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Abstract The biosynthesis of glycans is a template-free
process; hence compositionally identical glycans may
contain highly heterogeneous structures. Meanwhile, the
functions of glycans in biological processes are signifi-
cantly influenced by the glycan structure. Structural elu-
cidation of glycans is an essential component of
glycobiology. Although NMR is considered the most
powerful approach for structural glycan studies, it suffers
from low sensitivity and requires highly purified glycans.
Although mass spectrometry (MS)-based methods have
been applied in numerous glycan structure studies, there
are challenges in preserving glycan structure during ioni-
zation. Permethylation is an efficient derivatization meth-
od that improves glycan structural stability. In this report,
permethylated glycans are isomerically separated; thus fa-
cilitating structural analysis of a mixture of glycans by
LC-MS/MS. Separation by porous graphitic carbon liquid
chromatography at high temperatures in conjunction with
tandem mass spectrometry (PGC-LC-MS/MS) was
utilized for unequivocal characterization of glycan
isomers. Glycan fucosylation sites were confidently deter-
mined by eliminating fucose rearrangement and assign-
ment of diagnostic ions, achieved by permethylation and
PGC-LC at high temperatures, respectively. Assigning

monosaccharide residues to specific glycan antennae was
also achieved. Galactose linkages were also distinguished
from each other by CID/HCD tandem MS. This was
attainable because of the different bond energies associated
with monosaccharide linkages.
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Introduction

Glycosylation, one of the most common protein post-
translational modifications (PTM), is essential in numerous
biological processes [1–4]. However, comprehensive pro-
filing of protein glycosylation is still a challenge despite
the rapid development of bioanalytical techniques [5–7].
Several factors contribute to the complexity of glycosyla-
tion. The first is the size and uncertainty of added glycans.
Unlike other PTMs such as phosphorylation, oxidation,
and deamination, glycosylation usually introduces a large
mass difference, thousands of Daltons, to the peptide back-
bone. The glycans often influence protein properties and
adversely influence the tandem MS analysis of glycopep-
tides. Therefore, sequencing is generally not as effective as
MS-based peptide mapping. The second factor is the com-
plexity of glycosylation. Although the monosaccharides
(seven basic types, N-acetylglucosamine, N-acetyl galac-
tosamine, galactose, mannose, fucose, N-acetylneuraminic
acid, and N-glycolylneuraminic acid) involved in the bio-
synthesis of glycans is limited, possible branching of gly-
cans significantly increases the number of possible struc-
tures synthesized with the same composition but with dif-
ferent branching [8]. Moreover, there are multiple types of
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linkages for connecting monosaccharides to each other [9,
10], resulting in numerous isomeric glycan structures [11].
The third factor that makes glycomic analysis challenging
is the labile features of glycans. The glycosidic bond of a
glycan is weaker than peptide bonds. Hence, monosaccha-
ride losses during MS analysis are common. Sialic acid
loss [12] or fucose migration and rearrangement [13, 14]
in the gas phase during matrix-assisted laser desorption
ionization (MALDI) or electrospray ionization (ESI) and
MS/MS analysis are a direct result of weak glycosidic
bonds.

Efforts to define protein glycosylation using tandem
mass spectrometry have been ongoing since the late
1980s [15]. Among the fragmentation techniques avail-
able, collision-induced dissociation (CID) has proven to
be widely applicable for the generation of tandem mass
spectra of oligosaccharides [16]. The technique is charac-
terized by the acceleration of analyte molecules and their
subsequent collision with a neutral gas which results in the
fragmentation of molecular bonds and the creation of tan-
dem mass spectra [17]. Following the development of the
Orbitrap MS, Olsen and coworkers [18] introduced a CID-
related fragmentation technique, termed higher-energy col-
lisional dissociation (HCD), where beam-type fragmenta-
tion spectra were created inside the C-trap. This higher
energy technique does not suffer from the so-called 1/3
rule that dictates the lower range m/z cutoff that limits
ion-trap CID and therefore may be utilized for the detec-
tion of individual monosaccharide fragments. In this study,
CID and HCD are combined to characterize the composi-
tion and linkage of permethylated N-glycans.

Although the directed analysis of glycoproteins pro-
vides more site-specific information of glycans, structural
elucidation is difficult due to the influence of the peptide
backbone. Analyzing released glycans is a more realistic
strategy for comprehensive glycomic profiling of glyco-
proteins. Glycans lack chromophore or fluorophore moie-
ties to enable optical detection and exhibit low ionization
efficiencies in MS analysis. Hence, derivatization is always
utilized in glycomic profiling studies. There are several
limitations associated with spectroscopy-based glycomic
analysis because the identification of glycans in this strat-
egy relies on retention time during separations such as
liquid chromatography (LC) [19–21] and capillary electro-
phoresis (CE) [22, 23]. In this case, only known glycan
structures can be identified by the platforms. Meanwhile,
baseline resolution is required for all glycans in the sample
during the separation; this is possible for the analysis of a
small number of glycoproteins, but challenging in the anal-
ysis of glycans derived from complex biological samples
such as whole blood, cell lines, and tissues. MS, as one of
the most powerful bioanalytical instruments, brings
glycomic analysis one step further because of its capability

of compositionally identifying glycans. Although high-
resolution MS or triple quadrupole MS provides accurate
identification of glycan sequences, more work is needed to
comprehensively elucidate glycan structures through tan-
dem MS.

The initial criteria for glycan structure analysis through
tandem MS is the efficient separation of different isomers
[19, 24–51]. Hydrophilic interaction liquid chromatography
(HILIC-LC) is the most efficient separation method for native
or reducing end-labeled glycans that provides efficient sepa-
ration of different isomers [19, 21, 45]. Several databases have
been established to facilitate characterization of glycans by
HILIC-LC [52, 53]. The combination of HILIC-LC with tan-
dem MS has enabled the identification of many glycan iso-
mers [54]. However, sialic acid loss and fucose migration and
rearrangement often generate misleading fragments and hin-
der structural assignment [13, 55].

Permethylation is a common derivatization method that
is usually employed to stabilize glycan structures and im-
prove ionization efficiency [56, 57]. The influence of la-
bile glycan structures in tandem MS is mitigated by
permethylation. Moreover, permethylation also improves
the fragmentation pattern of glycans in MS/MS analysis,
and more fragments resulting from glycosidic bond break-
age can be generated [57–64]. However, the isomeric sep-
aration of permethylated glycans using existing methods is
not satisfactory. This problem prevented the permethylation
strategy from becoming the most effective glycan structure
analysis method because isomeric separation is presently
considered a basic criterion for the comprehensive charac-
terization of glycans.

In our recent study, we demonstrated that the application of
elevated temperatures resulted in the partial isomeric separa-
tion of permethylated glycans on C18 [27]. Isomeric separa-
tion of permethylated glycans using PGC-LC-MS/MS at room
temperature was first reported by Costello and co-workers
[65]. Here, we employ a strategy that builds upon previous
studies where porous graphitic carbon (PGC) was applied for
the separation of native alditols [66–71] in addition to our own
work where an optimized high-temperature PGC-LC method
was implemented for the isomeric separation of permethylated
glycans in human and bovine milk samples [26, 72]. Both
monosaccharide site isomers and linkage isomers can be base-
line resolved in this strategy. With the help of an established
separation technique for permethylated glycans coupled with
optimized CID and an HCD MS/MS method, we are able to
distinguish between glycan isomers by tandem MS. The de-
scribed approach enabled the identification of fucose and ga-
lactose site isomers, as well as galactose linkage isomers, and
expands upon our previous studies [26, 27, 72] by extending
the diversity of isomeric structures characterized by tandem
MS to include complex glycans from model glycoproteins as
well as human serum.
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Materials and methods

Materials

Fetuin, ribonuclease B, and pooled human blood serum were
purchased from Sigma-Aldrich (St. Louis, MO). IgG standard
was provided from Waters (Milford, MA). HPLC-grade ace-
tonitrile, water, formic acid, methanol, and isopropanol were
bought from Fisher Scientific (Pittsburgh, PA). Sodium hy-
droxide beads and ammonium borane complex were pur-
chased from Sigma-Aldrich (St. Louis, MO). PNGase F and
corresponding digestion buffer were obtained from New
England Biolab (Ipswich, MA).

Glycan release, reduction, and permethylation

Glycoproteins or blood serum samples were first mixed with
PBS buffer (20 mM, pH 7.5) and thermally denatured in a
90 °C water bath for 20 min. After the denatured sample
was cooled to ambient temperature, approximately 100 U of
PNGase F was added to each sample and incubation was
conducted in a 37 °C water bath for 18 h [73]. After
PNGase F digestion, protein was removed by precipitation
using 90 % ethanol. The purified glycans were then subjected
to reduction using a procedure based on a method for the
reductive β-elimination of O-linked oligosaccharides [74].
An aqueous 10 μg/μL ammonium borane complex solution
was prepared. Ten microliters of ammonium borane solution
was added to each sample and incubated in a 60 °C water bath
for 1 h. After incubation, 400 μL of methanol was added to
each sample which was then dried using a centrifugal vacuum
concentrator. This step was repeated three to four times until
excess ammonium borane was removed. The dried reduced
sample was resuspended in 1.2 μL of water, 30 μL DMSO,
and 20 μL of iodomethane for permethylation. A solid-phase
permethylation protocol was utilized in this study [57]. A spin
column was packed by transferring DMSO-soaked sodium
hydroxide beads using a micropipette; thenDMSOwas forced
out by centrifugation. The sample mixture was then applied to
the prepared reaction spin column. After 25min of incubation,
20 μL of iodomethane was added to the spin column. After
another 15 min of incubation, the permethylated glycans were
eluted using 100 μL of acetonitrile. The eluent was then dried
using a centrifugal vacuum concentrator because of the exis-
tence of DMSO and a high concentration of salts. Finally, the
dried sample was resuspended in a 20 % acetonitrile, 0.1 %
formic acid solution for LC-MS/MS analysis.

LC-MS methods

The separation was conducted using an UltiMate 3000 nano
UHPLC system, and the column for separation was a
HyperCarb PGC column (75 μM× 150 mm, 5 μM particle

size; Thermo Scientific, Pittsburgh, PA). The oven tempera-
ture was set to 75 °C, an optimized value reported in a previ-
ous publication of ours [27].Mobile phase Awas composed of
water and 0.1 % formic acid, and mobile phase B consisted of
98% acetonitrile, 2%water, and 0.1% formic acid. In the first
10 min, online purification was conducted using a trap to
remove the salts generated during permethylation. The flow
rate for LC separation was 0.65 μL/min. Then the analysis
gradient started at 40 % of mobile phase B. The percentage
of B increased to 75 % in 15 min and subsequently increased
to 95 % in 20 min. The 95 % mobile phase B was kept for
15 min and brought back to 20 % to reestablish equilibrium.
The LC was connected to an LTQ Orbitrap Velos mass spec-
trometer (Thermo Scientific, San Jose, CA) by nanoESI,
which was operated using a 1.6-kV ESI spray voltage. Three
events were set in each scan cycle. The first event was a full
MS scan acquired at 60,000 resolution with am/z range of 500
to 2000. The second and third events were data-dependent
MS/MS scans following the first event. The top four most
intense ions were subjected to CID and HCD MS/MS.
Dynamic exclusion was enabled to exclude ions repeated
within 20 s. The energy used for HCD was 45 % normalized
collision energy, optimized, in previous studies [75–77] while
30 % normalized collision energy was used for CID, which
was also previously optimized [78]. A mass tolerance of
10 ppm was used for extracted ion chromatograms (EICs) of
full MS data. The mass accuracy for CID fragmentation in the
ion trap (IT) was within the range of m/z ±0.5.

Data interpretation

Glycan compositions were first identified using EIC of full
MS data with a 10-ppm mass tolerance. After determining
the retention time for each glycan isomer, the MS/MS scans
that were acquired during the retention time ranges of interest
were analyzed for structure elucidation. GlycoWorkbenchwas
utilized to generate the mass list of all possible glycan frag-
ments. Manual assignment was performed to match the peaks
in the MS/MS spectra with the theoretical fragment mass list.

Results and discussion

To achieve an unequivocal structural characterization of N-
glycans, it is necessary to determine the carbohydrate compo-
sition, sequence, and branching of monosaccharides, inter-
glycosidic linkages, and anomeric connectivity. Although it
is often analytically challenging, it is also necessary to explic-
itly define the occupancy of oligosaccharide antennae, galac-
tose linkages, and the location of fucosylation sites. Several
analytical techniques have been developed to address such
needs; however, each has its pros and cons [35, 40, 44,
79–98].
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Chemical reduction of glycans-free reducing ends is neces-
sary to eliminate glycan anomers, which complicate LC anal-
ysis. Moreover, chemical reduction imparts a mass difference
to the reducing end GlcNAc, thus facilitating its distinction
from other internal GlcNAc moieties. Chemical reduction of
the reducing end of a glycan can be considered as labeling with
two hydrogens from the perspective of molecular weight.
Permethylation not only stabilizes glycan structures and en-
hances MS signals but also simplifies tandem MS interpreta-
tion. Tandem MS of permethylated glycans provides informa-
tion regarding the location and sequence of monosaccharides in
a structure [57–64]. Two examples are listed in Table 1. The
first pair of glycan fragments, consisting of a galactose and
GlcNAc residue, provides an example illustrating that it is pos-
sible to identify whether there is a branching monosaccharide
connected to a glycan ring. When there is one monosaccharide
that has been attached that is lost during MS/MS analysis, the
previous attachment site will be converted to a hydroxyl group
(see Table 1 illustration associated withm/z 450.23). In the case

that the site was not occupied, the hydroxyl group would have
been exposed to permethylation and converted to a methoxy
group. Hence, a 14-Da mass difference will be created, and the
occupancy of glycan branching is revealed. In comparison, for
native or reducing end-labeled glycans, such a difference does
not exist because there is no methyl group modification during
derivatization. Reducing and permethylation permit the identi-
fication of the reducing end GlcNAc.When a glycan is reduced
and permethylated, a reducing end GlcNAc with fucose has a
m/z value of 468.27 while a non-reducing end GlcNAc with
fucose has am/z value of 438.24 (Table 1). The mass difference
is generated by the addition of two hydrogens and two addi-
tional permethylation sites, which add 28 Da to the reducing
end. However, for the non-reduced native glycan, these two
fragments are identical in mass (Table 1).

In addition to the abovementioned limited tandem MS in-
formation associated with native and reducing end glycans,
fucose migration is common and results in misleading frag-
ment ions. Figure 1a is the MS/MS spectra of a native glycan

Table 1 Examples of mass differences for glycan fragment ions resulting from tandemMS of native or chemically reduced and permethylated glycans

Them/z of all the fragments reported are singly protonated ions. Purple circles indicate the sites of cleavages. Red labels indicate the atoms and functional
groups prompting differences in m/z values between native and permethylated glycans
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standard whose structure is already determined. This is a
branch fucosylated glycan, and most of the fragments in the
MS/MS spectra can be assigned to its correct structure.
However, the fragments at m/z values of 897.43 and 1059.43
are representing the glycan core structure with the addition of
a fucose moiety. These fragments indicate that there is a small
number of fucose residues that migrated from a branch to the
glycan core. Figure 1b is the MS/MS spectra of a RapiFluor-
MS labeled IgG glycan, in which the fucose is expected to be a
core fucose. Although most fragments agree with this struc-
ture, there is one fragment at m/z 512.27 that can be assigned
to fucose on the same branch as galactose. This is evidence of
fucose migrating from the glycan core structure to a branch.
Both examples demonstrate the migration of fucose in the gas

phase for native and reducing end-labeled glycans. As shown
below, such migration could be overcome by permethylation
which eliminates all active sites possible for fucose migration.

As aforementioned, the fragment of reducing end GlcNAc
plus a fucose at m/z 468.27 could be utilized as a diagnostic
ion for the identification of core fucosylation. It is essential to
elucidate the fucosylation site in a glycomic analysis because
of the biological attributes of fucose on different sites. MS/MS
spectra of a core fucosylated glycan exhibited a fragment ion
with a m/z 468.27 ion, while no such ion is observed in the
MS/MS spectra of a branch fucosylated structure. Figure 2a is
the parent ion scan of the diagnostic core fucosylation frag-
ment ion atm/z 468.27 in all MS/MS spectra in an LC-MS/MS
analysis of glycans released from human blood serum. The

Fig. 1 CID MS/MS spectrum for
(a) reduced native glycan
standard with branch fucosylation
and (b) RapiFluor-MS labeled
IgG glycan. The mass shift
generated by the RapiFluor-MS
tag from native glycans with a
free reducing end is equal to
311.3815 Da. All fragment ions
reported in both panels (a) and (b)
are singly charged protonated
species, excepting m/z 867.7 in
panel (b), which is doubly
protonated
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first peak overlapped with the full MS EIC of an F1A2 glycan,
which is mainly from IgG in human blood and is already

known as a core fucosylated glycan. The MS/MS fragmenta-
tion spectra of m/z 915.4914, shown in Fig. 2b, support the

Fig. 2 Precursor ion scan of a diagnostic ion to detect core fucosylation of reduced and permethylated N-glycans derived from human blood serum (a).
CID MS/MS spectra for F1A2 (b), F1A2G1 (c1 and c2), F1A2G2 (d), F1A2G2S1 (e1 and e2), and F1A2G2S2 (f). Figure labels match peak labeling
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identification of this first peak as F1A2 demonstrating frag-
ments corresponding to the intact structure minus a single
branched GlcNAc and the fucosylated core GlcNAc residue
at m/z 1570.8 and 1362.8, respectively. The second and third

peaks can be matched to F1A2G1 structures, which are also
mainly from IgG in human blood serum and demonstrated as
core fucosylated. These two separated peaks result from the
isomeric separation of galactose on different branches, further

Fig. 2 (continued)
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demonstrating the isomeric separation capability of PGC-LC
for permethylated glycans.

Two MS/MS spectra of m/z 1017.5413 are shown in
Fig. 2c1 and c2, corresponding to the two peaks labeled as c1
and c2 in Fig. 2a, respectively. The two spectra have near
identical diagnostic fragments that differ only in their relative
ratios, an observation typical of structural isomers. Despite
similar fragmentation spectra, these isomers can be differenti-
ated based on retention time with peak c1 (Fig. 2a and c1)
corresponding to the isomer, with a retention time of 34.56
(Fig. 3a), with galactose attached to the Man α1–6 arm and
peak c2 (Fig. 2a and c2) being identified as the structure, with a
retention time of 35.64 (Fig. 3a), with galactose attached to the
Manα1–3 arm. Similarly, the core fucosylation diagnostic ion
for F1A2G2 can also be observed in MS/MS spectra of m/z
1119.5912 displayed in Fig. 2d. Several sialylated and core
fucosylated structures were also noted (Fig. 2a, e1, e2, and f),
and the separation of different sialic acid linkages were seen
(Figs. 2a, e1, e2, and 3b). Using the elution order detected, we

were able to designate peaks e1 and e2 as F1A2G2S1 with an
α2–3 and α2–6 linked N-acetylneuraminic acid (Figs. 2a, e1,
e2, and 3b), respectively. The EIC of F1A2G2S1, at m/z
867.1213, illustrates the separation of two isomers in addition
to the most abundant α2–3 and α2–6 linked structures iden-
tified with retention times of 38.43 and 38.43 min, respective-
ly (Fig. 3b). Due to the weak intensity of these low abundance
isomers, a sufficient number of MS/MS scans were not col-
lected for their definitive characterization. Taken together, we
can confidently conclude that the fragment of reducing end
GlcNAc plus a fucose atm/z 468.27 can be used as a diagnos-
tic ion for identifying core fucosylation. However, it should be
mentioned that N-glycan structures containing α1–3 linked
core fucose were not examined in this study due their resis-
tance to PNGase F cleavage [99].

We also utilized the above-described combination of PGC-
LC and tandem MS of permethylated glycans to identify iso-
mers resulting from different galactose linkages. Galactose
can be linked to GlcNAc by either β 1,3 or β 1,4 linkage.

Fig. 2 (continued)
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Here, we selected glycans released from fetuin for our study
because the structures of fetuin glycans are already fully elu-
cidated by previous NMR studies [100–102]. Both β 1,3 and
β 1,4 linkages exist in the tri-antennary structure of fetuin
according to the NMR data. In order to eliminate the influence
of different sialic acid linkages, we conducted sialidase treat-
ment prior to analysis to remove all sialic acids from fetuin
glycans. Figure 4a is the EIC for glycan A3G3; there were two
isomeric peaks observed at 38.3 and 48.2 min. According to
the intensity ratio from the NMR data [101], we can assign the
first peak to be the one where all galactoses are β 1,4 linked,
and the later peak corresponds to the glycan that has the mid-
dle galactose β 1,3 linked. In order to confirm that this assign-
ment is correct, we conducted a linkage-specific glycosidase
array to check the galactose linkages. First, the sample was

treated with β 1,3 galactosidase [103, 104], which only
removes β 1,3 linked galactose. After the treatment, the first
peak at 38.3 min remains intact with the same m/z value and
retention time as shown in Fig. 4b, indicating that the first
isomer has no β 1,3 linked galactose. The second peak at
48.2 min disappeared, and the peak of A3G2 appeared at
32.5 min (Fig. 4c). These results indicated that the second
peak is a glycan with one β 1,3 linked galactose. β 1,4 galac-
tosidase was also utilized to treat the sample [103]. Following
treatment, the peak at 38.3 min disappeared, and the peak of
A3 appeared at 26.4 min (Fig. 4d) because all galactose resi-
dues were cleaved from the first isomer, while the second
isomer was converted to A3G1 at 30.3 min (Fig. 4e), indicat-
ing that the second isomer has one galactose connected withβ
1,4 linkage. Moreover, the intensity ratio of the two isomers

Fig. 4 EIC for reduced and
permethylated fetuin tri-
antennary glycans after treatment
with sialidase (a), β 1,3-
galactosidase (b, c), and β 1,4-
galactosidase (d, e)

Fig. 3 Extracted ion
chromatogram (EIC) for two
reduced and permethylated
F1A2G1 isomeric structures,
[M + 2H]2+, at m/z 1017.5413 (a)
and four reduced and
permethylated F1A2G2S1
isomeric structures, [M + 3H]3+,
at m/z 867.1213 (b)
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remained consistent before and after galactosidase treatment.
All these observations support the validity of the isomer as-
signment. However, the purpose of this study is to elucidate
glycan structure without the help of a glycosidase array, with
our goal being to collect all required information from a single
LC-MS/MS run.

We next evaluated the CID MS/MS spectrum for both
structures. In order to acquire MS/MS spectra of sodiated ions
at high ion yields and high quality, glycans released from
fetuin were resuspended in a 0.2 M sodium chloride solution
to prompt the formation of precursor ions of sodiated adducts
[105]. As shown in Fig. 5a, both structures resulted in similar

Fig. 5 CIDMS/MS spectra (a, b)
and HCD MS/MS spectra (c, d)
for two reduced and
permethylated fetuin tri-
antennary glycan isomers, [M +
2H]2+, that only differ in the
linkage of one terminal galactose
residue
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fragments with similar intensity. However, there is one signif-
icant peak atm/z 1161.52 in the lower trace. This fragment can
be assigned to a doubly charged fragment that results from
losing one galactose from the precursor ion. This MS/MS
spectrum demonstrated that the later eluting isomer contains
one unique galactose that is different from the other galac-
toses. This observation agreed with our expectation of the
isomer structure. Since we can see the unique peak at m/z
1161.52 for theβ 1,3 linked galactose, we should also observe
the fragment of the released galactose. However, this was not
seen in the CID MS/MS spectrum due to the limitations of an
ion trap instrument; the cutoff of detection is one third of the
m/z value of the precursor ion. In this case, ions smaller than
m/z 400 could not be seen in CID.

The advantage of using a CID/HCD double-play MS/MS
method is reflected in this case. HCD provides different frag-
mentation patterns and has no one-third cutoff detection limit.
In the HCD spectrum in Fig. 5b, most fragments are identical
except for the unique fragment at m/z 259.11 in the MS/MS
spectra for the later eluting isomer. The fragment atm/z 259.11
can be assigned to a free galactose, and this finding perfectly
matched our expectation based on the CID MS/MS data.
Hence, we can draw the conclusion that the bond energies of
β 1,3 and β 1,4 linked galactoses are different, prompting
different fragmentation patterns in both CID and HCD MS/
MS. The bond energy of the β 1,3 linkage is greater than the
bond between mannose and GlcNAc. Therefore, GlcNAc plus
galactose fragments can only be found during MS/MS analy-
sis if all galactose residues are β 1,3 linked. Free galactose
fragments or precursor ions minus one galactose will be found
when there exists β 1,4 linked galactose because the bond
energy of the β 1,4 linkage is weaker than the bond between
mannose and GlcNAc. This analysis demonstrates the neces-
sity of employing orthogonal MS/MS methods during analy-
sis to cover different m/z ranges and provide more structural
information.

Conclusion

In this study, we utilized the capability of PGC-LC in separat-
ing permethylated glycans to conduct glycan isomeric struc-
ture elucidation by tandem MS. Isomers from variable
fucosylation sites and galactose linkages were successfully
separated using LC and identified by CID and HCD MS/
MS. Fucose migration in the gas phase was overcome by
permethylation. In agreement with our previous study [26],
involving milk oligosaccharides, we report a diagnostic ion
at m/z 468.27 that can be utilized for the identification of core
fucosylation. Tandem MS was also employed to distinguish
galactose residues attached to the 3- or 6-antenna of a
biantennary glycan structure.β 1,3 and β 1,4 linked galactose
residues have different bond energies that prompted the yield

of unique fragments that facilitated the identification of glycan
structures.
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