison between
environmental factors and harvesting years has been neglected
[11]. Anastasopoulos et al. [12] and Rosati et al. [9] measured
total phenolic content with Folin Ciocalteu. They observed
that the phenolic content was higher in organic production
type. The abovementioned studies [9–12] denote that there
is an existing connection between the phenolic content and
the production type. Thus, the development of high resolution
analytical methodologies, with higher identification confi-
dence, that enable the identification of phenolic compounds
in such cases is of high interest.

While dealing with analysis of the multi-class of com-
pounds having different polarities (polar compounds such as
alcohols and acids and less polar ones, like secoiridoids,
lignans, and flavonoids), there is an emerging need to derive
the optimum experimental conditions. Chemometric methods
have been frequently applied to optimize analytical methods,
introducing several advantages such as reduction in the num-
ber of experiments, reagent consumption, and less laboratory
work [13]. Moreover, these methods can reveal the signifi-
cance of the factors, their effects, and interaction effects.
Factorial design, one factor design (OFD), central composite
designs (CCD), and Box-Behnken design are some of the
widely used methods for design of experiments [13–15].
These methods often couple to response surface methodology
(RSM) to derive the optimal conditions for any property under
study [16, 17]. After the optimization of the analytical meth-
odology and the identification of the target and suspect com-
pounds, the semi-quantification of the suspect remains a chal-
lenge since in most cases; there are no reference standards
commercially available.

Usefulness and reliability of the semi-quantification can be
more well-established using the most relevant standard [18].
To such an end, chemical similarity analysis can be applied to
rank the standards for semi-quantification purposes. Chemical

similarity has been subject for nearly a decade, trying to find
the correct and meaningful similarity assignment between
compounds [19–26]. From chemical perspective, similar com-
pounds should have similar functional groups or fragments
[24]. The scoring function and a scale that can describe the
chemical space edge are vital [24]. Such a score can be easily
developed as chemical space is subjected to understand the
correlation between a property and chemical descriptors [27].
Application of such chemical descriptors has made a break-
through in terms of identification of similar chemical struc-
tures in a large-scale database [24]. Introduction of chemical
fingerprints with a suitable similarity metrics (Euclidean or
Tanimoto) [23, 24] could also help to assign an accurate chem-
ical similarity score.

Following the optimization of analytical method and selec-
tion of appropriate standards for semi-quantification purposes,
a robust model should be developed to discriminate between
organic and conventional extra virgin olive oils (EVOOs).
Although partial least squares-discriminant analysis (PLS-
DA) can score the MS features and select markers [9], the
interpretation of results might be complex when the explained
variances are too low giving little discriminative power to the
PLS-DA model. In such a case, models must be inspected by
cross-validation analysis and an external test set to verify that
the model is capable of correct class assignment [28].
Moreover, it is of great need to set a threshold for the sug-
gested markers that define the olive oil production types. PLS-
DA is not capable of setting such threshold. In order to have a
discriminative method applicable and reliable, the threshold
derived for each marker should be evaluated throughout the
changes in environmental conditions between different har-
vesting years. Building a correlation between the interaction
factors and phenolic content may help to understand whether
there are significant differences between organic and conven-
tional olive oils and if olive oils of different harvesting years
are comparable or not. This reveals that the markers identified
are extremely relevant to build the discriminative models.

The main aim of this study is to develop an optimized
r eve r s ed -pha s e u l t r a - h i gh pe r f o rmance l i qu i d
chromatography-electrospray ionization quadrupole time of
flight tandem mass spectrometric method (RP-UHPLC-ESI-
QTOF-MS), using target and suspect screening workflows
combined with advanced chemometrics to reveal the correla-
tion between the phenolic compounds and the production
type. The second objective is to identify the markers respon-
sible for the discrimination in a 2-year study. The method was
optimized by OFD-RSM to derive the optimal conditions for
the extraction of the phenolic compounds, the appropriate
internal standard, and its concentration. The method was ap-
plied in 52 EVOOs of Kolovi variety from Lesvos, both or-
ganic and conventional that were harvested during the years
2014–2015 and 2015–2016, for the determination of 13 target
phenolic compounds and suspect screening was followed for
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the identification of 96 suspect phenolic compounds. The tar-
get phenolic compounds were quantified and a novel semi-
quantitation strategy is introduced based on chemical similar-
ity analysis. Then, ant colony optimization-random forest
(ACO-RF) was employed to investigate alterations between
organic and conventional olive oils and introduce one or more
markers, suggesting a concentration threshold and discrimi-
nate between organic and conventional EVOOs.

Materials and methods

Chemicals and standards

All standards and reagents were of high-purity grade (>95%).
Μethanol (MeOH) as well as acetonitrile (ACN) of LC-MS
grade and sodium hydroxide (>99%) were purchased from
Merck (Darmstadt, Germany). Ammonium acetate (≥99.0%)
for HPLC and formic acid (LC-MS Ultra) were purchased
from Fluka (Buchs, Switzerland). Isopropanol was purchased
from Fisher Scientific (Geel, Belgium). Distilled water was
provided by a Milli-Q purification apparatus (Millipore
Direct-Q UV, Bedford, MA, USA). For the analytical method
validation, the following reagents were used: syringic acid
95% was purchased from Extrasynthèse (Genay, France), gal-
lic acid 98%, ferulic acid 98%, epicatechin 97%, p-coumaric
(4-hydroxycinnamic acid) 98%, homovanillic acid 97%, as
well as oleuropein 98% and pinoresinol 95% were obtained
from Sigma-Aldr ich (Ste inheim, Germany), and
hydroxytyrosol 98% and luteolin 98% were acquired from
Santa Cruz Biotechnologies. Vanillin 99%, ethyl vanillin
98%, apigenin (4,5,7-trihydroxyflavone) 97%, and tyrosol
(2-(4-hydroxyphenyl) ethanol) 98% were acquired from Alfa
Aesar (Karlsruhe, Germany). Caffeic acid 99% and
syringaldehyde 98% (internal standards) were purchased from
Sigma-Aldrich (Steinheim, Germany). Stock standard solu-
tions of individual compounds (1000 mg L−1) were solubi-
lized in MeOH and stored at −20 °C in dark brown glass.
All intermediate standard solutions containing the analytes
were prepared by dilution of the stock solutions in MeOH.

Olive oil samples

Overall, 52 monovarietal EVOOs were acquired from the
Island of Lesvos for a 2-year study. Forty-one EVOOs of
Kolovi variety were produced from olives cultivated over the
harvesting period 2015–2016, consisting of 17 organic and 24
conventional olive oils. Moreover, 11 extra virgin olive oils of
the same variety produced during the harvesting period 2014–
2015 (two organic and nine conventional) were also included
in the current research, as a test set to evaluate the successful
applicability of the proposed discrimination models in previ-
ous harvesting periods. Figure 1 presents the geographical

distribution of the monovarietal organic and conventional ex-
tra virgin olive oils that were produced during the harvesting
periods 2014–2015 and 2015–2016. In this figure, all samples
that are in italic relate to the harvesting period 2014–2015 and
all samples in bold relate to the harvesting period 2015–2016.
Moreover, samples labeled as organic are marked with an
Basterisk.^ More information regarding the harvesting and
production details of the EVOOs can be found in the
Electronic SupplementaryMaterial (ESM, Table S1). All sam-
ples were protected from light and humidity and were pre-
served as it has already been reported by Kalogiouri et al. [29].

Instrumental analysis

A UHPLC system with an HPG-3400 pump (Dionex
UltiMate 3000 RSLC, Thermo Fisher Scientific, Germany)
was used for RP analysis, interfaced to a QTOF mass spec-
trometer (Maxis Impact, Bruker Daltonics, Bremen,
Germany), in negative electrospray ionization mode.
Separation was carried out using an Acclaim RSLC C18 col-
umn (2.1 × 100 mm, 2.2 μm) purchased from Thermo Fisher
Scientific (Driesch, Germany) with a pre-column of
ACQUITY UPLC BEH C18 (1.7 μm, VanGuard Pre-
Column, Waters (Ireland)). Column temperature was set at
30 °C. The solvents used consisted of (A) 90% H2O, 10%
MeOH, and 5 mM CH3COONH4 and (B) 100% MeOH and
5 mM CH3COONH4. The adopted elution gradient started
with 1% of organic phase B with flow rate 0.2 mL min−1

during 1 min, gradually increasing to 39% for the next
2 min and then increasing to 99.9% and flow rate
0.4 mL min−1 for the following 11 min. These almost pure
organic conditions were kept constant for 2 min (flow rate
0.48 mL min−1) and then initial conditions (1% B–99% A)
were restored within 0.1 min (flow rate decreased to
0.2 mL min−1) to re-equilibrate the column for the next
injection.

The QTOF-MS system was equipped with an electrospray
ionization interface (ESI), operating in negativemodewith the
following settings: capillary voltage of 3500 V, end plate off-
set of 500 V, nebulizer pressure of 2 bar (N2), drying gas of
8 L min−1 (N2), and drying temperature of 200 °C. A QTOF
external calibration was daily performed with sodium formate
(cluster solution), and a segment (0.1–0.25min) in every chro-
matogram was used for internal calibration, using calibrant
injection at the beginning of each run. The sodium formate
calibration mixture consisted of 10 mM sodium formate in a
mixture of H2O/isopropanol (1:1). Full scan mass spectra
were recorded over the range of 50–1000m/z, with a scan rate
of 2 Hz. MS/MS experiments were conducted using AutoMS
data-dependent acquisition mode based on the fragmentation
of the five most abundant precursor ions per scan. The instru-
ment provided a typical resolving power (FWHM) between
36,000 and 40,000 atm/z 226.1593, 430.9137, and 702.8636.
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Screening methodology

Target and suspect screening methodologies were followed, as
it has already been described by our group [29]. The identifi-
cation workflow incorporated strict filtering steps, interpreta-
tion of MS/MS spectra, and retention time prediction. A target
list was created including 13 phenolic compounds, including
phenolic acids, secoiridoids, flavonoids, and lignans (gallic
acid, p-coumaric acid, ferulic acid, syringic acid, homovanillic
acid, tyrosol, hydroxytyrosol, pinoresinol, apigenin,
oleuropein, vanillin, ethyl vanillin and epicatechin) that have
already been identified in extra virgin olive oils of Kolovi
variety in our previous study [29]. A suspect list of 96 bioac-
tive constituents was generated from literature including all
the bioactive constituents and mainly the phenolic compounds
that have been identified in olive oils, drupes, and leaves. The
initial suspect list is presented in the ESM (Table S2).

The software packages Target Analysis 1.3 and Data
Analysis 4.1 (Bruker Daltonics, Bremen, Germany) along
with the tools of these packages Bruker Compass Isotope
Pattern and SmartFormulaManually were in the target screen-
ing workflow. Extracted ion chromatograms (EICs) were ob-
tained using the function Find Compounds-Chromatogram in
Target Analysis Software. Mass accuracy was set at 2 mDa,
mSigmawas below or equal to 50, signal-to-noise threshold of
3, minimum area threshold of 800, and minimum intensity
threshold of 200. The relative tolerance of the retention time
window was set lower than ±0.2 min. The target compounds
were identified on the basis of mass accuracy, isotope pattern,
retention time (tR), and MS/MS fragments [29].

In suspect screening, the EICs were created using Target
Analysis Software 1.3 and the following parameters were set:
mass accuracy threshold of 2 mDa, isotopic fit below or equal

to 50, ion intensity of more than 800, peak area threshold of
2000, and peak score (area/intensity ratio) between 4 and 38
[29]. The EICs were studied using Data Analysis 4.1 software
to confirm that the peak represents the suspect compound. The
MS/MS fragments were compared and interpreted with the
use of Metfrag [30] and FooDB [31]. The retention time of
each suspect compound was predicted and compared with the
experimental retention time with the use of quantitative
structure-retention relationship model (QSRR) [32].

As for the level of confidence achieved in the identification
of the suspect compounds, compounds are identified at level 1
when the structures are confirmed with available reference
standards. In the cases that there are no standards commercial-
ly available, level 2 corresponds to probable structures (level
2a, MS/MS fragments were verified with spectral libraries or
literature; level 2b, diagnostic evidence where no other struc-
ture fits the experimental MS/MS information) and level 3
corresponds to tentative candidates [33].

Optimization of experimental conditions

The initial design consisted of three main factors (one numeric
and two categorical variables) within one block. The design
model was selected quadratic to cover the multilevel limits for
parameters intended to be optimized. Extraction (which was a
categorical factor) was set at three levels (MeOH, MeOH/H2O
(80:20, v/v), and acetonitrile). The second factor was the internal
standard (caffeic acid and syringaldehyde) and the final factor
was the concentration of the internal standard, set within the
range of 0.5 up to 1.5 mg L−1. In the case of quadric model, five
levels (0.5, 0.75, 1.00, 1.25, and 1.5 mg L−1) for one numeric
factor (concentration) are required with some replicate points.
This design could be duplicated for every combination of

Fig. 1 Geographical distribution
of EVOOs selected from Lesvos
Island
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categorical factor levels. The optimization task was performed to
minimize the relative standard deviation (%RSD) values of the
peak areas of each spiked standard. The combination of all these
factors required a set of 42 experiments. These experimental
plans based on OFD method coupled to RSM [15], along with
the%RSD value for each spiked standard as response (n = 3), are
presented in the ESM (Table S3). The design of experiments and
all statistical assessments were calculated by Design-Expert soft-
ware version 7 [34].

Method validation

The optimized RP-UHPLC-ESI-MS method was validated to
ensure that it is suitable for identification and quantification pur-
poses. Standard addition curves were constructed for all the
analytes. All the compounds were spiked in real EVOO samples.
Gallic acid, p-coumaric acid, ferulic acid, syringic acid,
homovanillic acid, pinoresinol, apigenin, vanillin, ethyl vanillin,
epicatechin, and luteolin were spiked at concentrations between
0.02 and 10 mg kg−1 (14 calibration levels with 3 replicates at
each level). Tyrosol, hydroxytyrosol, and oleuropein calibration
curves were constructed over the range of 0.02–100mg kg−1 (20
calibration levels with 3 replicates at each level). Calibration
curves were constructed with the use of the peak area of the
spiked analyte subtracted by the peak area of a neat sample and
divided by the peak area of the internal standard. Limits of de-
tection (LODs) and limits of quantification (LOQs) were calcu-
lated at the lowest concentration range of the analytes (0.02–
1 mg kg−1), by the equations:

LOD ¼ 3:3�Sa
b and LOQ ¼ 10�Sa

b where Sa is the standard
error of the intercept a and b is the slope of the calibration
curve. The accuracy of the method was estimated using recov-
eries, at 2 mg kg−1 concentration level, calculated as follows:

%RE ¼ Responseextracted sample

Response postextracted spiked sample
� 100 ð1Þ

where Responseextracted sample is the average area of the analyte
in matrix, which has been through the extraction process, from
three replicates, divided each time by the peak area of the
internal standard. Responsepost extracted spiked sample is the aver-
age area of each analyte, spiked into extracted matrix after the
extraction procedure. To evaluate the matrix effect, the matrix
factor was calculated at 2 mg kg−1 concentration level accord-
ing to the following equation:

MF ¼ Responsepostextracted sample

Responsestandard solution
ð2Þ

where Responsepost extracted sample is the average area of the
analyte, spiked into the extracted matrix after the extraction
procedure, and Responsestandard solution is the average area

count for the same concentration of analyte in a standard so-
lution. For the calculation of ME, 1 was subtracted by of the
quotient (2) and multiplied by 100, so that the negative result
indicates suppression and the positive result indicates en-
hancement of the analyte signal. The precision of the method
was demonstrated in terms of repeatability (intraday preci-
sion) and intralaboratory reproducibility (interday precision).
Repeatability was expressed as the %RSDr values of six rep-
licate analyses (n = 6) in the same day. Reproducibility exper-
iments were expressed as the %RSDR value of 3 replicates of
three consecutive days (n × k = 3 × 3 = 9). Finally, lack-of-fit
F test was applied to ensure that the calibration curves can be
used for quantification purposes. For this scope, all three rep-
licates of each concentration level were used and the number
of data points (concentration levels) was 20 for oleuropein,
tyrosol, and hydroxytyrosol and 14 for the rest of the analytes.

Chemical similarity analysis

Three standards including tyrosol, hydroxytyrosol, and
oleuropein were used as a main scheme for semi-
quantification to define the chemical space boundaries (chem-
ical space edge) and their similarity distance from 14
secoiridoids (10-hydroxy-10 methyl oleuropein aglycone,
methyl oleuropein aglycone, 10-hydroxy oleuropein agly-
cone, oleoside, oleuropein aglycone, oleomissional,
l ings t ros ide aglycone, oleokoronal , 10-hydroxy
decarboxymethyl oleuropein aglycone, decarboxymethyl
oleuropein aglycone, decarboxymethyl lingstroside aglycone,
hydroxylated form of elenolic acid, elenolic acid. and
hydroxytyrosol acetate). All structures of chemicals used here
were drawn and their geometries were constructed by
searching between conformers with lowest energy using
Balloon [35]. The chemical similarity matrix for these com-
pounds was then built based on the molecular descriptors.
These molecular descriptors consisted of logD (at pH = 6.2)
(measure of hydrophobicity for ionizable compounds), consti-
tutional descriptors, topological descriptors, walk and path
counts, connectivity indices, information indices, 2D autocor-
relation, edge adjacency indices, burden eigenvalues, topolog-
ical charge indices, eigenvalue-based indices, Randic molec-
ular profiles, geometrical descriptors, radial distribution func-
tion descriptors (RDF), 3D molecular representation of struc-
ture based on electron diffraction descriptors (3D-MoRSE),
weighted holistic invariant molecular descriptors (WHIM),
geometry, topology, and atoms-weighted assembly
(GETAWAY) descriptors, functional group counts, atom-
centered fragments, charge descriptors, and molecular proper-
ties [36–39].

Concerning the above descriptors, they encode the atomic
or molecular properties, overall molecular connectivity, mo-
lecular geometry, and their size and shape [40]. These descrip-
tors were calculated by E-dragon [41, 42]. LogD was
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calculated using the ChemAxon package [43] (the calculated
molecular descriptors can be found in the ESM, Table S4).
Afterwards, the calculated molecular descriptors were pre-
treated in order to remove the constant and near constant de-
scriptors. Molecular descriptors with intercorrelation above
0.95 were also removed using variable reduction method
adapted from space-filling designs (V-WSP) as an unsuper-
vised variable reduction method [44] (the survived molecular
descriptors can be found in the ESM, Table S5). Euclidean-
based similarity metric was used to measure the chemical
similarity between the compounds. To define the chemical
space, tyrosol, hydroxytyrosol, and oleuropein were used as
a main scheme and the other 14 compounds were measured
against these three standards. The chemical space edge was
also achieved by normalizing the mean distance score for the
three standards (these values range from 0 to 1 where 0.0 is
least diverse and 1.0 is the most diverse compound). Then, the
normalized mean distance scores for the rest of compounds
were calculated, and those test compounds, whichwere scored
outside of 0.0 to 1.0 range, were defined to be outside of the
chemical space edge. Therefore, this method could define the
most appropriate standard for semi-quantification. Similarity
analysis and V-WSP calculation were done in MATLAB 8.5
(MathWorks) program.

Prioritizing MS features and modeling strategies

Overall, a matrix containing quantified and semi-quantified
results (expressed in mg kg−1) for 30 compounds was gener-
ated for 52 extra virgin olive oil samples. These samples were
split into a training and a test set based on their harvesting year
(to evaluate whether the discrimination achieved is applicable
to previous years or not) to build the discrimination models
and then evaluate the accuracy of the discrimination model for
the external set of samples. ACO [27, 45] was used to prior-
itize compounds and rank them by their importance and con-
tribution in increasing the accuracy of discrimination model.
Details about the ACO and its internal parameters can be
found in the ESM (Section S1). The fitness function (a mea-
sure of error for the discrimination model) was set based on
the error of miss-discrimination in cross-validation leave-one-
out analysis. ACO was then coupled to discrimination model-
ing techniques to evaluate the internal and external accuracy
of models every time by inclusion of new features. Using
feature selection coupled with discrimination model such as
Linear Discriminative Analysis (LDA) [46–48] or RF [49] can
prevent over-fitting issues and can introduce more accuracy to
a discrimination problem. In RF, variables and their contribu-
tions can be ranked based on a measure of variable importance
and the modeling can be followed based on the highly impor-
tant predictors [50]. Therefore, the introduction of a features
prioritizing method (ACO) might not be so important. More
details about RF can be found in the ESM (Section S2). The

following fitness function was used to measure the error of
discrimination in leave one out cross-validation analysis and
to decrease it using ACO:

F ¼ ∑
Class∼Pred:Class

n
ð3Þ

where F is the objective function (discrimination error mea-
sure), Class is the observed group for a case (here is each
sample), Pred. Class is the predicted group by the modeling
technique, and n is the number of samples used to build the
discrimination model. The entire data processing step was
done in a homemade program, called ChemoTrAMS, written
in MATLAB environment.

Validation procedure of the models

The initial parameter used to evaluate the internal accuracy of
the models was the error rate of miss-discrimination in train-
ing set and cross-validation analysis. Leaving-one-out, cross-
validation was also performed during the training step to un-
derstand the error rate by excluding a certain sample from the
rest of the training set. The predictive power of the proposed
discrimination model was evaluated independently using a set
of external samples that were not part of the initial training set
and confusion matrix was calculated to derive error rate, class
specificity, and sensitivity [28]. Moreover, Receiver
Operating Characteristics (ROC) was calculated to check the
discrimination capability of the models. ROC curves were
calculated for each class by plotting the sensitivity versus 1-
specificity for a binary case study (organic or conventional). A
perfect discrimination model would yield a point in the upper
left corner of the ROC area, representing maximum sensitivity
and specificity, while a random discrimination causes points
to be along the diagonal line from the left bottom to the top
right corner [28].

Results and discussion

Optimization of the method

The evaluation of the best extraction conditions and the selec-
tion of the appropriate internal standard took place using
OFD. The goal of OFD-RSM was to optimize these three
factors at a point which low %RSD values of the peak areas
of the spiked standard compounds would be achieved. It was
found that ACN has the lowest desirability [51] for all com-
pounds under study and it shows high error (high%RSD). The
interaction map and effect of extractions are shown in Fig. 2a,
b. As it can be derived from Fig. 2a, b, MeOH/H2O (80:20,
v/v) has the highest desirability (lowest %RSD) among other
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extractions. Since the desirability observed for MeOH and
MeOH/H2O (80:20, v/v) is close, the interaction maps were
investigated.

Table 1 summarizes the results of the desirability plots for
MeOH and MeOH/H2O (80:20, v/v) using syringaldehyde as
an internal standard as well as for MeOH/H2O (80:20, v/v)
using caffeic acid as internal standard, based on the set of 42
experiments (ESM, Table S3). For most of the spiked standard
compounds, MeOH/H2O (80:20, v/v) presented the lowest
%RSD values and was selected as the optimum extractor.
Comparing MeOH with MeOH/H2O (80:20, v/v) when
syringaldehyde was the as internal standard, both extraction
solvents demonstrate close %RSD values for all the spiked
standards, except for syringic acid which has highest %RSD
while using solely MeOH. The good performance of
MeOH/H2O (80:20, v/v) is clearly demonstrated in Table 1
showing higher desirability values (especially for syringic ac-
id) compared to pure MeOH.

Moreover, the comparison between the desirability plots
where MeOH/H2O (80:20, v/v) is the extracting solvent and
the internal standard used is syringaldehyde in Fig. 3a and
caffeic acid in Fig. 3b reveals that all the spiked standard
compounds of the phenolic acid class presented higher desir-
ability in the case that caffeic acid was used as an internal
standard.

In a further step, OFD-RSM was applied in order to derive
the optimum conditions and select the appropriate internal
standards at the optimal concentration level, by providing pre-
diction results of the %RSD values of the peak areas for the 14
spiked standard compounds (n = 3). It generated predicted
%RSD values in the case that MeOH/H2O (80:20, v/v) was
the extractor and compared the desirability of both internal
standards; syringaldehyde and caffeic acid at 1.30 and

1.20 mg L−1, respectively (ESM, Table S6). The predicted
results revealed that the optimum conditions are derived when
syringaldehyde is the internal standard at 1.30 mg L−1. The
experimental factors suggested by OFD-RSM were applied,
and the experimental %RSD values were in accordance with
the predicted.

Moreover, the recoveries (RE) along with standard devia-
tion (±SD) were calculated for all the spiked standard com-
pounds in the three different extraction solvents (MeOH,
MeOH/H2O (80:20, v/v), ACN) with syringaldehyde at
1.30 mg L−1 in order to further investigate the adequacy of
MeOH/H2O (80:20, v/v). The results are listed in Table 2.
MeOH/H2O is a better extracting media than pure MeOH,
and syringaldehyde at 1.30mg L−1 presents higher desirability
compared to caffeic acid 1.20 mg L−1. Figure 4 illustrates
these optimal experimental conditions.

These optimal conditions were implemented and a liquid-
liquid microextraction (LLME) method was developed and
validated in order to isolate all the phenolic compounds from
the olive oil samples. For this, 0.5 g of each sample was
weighted and spiked with 1.30 mg L−1 syringaldehyde and
in a further step 0.5 mL ofMeOH/H2O (80:20, v/v,) was added
to 2-mL Eppendorf tubes. Then, the mixture was vortexed for
2 min and centrifuged for 5 min at 13,400 rpm. Additionally,
the upper phase was collected and filtered through membrane
syringe filters of regenerated cellulose (CHROMAFIL® RC)
(15-mm diameter, 0.22-μm pore size, purchased by
Macherey-Nagel, Düren, Germany). Finally, 5 μL of this so-
lution was injected into the chromatographic system.
Procedural blanks were prepared and processed in the chro-
matographic system to detect any potential contamination.
Quality control samples were prepared to confirm that the
analytical system has been stabilized before the batch of
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Table 1 Desirability values of all
the spiked standard compounds Extracting solvent MeOH MeOH/H2O (80:20, v/v) MeOH/H2O (80:20, v/v)

Internal standard Syringaldehyde Syringaldehyde Caffeic acid
Desirability values

Vanillin 0.811019 0.893997 0.737738

Apigenin 0.849736 0.912608 0.377854

Epicatechin 0.926173 0.778114 0.541533

Ethyl vanillin 0.972953 0.962772 0.433490

Ferulic acid 0.899410 0.867664 0.926501

Gallic acid 0.769335 0.810612 1

Homovanillic acid 0.704925 0.770156 0.986127

Hydroxytyrosol 0.954376 1 0.925576

p-Coumaric acid 0.793496 0.833178 0.988094

Syringic acid 0.484745 0.701904 0.975974

Tyrosol 0.910728 0.933066 0.785103

Pinoresinol 0.895791 0.849412 0.632015

Oleuropein 0.825102 0.938799 0.758019

Combined 0.819218 0.861535 0.740338

Fig. 3 Desirability plots for
MeOH/H2O (80:20, v/v) using (a)
syringaldehyde and (b) caffeic
acid as internal standards
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samples and to evaluate its performance. The quality control
sample was prepared by mixing all aliquots of the samples.
Then, it was spiked with 50 μL of a standard solution mix
(including all the target compounds: vanillin, apigenin, epicat-
echin, ethyl vanillin, ferulic acid, gallic acid, homovanillic
acid, hydroxytyrosol, oleuropein, p-coumaric acid,
pinoresinol, syringic acid, tyrosol, and luteolin, at a final con-
centration of 1 mg L−1). It was injected at the beginning of the
analysis (five times for conditioning), and afterward, it was
injected at regular intervals (every ten sample injections). The
calculated %RSDs for the retention time (tR) and the peak
areas as well as mass errors (Δm) are presented in the ESM

(Table S7) demonstrating the good performance of the analyt-
ical system (n = 10).

Target screening results

After the optimization of the experimental conditions, a data-
dependent method was used to scan the presence of the target
compounds in real olive oil samples. All the target phenolic
compounds that belonged in the initial target list such as gallic
acid, p-coumaric acid, ferulic acid, syringic acid, homovanillic
acid, tyrosol, hydroxytyrosol, pinoresinol, apigenin,
oleuropein, vanillin, ethyl vanillin, and epicatechin were

Table 2 Calculated recoveries
(±standard deviation, n = 3) for all
the spiked standard compounds in
different extraction solvents
(MeOH, MeOH/H2O (80:20, v/v)
ACN) and syringaldehyde at
1.30 mg L−1 as an internal
standard

Standard compound MeOH MeOH/H2O (80:20, v/v) ACN

Vanillin 93.2 ± 0.30 95.7 ± 0.25 92.9 ± 0.39

Apigenin 94.1 ± 1.40 93.5 ± 0.24 91.7 ± 0.43

Epicatechin 94.9 ± 0.30 94.5 ± 0.07 89.2 ± 0.08

Ethyl vanillin 93.3 ± 0.21 92.4 ± 0.48 82.7 ± 0.47

Ferulic acid 95.1 ± 0.14 93.4 ± 0.36 90.0 ± 0.42

Gallic acid 92.2 ± 0.14 96.1 ± 0.11 84.6 ± 0.42

Homovanillic acid 91.0 ± 0.66 95.5 ± 0.40 87.5 ± 0.18

Hydroxytyrosol 95.5 ± 0.10 95.5 ± 0.34 84.2 ± 0.33

p-Coumaric acid 91.4 ± 0.16 95.6 ± 0.28 95.8 ± 0.48

Syringic acid 94.1 ± 0.18 92.4 ± 0.23 93.4 ± 0.14

Tyrosol 95.2 ± 0.41 96.5 ± 0.28 89.1 ± 0.21

Pinoresinol 92.9 ± 0.12 94.3 ± 0.23 86.2 ± 0.33

Oleuropein 98.1 ± 0.18 98.9 ± 0.15 92.2 ± 0.26
ytilibariseD

0.170

0.345

0.520

0.695

0.870

Caffeic acid 
1.2 mg L-1

Syringaldehyde
1.3 mg L-1

Highest Desirability

Fig. 4 Derived optimal
experimental conditions
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determined. The mass accuracies of the precursor ions and the
qualifier ions of the detected compounds were less than 2 mDa
compared with the standard solutions and the isotopic fit was
calculated less than 50 mSigma in all cases. Moreover, the
retention time shift was less than 0.05 min for all the detected
target compounds. The most abundant fragments provided by
the AutoMS spectra were verified with MS/MS records of a
previous study by our group [29]. Target screening results are
summarized in the ESM (Table S8).

All validation parameters including LODs and LOQs, cal-
culated recoveries, regression equations, regression coeffi-
cient (r2), the lack-of-fit test, method precision expressed as
intraday and interday precision, as well as the matrix factor
and matrix effect are summarized in Table 3.

The analytes presented satisfying recovery efficiency (92–
99%). The precision limit ranged between 0.7 and 2.2% for
intraday experiments and between 1.4 and 5.4% for interday
experiments, demonstrating the good precision of the optimized
method. The method demonstrated low LODs over the range of
0.002mg kg−1 (luteolin) and 0.028 (tyrosol) and adequate LOQs
over the range of 0.007 mg kg−1 (luteolin) and 0.086 mg kg−1

(tyrosol). The analytical curves presented an adequate fit when

submitted to the lack-of-fit test (Fcalculated was less than Ftabulated
in all cases), with r2 above 0.99, proving that they can be used for
the quantification of the phenolic compounds. The matrix factor
ranged between 0.92 and 0.96 and low matrix suppression was
observed for all the analytes, up to 7.75%.

In a further step, the 13 target compounds detected were
quantified in all EVOO samples on the basis of their reference
standards, using syringaldehyde as the internal standard.
Quantitative results for the target compounds were expressed
as milligrams per kilogram and can be found in the ESM
(Table S9).

Suspect screening

In suspect screening, 24 phenolic compounds were tentatively
identified in real olive oil samples of Kolovi variety with ion
intensities above 800 and peak areas of more than 2000, in all
cases. The results presented high mass accuracy (less than
2 mDa) and acceptable isotopic fit values (less than 50
mSigma). The peak score (peak area/peak intensity ratio)
ranged between 10 and 22 for all the suspect compounds.
MS/MS spectra were examined with Metfrag [30], FooDB

Table 3 Validation results

Compound LOD
(mg kg−1)

LOQ
(mg kg−1)

Equation r2 Lack of fit
Fcalc Ftab

Intraday
precision
RSDr, (%)
(n = 6)

Interday
precision
RSDR, (%)
(n = 3 × 3)

Recovery
(%)

Matrix
factor

Matrix
effect (%)

Gallic acid 0.005 0.014 y = (−0.79 ± 0.68) +
(7.73 ± 0.16)x

0.995 1.510 2.118 2.1 5.1 99 0.94 −5.89

p-Coumaric
acid

0.024 0.073 y = (0.06 ± 0.05) +
(0.51 ± 0.01)x

0.994 1.772 2.118 1.9 4.1 97 0.94 −6.13

Ferulic acid 0.011 0.032 y = (0.008 ± 0.017) +
(0.687 ± 0.004)x

0.999 0.056 2.118 2.2 3.5 95 0.96 −4.31

Syringic acid 0.003 0.008 y = (0.06 ± 0.04) +
(0.48 ± 0.01)x

0.995 1.740 2.118 1.8 3.6 98 0.95 −4.90

Homovanillic
acid

0.017 0.051 y = (0.02 ± 0.09) +
(1.49 ± 0.02)x

0.998 0.726 2.118 1.9 5.4 98 0.93 −7.27

Tyrosol 0.028 0.086 y = (−4.34 ± 2.83) +
(4.99 ± 0.08)x

0.996 1.493 1.868 1.3 2.6 97 0.92 −7.78

Hydroxytyrosol 0.010 0.031 y = (−0.43 ± 1.07) +
(3.77 ± 0.03)x

0.999 0.420 1.868 1.8 2.8 97 0.94 −5.80

Pinoresinol 0.023 0.068 y = (0.01 ± 0.02) +
(0.297 ± 0.005)x

0.996 0.405 2.118 1.5 2.9 99 0.93 −7.12

Apigenin 0.024 0.074 y = (0.08 ± 1.28) +
(12.81 ± 0.305)x

0.993 1.910 2.118 2.3 3.1 92 0.92 −7.60

Oleuropein 0.003 0.008 y = (0.91 ± 1.84) +
(4.58 ± 0.05)x

0.998 1.762 1.868 0.7 1.4 98 0.96 −4.16

Vanillin 0.018 0.054 y = (−0.46 ± 0.36) +
(4.09 ± 0.09)x

0.995 0.176 2.118 2.2 3.1 95 0.92 −7.59

Ethyl vanillin 0.013 0.039 y = (0.51 ± 0.23) +
(2.04 ± 0.06)x

0.991 1.940 2.118 1.6 2.8 95 0.94 −6.30

Epicatechin 0.019 0.059 y = (−0.18 ± 0.21) +
(3.67 ± 0.05)x

0.998 0.330 2.118 1.8 3.2 94 0.96 −4.47

Luteolin 0.002 0.007 y = (0.53 ± 0.40) +
(3.64 ± 0.10)x

0.992 1.793 2.118 2.1 3.4 97 0.94 −6.34

LOD limit of detection, LOQ limit of quantification, r2 regression coefficient, Ftab Ftabulated, Fcalc Fcalculated, RSD relative standard deviation
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[31], and literature records. The lists of the fragments of all the
identified phenolic compounds were compared and verified
with those reported in a previous study of our group [29].
Table S10 in the ESM summarizes the suspect screening re-
sults, providing information about the identification criteria and
the level of identification of each compound. The derivatives of
oleuropein aglycone, oleuropein aglycone monoaldehydic
form, oleuropein aglycone dialdehydic form, as well as the enol
form of oleuropein aglycone, known as oleomissional [52],
were identified at level 3. The qualifier ions of oleuropein
aglycone monoaldehydic form (tR = 7.43 min) were detected
at m/z 69.0345, 99.0088, 121.0294, 127.0400, 135.0453,
151.0401, and 163.0400 correspond to C4H5O, C4H3O3,
C7H5O2, C6H7O3, C8H7O2, C8H7O3, and C9H7O3, respective-
ly. The MS/MS spectrum of the dialdehydic form of
oleuropein aglycone (tR = 7.61 min) shows peaks at m/z
59.0139, 67.0187, 95.0138, 123.0453, 128.0478, 153.0558,
and 195.0662 that correspond to C2H3O2, C4H3O, C5H3O2,
C7H7O2, C6H8O3, C8H9O3, and C10H11O4. Oleomissional
elutes at 7.75 min and shows two qualifier ions at m/z
101.0245 and 163.0400, corresponding to C4H5O3 and
C9H7O3, respectively. The Extracted Ion Chromatogram
(EIC) at m/z 361.1291 presented four different peaks. It has
been suggested in our previous study that lingstroside agly-
cone eluted at 6.63 min [29]. In the present study, it eluted at
6.65 min, the MS/MS spectra were compared and verified
with previously reported fragments [29]. It is possible that
the other three peaks with retention times (tR) 7.81, 8.13,
and 8.34 belong to lingstroside agycone monoaldehydic form,
the dialdehydic form of oleuropein aglycone, and the enol
form of lingstroside aglycone, named oleokoronal [52], re-
spectively. These three isomers of lingstroside aglycone were
identified at level 3. The MS/MS spectrum of lingstroside
aglycone monoaldehydic form shows two qualifier ions at
m/z 137.0608 and 241.0718, corresponding to C8H9O2 and
C11H13O6, respectively. Next, oleokoronal presents two char-
acteristic fragments at m/z 195.0663 and 291.0874, corre-
sponding to C10H11O4 and C15H15O6, respectively. In the
MS/MS spectrum of the dialdehydic form of oleuropein agly-
cone, the fragments at m/z 69.0346, 101.0244, and 259.0976
correspond to C4H5O, C4H5O3, and C15H15O4, respectively.

The QSRR model [32] was used for the prediction of the
possible retention time of oleuropein aglycone and
lingstroside isomers, since there were no reference standards
available. The difference of the experimental retention time
and the predicted was less than 1 min for all the suspect iso-
mers which were inside the applicability domain of the model.
More information about the QSRR model can be found in the
ESM (Section S3).

In a further step, all the suspect compounds were semi-
quantified. The lignans syringaresinol, 1-hydroxypinoresinol,
and the isomer of 1-hydroxypinoresinol as well as 1-
acetoxypinoresinol were semi-quantified with the use of

pinoresinol calibration curve. The suspect compounds which
belong to the class of secoiridoids were semi-quantified on the
basis of target compounds having similar structure
(oleuropein, tyrosol or hydroxytyrosol), after measuring sim-
ilarity with chemometric tools, as it is described in the follow-
ing sect ion BSemi-quant i f ica t ion and simi lar i ty
measurement.^

Semi-quantification and similarity measurement

Similarity indices were performed over 14 compounds so that
they could be semi-quantified with the most appropriate stan-
dard (Fig. 5; see also ESM, Fig. S2). It was found that
oleuropein is the most appropriate standard to be used to
semi-quantify 10-hydroxy oleuropein aglycone, oleuropein
aglycone, lingstroside aglycone, methyl oleuropein aglycone,
10-hydroxy-10-methyl oleuropein aglycone, oleomissional,
and oleoside. Moreover, hydroxylated form of elenolic acid,
10-hydroxydecarboxymethyl oleuropein aglycone,
decarboxymethyl oleuropein aglycone, decarboxymethyl
lingstroside aglycone, elenolic acid, and hydroxytyrosol acetate
can be semi-quantified with both tyrosol and hydroxytyrosol.
However, the degree of similarity indices is closer to tyrosol.
Oleokoronal can also be quantified based on tyrosol as its sim-
ilarity indices is in the middle of oleuropein and tyrosol.

The suspect secoiridoids were semi-quantified, as sug-
gested above, and the semi-quantification concentrations of
all the suspect compounds are presented in the ESM
(Table S11; the concentrations are expressed in mg kg−1).

ACO-LDA

The discrimination between organic and conventional
EVOOs was based on the quantification and semi-
quantification results of the target and suspect compounds,
respectively. LDA tries to separate the samples by increasing
the variance between the classes and decreasing the variance
within class. For an optimal discrimination, it is essential to
know the class posterior probability. The probability of each
sample belonging to the corresponding classes along with the
predicted classes (organic and conventional production type
of olive oil) is given in the ESM, in Table S12. The LDA
model was built only based on luteolin as ACO selected it as
the most important feature, causing discrimination between
classes. The validation criteria were met for ACO-LDA and
the miss-discrimination error for training, cross-validation
analysis, as well as external samples was zero.

ACO-RF/RF

Using ACO-LDA selects the appropriate compound to dis-
criminate between two classes, but it cannot justify at which
threshold this discrimination is achieved. Therefore, it is
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needed to create a tree with defined threshold. After using
ACO as a variable selection tool to select the most appropriate
compounds (independent variable), luteolin was selected due
to the higher contribution to the discrimination problem in RF.
Here, using ACO coupled with RF did not affect the outcome,
comparing to using RF alone. This was expected since RF has
a capability to neglect inclusion of extra variables if the miss-
discrimination rate achieved to a minimum value with a single
variable. RF generated a simple tree to justify how production
type (organic and conventional) of olive oil can be predicted,
using the concentration (mg kg−1) of luteolin in a sample. An
EVOO is organic if the concentration (mg kg−1) of luteolin is
more than 4.16 mg kg−1; otherwise, the EVOO is convention-
al (Fig. 6).

The validation results of the proposed decision tree sug-
gested that the ACO-RF/RF model shows both internal and
external accuracy. The miss-discrimination rate was obtained
zero for both training and the external samples. Leave-one-out
cross-validation analysis was also indicated that there is not
any sample that its removal could affect the outcome of model
substantially (the miss-discrimination error was zero). ROC
curves were also calculated for both classes, and the results
indicated that the discrimination model was well-established
with specificity and sensitivity equals to 1.

Awell-established discrimination model should show sen-
sitivity toward the changes in the environmental conditions for
a 2-year study. This could be studied by setting EVOOs pro-
duced in different years into different evaluation sets. Here,
we applied the discrimination models trained on the olive oils
produced during the harvesting period of 2015–2016 and test-
ed with those that were produced during the harvesting period
2014–2015. The results show that the marker which is respon-
sible for the discrimination between organic and conventional
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EVOOs is the same for those that were produced in the pre-
vious harvesting period as well.

Luteolin is a predominant flavonoid in olive oil, originating
from the glucoside that is present in the drupe, and its concen-
tration highly depends on the geographical area, season, and
environmental conditions [52]. High luteolin content is crucial
due to its antioxidant and other health-related activities [53].
Kessen et al. [52] have reported that the concentration of
luteolin ranged between 1.51 and 7.57 mg Κg−1, showing var-
iations among olive oils of different geographical regions and
harvest years. In this research, luteolin exhibited higher values
for organic EVOOs compared to conventional but showed no
difference in the content range between the previous harvesting
year. Luteolin ranged between 4.16 and 7.03 mg Κg−1 for or-
ganic EVOOs, both harvested in 2014–2015 and 2015–2016.
Therefore, it can be a good indicator for the discrimination of
organic and conventional EVOOs in different harvesting years,
as it is not affected by climate changes. The feature selection
algorithm found luteolin as the top compound to make this
discrimination possible and predict if a sample is organic or
conventional. ACO-RF/RF found that there is a threshold for
luteolin in EVOOs of different production types and calculated
this threshold at 4.16 mgΚg−1. EVOOs with higher concentra-
tions of luteolin are organic, and those with lower than
4.16 mg Κg−1 are predicted as conventional.

Conclusions

This study contributes to the field of food authenticity by dis-
criminating the organic and conventional EVOOs using an op-
timized LLME-UHPLC-QTOF-MSmethod. Target and suspect
screening quantification results together with ACO-RF
established a discrimination model that could reveal markers
responsible for the discrimination of production type in EVOOs.

The optimum extraction condition and the selection of the
appropriate internal standard were achieved using OFD-RSM,
as an experimental design and optimization technique. The results
showed that the extraction with MeOH/H2O (80:20, v/v) presents
the lowest %RSD values and showed that syringaldehyde
1.30 mg L−1 is the most appropriate internal standard.

The proposed method was successfully applied in 52
EVOOs of Kolovi variety produced during the harvesting pe-
riods of 2014–2015 and 2015–2016. Totally, 13 target and 24
suspect phenolic compounds were identified. All target com-
pounds were quantified based on their commercially available
reference standards, while the identified suspect compounds
were semi-quantified according to a novel strategy that incor-
porates the chemical structure similarity.

A robust discrimination model was established by RF and
it further coupled to RF to prioritize the target and suspect
phenolic compounds quantification and semi-quantification
results, respectively, according to their importance in

discrimination task. However, coupling ACO to RF did not
change the initial results of RF. Eventually, the flavonoid
luteolin was found to be responsible for the discrimination,
and if its content is higher than 4.16 mg kg−1, the EVOO is
organic; while if it is less than 4.16 mg kg−1, the EVOO
should be characterized conventional. The proposed discrim-
ination model, based on 52 samples of Kolovi variety from
Lesvos Island within a 2-year study, is robust showing high
internal and external accuracy, and thus, it could be sufficient-
ly employed for the discrimination between organic and con-
ventional EVOOs and further guarantee quality and
authenticity.
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