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Abstract This work presents a new method for forward
variable selection and calibration and its evaluation for
manganese determination in steel by laser-induced break-
down spectroscopy (LIBS). A compact and low-cost LIBS
instrument was used, based on a microchip laser and a
grating mini-spectrometer containing a non-intensified,
non-gated, and non-cooled linear sensor array. Sixty steel
samples were analyzed, with known manganese concen-
trations from 0.106 to 1.696 wt%. The spectra (1757 var-
iables between 200 and 850 nm) were acquired under the
continuous application of laser pulses at 100 Hz and using
80, 400, and 1000 ms integration times. The new method
generated a mathematic combination of the selected vari-
ables and the results were calibrated against the manga-
nese content by linear or quadratic regression. The best
results were obtained using the spectra from all integration
times together, with 31 selected variables and root mean
square errors of cross-validation and prediction of 0.015
and 0.033, respectively. Compared to Jack-knife partial
least squares regression, the new method presented lower
prediction errors and numbers of selected variables, with
the advantages of no data pretreatment and a simpler
mathematic calculation.
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Introduction

In modern analytical chemistry, some instrumental tech-
niques, such as chromatographic, spectroscopic, and
voltammetric techniques, can produce multivariate data (con-
taining many variables) for each sample analyzed. Therefore,
chemometric techniques, such as principal component analy-
sis (PCA), principal component regression (PCR), and partial
least squares regression (PLSR) [1, 2], are commonly applied
for multivariate data analysis. However, not all the variables
generated by an instrumental technique are important or cor-
related to the parameter of interest, and therefore, it can be
useful to reduce the number of variables by selecting the more
relevant variables or eliminating irrelevant, noisy, or unreli-
able variables. A variable selection can, for instance, improve
the performance of multivariate calibration or classification
models, giving better predictions, generate models that are
more easily understandable, and help to simplify the analytical
instrumentation, reducing the instrumentation costs [3, 4].

Several strategies for variable selection have been used in
chemical analyses, such as forward selection, backward elim-
ination, stepwise regression, Jack-knife PLSR (JK-PLSR), in-
terval PLSR, and genetic algorithms. In forward selection, the
variables are selected sequentially, one by one, based on the
prediction performance of the resulting calibration model.
First, all variables are evaluated singly and the variable that
results in the lowest prediction error is selected. After, all
combinations of two variables containing the first selected
variable are evaluated and the combination that gives the low-
est prediction error is selected. This process continues until the
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prediction error is no longer decreased by adding new vari-
ables. The advantages of this approach are that it is fast and it
is not based on the global model [5, 6].

Laser-induced breakdown spectroscopy (LIBS) is a relatively
new analytical technique for optical emission spectroscopy. It is
based on the application of laser pulses on a limited region of the
sample, with the resulting ablation and/or excitation of a small
amount of material and the formation of a transient plasma. An
appropriate detection system is then used to analyze the emitted
radiation,which canbe correlated to the chemical compositionof
the sample [7–10]. A LIBS instrument is usually composed of a
laser source, an optical system to drive and focus the laser radia-
tion and to collect the plasma radiation, and a detection system
(wavelength selector coupled to a detector) [7–14]. Actively Q-
switched Nd:YAG lasers [15, 16] and echelle polychromators
coupled to intensified, gated, and cooled charge-coupled device
(CCD) cameras [17, 18] have been frequently used in LIBS.
However, instruments havingmicrochip lasers [19, 20] and con-
ventionalgratingpolychromatorswithnon-intensified linear sen-
sorarrays[21,22]havebeenalternativelyusedinLIBSinorder to
reduce instrumentation costs and dimensions.

The metallurgical industry is one of the most important
fields of LIBS applications [9, 10], with several works with
different types of alloys such as brass [23], gold [24], copper
[25], aluminum [26], and, mainly, steel [21, 22, 27]. Some
elements added to steel, such as manganese, play an important
role in improving mechanical and chemical properties.
Therefore, a rapid and precise analytical method for determin-
ing the content of these elements in steel is desirable, allowing
a better control and monitoring of the steel-making process.

This work presents a new method for forward variable
selection and calibration and its evaluation for manganese
determination in steel by LIBS, using a compact and low-
cost instrumentation and different integration times for spectra
acquisition. The results from the new method were compared
to those obtained with JK-PLSR.

Materials and methods

Instrumentation

A compact and low-cost LIBS analyzer was employed in this
work, which has, among other optical components, a Standa
STA-01-8 microchip laser (1053 nm wavelength, 600 μJ pulse
energy, 470 ps pulse duration, and 100 Hz pulse repetition rate),
a sample holder coupled to a Standa 8MT30-50 translation
stage, and a B&W Tek Exemplar LS mini-spectrometer with a
classical Czerny-Turner polychromator and a 2048 pixel non-
gated, non-intensified, and non-cooled CCD sensor array (200
to 850 nm spectral range, 1.2 nm resolution). More details about
the instrument were given in a previous work [28].

Samples

Sixty steel samples were analyzed using the LIBS instrument.
The manganese contents in the samples were previously de-
termined by inductively coupled plasma optical emission
spectroscopy, with results ranging from 0.106 to 1.696 wt%.

Experimental procedure for LIBS

The samples were previously pretreated by polishing to re-
move any surface contamination. Each sample was analyzed
using three different integration times (no delay time) and four
replicates for each integration time. For each replicate, a single
spectrum was obtained by firing laser pulses (at 100 Hz) on a
different region of the sample surface, while the emitted radi-
ation was integrated for 80, 400, or 1000 ms (integration of
about 8, 40, or 100 plasmas, respectively). The translation
stage was continuously displaced at 2.5 mm s−1 during the
spectra acquisition to avoid sample perforation and plasma
extinction [29]. The four spectra of replicates were averaged,
with one average spectrum representing each sample for each
integration time (60 spectra for each integration time).

Data analysis

A software programwas developed to carry out the newmeth-
od for forward variable selection and calibration, written in
Microsoft Visual Basic 2008 Express Edition. The software
execution accomplished the following steps:

(i) Linear or quadratic regressions of the dependent variable
(the manganese concentration, Y) against every indepen-
dent variable (the LIBS spectra, X), registering all inde-
pendent variables with coefficients of determination (R2)
higher than or equal to 0.9

(ii) Linear or quadratic regressions of the dependent variable
against all possible combinations of two independent
variables, in the form of (Xa/Xb), registering all combi-
nations with R2 higher than or equal to 0.9

(iii) Linear or quadratic regressions of the dependent vari-
able against all possible combinations of two indepen-
dent variables with wavelength differences (Δλ) of up
to 20 nm, in the form of (Xa − Xb), registering all com-
binations with R2 higher than or equal to 0.9

(iv) Sorting the results from the first three steps in descend-
ing order of R2

(v) Linear or quadratic regressions of the dependent variable
against sequential combinations (sum) of the indepen-
dent variables from the fourth step, registering the root
mean square error of cross-validation (RMSECV) and
trying to minimize it
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The regressions were limited to positive slopes (linear and
quadratic) and down concaves (quadratic). The use of quadratic
regressions is justifiable, in this case, due to the relatively high
manganese concentrations in the samples. In the second and
third steps, all possible combinations are tested, independent
on the results from the first step. In the first three steps, a down
limit of 0.9 in R2 was used to avoid overfitting in the fifth step.
In the second and third steps, subtraction and division of vari-
ables were carried out to simulate some operations usually
employed in spectroscopic data, such as baseline subtraction,
normalization, and internal standardization. In the third step,
the maximum difference between the wavelengths of the com-
bined variables was established as 20 nm in order to limit the
subtraction between variables close to each other (in terms of
wavelength), since atomic spectra usually present narrow peaks
and a possible baseline subtraction is made using a baseline
close to a peak. In the fifth step, the software calculates the
RMSECV for the first independent variable or combination of
variables from the fourth step. Then, it combines (sum) the first
and second independent variables or combination of variables
from the fourth step and calculates the new RMSECV. If the
RMSECV decreases, the new combination of variables is kept.
If not, the second variable or combination of variables is
discharged. Then, the third independent variable or combination
of variables from the fourth step is included in the combination,
with the calculation of the new RMSECV. Again, if the
RMSECV decreases, the new combination of variables is kept.
If not, the third variable or combination of variables is
discharged and so on. In the end, the combination of variables

with the lowest RMSECV is selected. No data pretreatment was
used. A flow diagram of the new method for forward variable
selection and calibration is shown in Fig. 1.

For comparison purposes, multivariate calibration models
were also constructed using JK-PLSR [30, 31], with data pre-
treatment by mean centering of LIBS spectra. The JK-PLSR
was applied repeatedly until the RMSECV values were no fur-
ther decreased. In this case, the CAMO The Unscrambler 9.7
software was used. The calibration models were compared to
each other in terms of the number of selected variables,
RMSECV, and root mean square error of prediction (RMSEP).

For both cases (new method and JK-PLSR), the spectra were
analyzed in four ways: first, all spectra from each of the three inte-
gration times separately and after all spectra from all integration
times together. In the last case, each sample was represented by
threespectra,placedtogetherasonesinglerowofdata.Forallcases,
the spectra from 40 samples were used for the construction of the
calibration models, with full cross-validation (leave-one-out), and
the spectra from20 sampleswere used for external validation. The
sampleswere randomly divided into the two groups.

Results and discussion

The LIBS spectra

Figure 2a shows the raw LIBS spectra obtained for one of the
steel samples at the three integration times studied. The spectra
were displaced vertically and purposely to each other in the

Fig. 1 Flow diagram of the new
method for forward variable
selection and calibration
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figure to make the visualization clearer. As expected, the higher
the integration time, the higher the emission intensities. The
integration time values were chosen to maximize the emission
signals at specific wavelength ranges along the spectral range of
the LIBS instrument. As can be seen from the figure, high emis-
sion intensities were obtained in the range between about 225
and 280 nm for 80 ms, high emission intensities were obtained
in the range between about 280 and 385 nm for 400 ms (al-
though some signals were lost at lower wavelengths by over-
load), and high emission intensities were obtained from about
385 nm for 1000 ms (although some signals were lost at lower
wavelengths by overload). Figure 2b shows a linear and direct
correlation between the peak height and the integration time,
evaluated here for the peak at 495.67 nm (baseline subtracted
against 481.29 nm). As can also be seen, due to the relatively
poor resolution of the spectrometer for atomic spectroscopy, it is
practically impossible to identify individual atomic emission
peaks in the spectra, making the spectra evaluation more com-
plex and revealing a need for a judicious variable selection to
obtain good quantitative results.

The new method for forward variable selection
and calibration

As can be seen (see subsection 2.4), there are many differences
between the new method for forward selection and a classical
forward selectionmethod. First, in the first three steps of the new
method, only single variables (from all variables) and combina-
tions of two variables (using division or subtraction) are evalu-
ated, with no further variable combination. Second, in the fifth
step of the new method, only specific combinations of variables
are evaluated based on the preselection of variables from the
first three steps and on their R2 values. And finally, the new
method not only selects the variables but also generates a math-
ematic combination of the selected variables based on basic
mathematic operations, in which the results are calibrated
against the dependent variable by linear or quadratic regression.
That is, the new method avoids the use of complex multivariate
calibration methods, such as PCR and PLSR.

The combinations of variables selected using the new
method for forward selection are given in Table 1. Different
selections were evaluated using the new method with linear or
quadratic regression and the spectra obtained with different
integration times. As can be seen, no combination using the
subtraction operation was present at any final selection.
Although some combinations with subtraction had been pre-
liminarily selected (in the third step of the new method), no
combinations were kept in the final selection (in the fifth step)
because none of them led to a decrease in the RMSECV
values. As can also be seen, and as expected, the integration
time of the LIBS spectra affected the selected variables.
Spectra with 80 ms integration time led to the selection of
variables mainly between 250 and 300 nm, spectra with
400 ms led to the selection of variables between 280 and
490 nm, and spectra with 1000 ms led to the selection of
variables only above 350 nm. These values are in accordance
with the wavelength ranges intensified at each one of these
integration times. When all the spectra from all integration
times were used together, one can see that the new method
selected variables from the spectra obtained with all integra-
tion times. However, in this case, one can also see that the
most selected variables were from the spectra obtained with
400 ms, indicating that the spectra obtained with this integra-
tion time had information with better correlation to the man-
ganese content. From all selected variables, the more impor-
tant ones (more correlated to the manganese content) were
those between 287.58 and 294.99 nm.

Although it is difficult to make peak identification using
LIBS spectra with relatively low resolution, such as those
obtained in this work, it was possible to assign some manga-
nese emission lines to the wavelengths of all variables selected
as numerators in Table 1. These assignments, given in Table 2,
show that the variables are related to the chemical information
under study (the manganese content), even though they had
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Fig. 2 a Raw LIBS spectra obtained for one steel sample and using 80,
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variation of the peak height at 495.67 nm (baseline subtracted against
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been selected by mathematic calculations. Figure 3 graphical-
ly shows some of the variables selected for the LIBS spectra
obtained with the 400 ms integration time. As can be seen in
Table 1, the six variables shown in Fig. 3 between 292 and
295 nmwere divided by the five variables shown between 297
and 299 nm. The six variables between 292 and 295 nm are
related to some manganese emission lines, as shown in
Table 2, and the five variables between 297 and 299 nm are
related to some iron emission lines (seven strong emission
lines from iron between 296.6 and 299.5 nm [32]).
Therefore, the combination of these variables simulated the
division of the emission intensities of some manganese peaks

by the emission intensities of some iron peaks, with the iron
acting as an internal standard. The analytical curves generated
by the new method for forward selection and calibration using
linear regression and the spectra from 400 ms integration time
and using quadratic regression and the spectra from all inte-
gration times together are shown in Fig. 4, which contain
combinations of the variables highlighted in Fig. 3.

Manganese determination

The results of the manganese determination using the combi-
nations of variables shown in Table 1 and selected with the

Table 1 Combinations of variables selected using the new method for forward selection

Integration time (ms) Calibrationa Selected variables and combination (nm)b

80 NFS + LR (293.43/297.33) + (293.04/291.48) + (293.82/297.72) + (294.21/298.11)
+ (294.6/299.66) + (292.65/314.84) + (403.41/501.34) +(257.13/254.39)
+ (288.36/282.51)

NFS + QR (293.43/297.33) + (293.04/291.48) + (403.02/339.31) + (403.41/412.24)
+ (293.82/297.72) + (294.21/299.27) + (402.64/412.24) + (294.6/299.27)
+ (292.65/314.84) + (257.13/255.95) + (288.36/284.46)

400 NFS + LR (293.43/297.33) + (293.82/297.72) + (293.04/298.89) + (294.6/298.11)
+ (288.36/285.24) + (288.75/285.24) + (292.65/298.5) + (475.98/466.11)
+ (294.99/298.89) +(476.36/460.4) + (292.26/282.51)

NFS + QR (293.43/297.33) + (293.04/297.33) + (293.82/297.72) + (288.75/285.24)
+ (294.21/295.77) + (292.65/298.5) + (288.36/285.24) + (294.99/295.38)
+ (292.26/282.51) + (402.25/486.22) + (287.97/298.5) + (289.53/285.24) +
(287.58/285.24)

1000 NFS + LR (403.41/414.93) + (476.36/463.07) + (475.98/479.02) + (354.42/363.7)
+ (475.6/466.87) + (478.26/463.45) + (402.64/424.89) + (445.92/439.05)

NFS + QR (403.41/418) + (354.42/363.7) + (475.98/408.79)

80 + 400 + 1000 NFS + LR (293.43400/297.33400) + (293.82400/297.72400) + (293.04400/298.89400)
+ (294.6400/298.11400) + (288.36400/285.24400) + (288.75400/285.24400)
+ (292.65400/298.5400) + (476.361000/463.071000) + (475.981000/479.021000)
+ (354.421000/363.71000) + (478.261000/463.451000) + (294.2180/275.8880)
+ (292.26400/296.94400)

NFS + QR (293.43400/297.33400) + (293.04400/297.33400) + (293.82400/297.72400)
+ (403.411000/4181000) + (288.75400/285.24400) + (292.65400/298.5400)
+ (403.0280/486.9780) + (289.14400/285.24400) + (294.99400/298.5400)
+ (475.981000/398.791000) + (354.421000/363.71000) + (294.2180/272.3680)
+ (476.361000/410.711000) + (294.680/277.8380) + (402.25400/486.22400)
+ (288.3680/284.4680) + (292.26400/291.48400)

a NFS new method for forward selection, LR linear regression, QR quadratic regression
b The numbers as subscripts refer to the integration time

Table 2 Assignments of some
manganese emission lines to the
variables selected as numerators
by the new method for forward
selection

Selected variables (nm) Manganese strong emission lines (nm)a

257.13 256.36, 257.28, 257.55, 257.61

287.58 to 294.99 287.95, 288.96, 290.02, 293.31, 293.93, 294.03, 294.92

354.42 354.78, 354.80, 354.82

402.25 to 403.41 401.81, 403.08, 403.31, 403.45, 403.57, 404.13

445.92 445.16, 445.83, 446.20, 446.47

475.6 to 478.26 475.40, 476.24, 476.59, 476.64, 478.34

a According to a handbook of basic atomic spectroscopic data [32]
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new method for forward selection are given in Table 3, com-
pared to those obtained with JK-PLSR. Different types of data

pretreatment were evaluated, such as mean centering,
Savitzky-Golay first derivative, multiplicative scatter correc-
tion (MSC), and standard normal variate (SNV) [1, 2]. For the
new method, the use of data pretreatment did not improve the
results of the manganese determination significantly. That is
why no data pretreatment was employed. For the JK-PLSR,
the best results, shown in Table 3, were obtained using only
mean centering of LIBS spectra. As can be seen, the
RMSECVand RMSEP values from the models obtained with
the new method were all lower than those obtained with JK-
PLSR for any given integration time, even using a significant-
ly lower number of selected variables, between 6 and 31, and
no data pretreatment. The root mean square errors (consider-
ing both RMSECVand RMSEP) and the numbers of selected
variables from the new method were, on average, about 2.3
times and 22.7 times lower, respectively, than those from JK-
PLSR. It is important to point out that, due to the complexity
of optical emission spectra from multi-elemental samples,
such as steel samples, it is very difficult to select such a low
number of specific variables from low-resolution LIBS spec-
tra and attain such good analytical results. In addition, if one
looks only at the results from each single integration time, one
can see that the best results were obtained from the spectra
with the 400 ms integration time, which was similar for the
new method and for the JK-PLSR. Plots of predicted versus
reference manganese concentrations obtained from the spectra
with 400 ms integration time and using the new method with
linear regression and JK-PLSR, with external validation, are
given in Fig. 5, showing the better correlation for the results
obtained with the newmethod. However, the best results, with
the lowest RMSECVand RMSEP values, were obtained using
the new method with quadratic regression and the spectra
from all integration times together. These results showed that
the use of LIBS spectra frommultiple integration times so that
maximized emission signals are obtained over a wider wave-
length range can improve the performance of calibration
models under specific variable selection methods, especially
with the use of low-cost LIBS instruments. Compared to other
works reported in the literature for manganese determination
in steel using LIBS [33, 34], within a similar concentration
range, the results reported here presented lower root mean
square errors and higher reliability, as they were obtained from
a much larger sample set.

Conclusion

A new method for forward variable selection and calibration
was developed and evaluated for manganese determination in
steel, using LIBS data obtained with multiple integration
times from a compact and low-cost instrument. The spectra
acquisition using multiple integration times was useful to get
maximized emission intensities over a wider spectral range.
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The variables selected by the newmethod as numerators in the
combinations of variables could all be assigned to strong

emission lines of manganese, showing that the calculations
involved in the new method led to the selection of variables
correlated to the chemical information under study. The new
method, compared to JK-PLSR, presented a better prediction
performance of the manganese content for all integration
times, using significantly lower numbers of selected variables,
no data pretreatment, and a simpler mathematic calculation.
Additionally, the prediction performance of the new method
could be further improved using the spectra from all integra-
tion times together, which can be especially useful for low-
resolution LIBS spectra acquired by low-cost instruments.
This analysis mode, with the use of spectra from multiple
integration times to improve the results of multivariate cali-
bration with variable selection, is unexplored in LIBS and can
open a new window of analytical applications using LIBS.
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