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Abstract Almost a hundred commercially available energy
drink samples from Hungary, Slovakia, and Greece were col-
lected for the quantitative determination of their caffeine and
sugar content with FT-NIR spectroscopy and high-
performance liquid chromatography (HPLC). Calibration
models were built with partial least-squares regression
(PLSR). An HPLC-UV method was used to measure the ref-
erence values for caffeine content, while sugar contents were
measured with the Schoorl method. Both the nominal sugar
content (as indicated on the cans) and the measured sugar
concentration were used as references. Although the Schoorl
method has larger error and bias, appropriate models could
be developed using both references. The validation of the
models was based on sevenfold cross-validation and external
validation. FT-NIR analysis is a good candidate to replace the
HPLC-UVmethod, because it is much cheaper than any chro-
matographic method, while it is also more time-efficient. The
combination of FT-NIR with multidimensional chemometric
techniques like PLSR can be a good option for the detection
of low caffeine concentrations in energy drinks. Moreover,
three types of energy drinks that contain (i) taurine, (ii) argi-
nine, and (iii) none of these two components were classified

correctly using principal component analysis and linear
discriminant analysis. Such classifications are important
for the detection of adulterated samples and for quality
control, as well. In this case, more than a hundred samples
were used for the evaluation. The classification was vali-
dated with cross-validation and several randomization
tests (X-scrambling).
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Introduction

Energy drinks are one of the most common functional bever-
ages nowadays among commercially available soft drinks.
The high caffeine concentration combined with a characteris-
tic flavor, color, and diverse and unique appearances has con-
quered the entire world in the past decades. On the other hand,
energy drinks might carry dangerous side effects. They pro-
vide refreshment, good taste, and energy for athletes, adoles-
cents, and students, who often consume them in large quanti-
ties, because they look like (especially in a 1.5 L bottle) and
taste like common soft drinks. In most countries, energy
drinks are not prohibited for minors, which means that any-
body can consume them uncontrollably.

In the past decade, many publications have dealt with the
two greatest risks, the caffeine and the sugar intake from en-
ergy drinks. Extreme caffeine intake can lead to hypertension,
cardiac arrhythmia, liver and kidney problems in case of long-
term consumption, besides the potential overdose symptoms
[1]. Unregulated caffeine intake in the case of children and
adolescents cannot solely cause cardiac abnormalities, but it
can cause mood and behavioral disorders [2]. Heckman et al.
also mentioned that caffeine intake can be dangerous for
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pregnant women. It can increase the risk of impaired fetal
growth and decrease fertility [3]. Another paper draws atten-
tion to the sugar content of energy drinks, where the biggest
problems are obesity and the risk of type 2 diabetes mellitus
[4]. An average portion of energy drink contains 10 g sugar
per 100 ml liquid.

A new Btrend^ has shown up in the last years, which is
quickly spreading among adolescents and college students:
the combination of energy drinks with alcohol [5]. This
combination can cause serious problems, for example the
dehydration of the body caused by drinking alcohol is
increased by the effect of caffeine. Ferreira et al. confirmed
in their paper that, although the combination of energy
drinks with alcohol can give a false feeling that the decrease
of motor coordination has stopped, it cannot be detected in
reality [6]. Another experiment with college students con-
cluded that those students who consume energy drinks with
alcohol have a higher risk to be involved in alcohol-related
consequences [7].

As the consumption of energy drinks is an increasing
and daily issue, especially in the case of adolescents,
control of the caffeine and sugar content is of utmost
importance for both the consumers and the producers.
While every country has its own controlling and regular-
ization systems, among the hundreds of energy drink
brands one can assume that they are unregulated. There
are plenty of methods reported in the literature for mea-
suring the caffeine content of energy drinks, and one can
find sources for the examination of sugar contents as
well. Two types of experiments can be distinguished:
spectrometric and chromatographic techniques. From the
first group, Armenta et al. used solid-phase Fourier-trans-
form Raman spectrometry for the analysis of commercial
energy drink samples [8] and in another paper an UV/Vis
derivative spectrophotometric approach with solid-phase
extraction is presented [9]. As for the other group,
one can successfully apply HPTLC-UV densitometric
analysis [10], dispersive liquid-liquid microextraction
(DLLME) with gas chromatography-nitrogen phosphorus
detection (GC-NPD) [11], or surfactant-mediated matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF-MS) for the determination
of caffeine content, and also vitamins such as riboflavin,
nicotinamide, etc. [12]. Some examples are summarized
(including those mentioned above) in Table 1 in detail.

Although the mentionedmethods can be used with success,
they are time- and money-demanding because of the neces-
sary pretreatments, solvents, and other required materials. In
the field of spectroscopy, Fourier-transform near-infrared
spectroscopy (FT-NIR) is one of the fastest and cheapest
techniques, which is commonly used in several research
areas from pharmaceutical to food sciences. The method is
easy to use, and in most cases it does not need any sample

pretreatment. We can find some publications in the literature
for the determination of caffeine content with Fourier-
transform near-infrared spectroscopy as well, but only for
coffee samples [17, 18].

Therefore, our aim was to develop a novel, money- and
time-saving method for the determination of caffeine and sug-
ar concentration in energy drinks with FT-NIR spectroscopy.
The technique has not been used earlier for this type of anal-
ysis and sample matrix. An easy high-performance liquid
chromatography (HPLC-UV) method was further developed
from an international standard to provide a reference method
for the determination of caffeine concentrations. While caf-
feine and sugar are the most important components, minor
components such as taurine or arginine should not be ignored
either. In Hungary, production of taurine-containing energy
drinks is legally hindered, thus most of the producers are try-
ing to avoid this component; it is either omitted altogether, or
replaced with arginine. From this point of view, Hungarian
energy drinks can be termed Bcarbonated soft drinks with high
caffeine content^ (which is currently the official term for
them), as they differ from their American or other European
counterparts. It has to be indicated on the bottles, whichmeans
that the quality control and verification of these energy drink
samples are also important. Moreover, there are several pro-
ducers, who distribute various products with different compo-
sitions. In this work, we have developed quantitative models,
and classification analyses of energy drinks based on their
most important ingredients and sugar content.

Materials and methods

Samples

Ninety-one energy drink samples in total were used for the
determination of sugar content. They contained 71 original,
commercially available samples from Hungary, Slovakia, and
Greece. Some original samples were used only in one part of
the experiments (for example just for caffeine concentration
determination or for sugar concentration determination ac-
cording to Schoorl), and others were used in all cases. (It
was necessary to allow some overlap between the examina-
tions, because the samples could not have been stored for
longer periods unaltered.) The other samples were mixtures
of the original ones. It was necessary to extend our dataset
with mixtures, as we intended to cover the examined concen-
tration range uniformly.

In the classifications, 108 samples were used to make a
diverse dataset with specific minor components (taurine,
arginine).

For the determination of caffeine content, 42 original sam-
ples and 33 mixtures were used. Most of the commercial sam-
ples in Hungary contain nominally 160 or 320 ppm caffeine.
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Thus, the concentration range between the minimum and
maximum values was extended with mixtures (typical ratios
were 1:1, 1:2, 1:3, and 1:4).

Sample preparation

For the HPLC-UV measurements, the energy drink samples
were sonicated in an ultrasonic bath (type T2MODX; VWR)
for 20 min; then, 50 μl of them was diluted to 1600 μl with
ultra-pure water in vials. External calibration with peak area
integration was used for the quantification of total caffeine
concentration in the energy drink samples. The calibration
points were the following: 2.5, 5.0, 10.0, and 20.0 ppm (be-
cause of the 32-times dilution).

The only Bsample pretreatment^ step for FT-NIR analysis
after the sonication was pouring the samples into 10 ml vials.

High-performance liquid chromatography

Methanol (MeOH; HPLC grade) was purchased from
Scharlau (Barcelona, Spain). The caffeine standard (≥98 %)
was obtained from the Sigma-Aldrich group (Schnelldorf,
Germany). Ultra-pure water (18.2 MΩ cm) was obtained from
a Milli-Q system fromMerck-Millipore (Milford, MA, USA).

The international standard for the determination of caffeine
content in coffee and coffee products (ISO 20481:2008) was
adapted for the energy drink samples. Briefly, an Agilent 1200

HPLC (Agilent Technologies, Santa Clara, CA, USA) system
was used for the HPLC-UV-based quantification of caffeine.
An Agilent Zorbax XDB C18 HPLC column (4.6 mm ×
150 mm× 5.0 μm) was used in isocratic mode at 40 °C. The
flow rate was 1 ml min−1, the injection volume was 20 μl,
while the chromatographic run lasted for 18 min. UV detec-
tion was carried out at 273 nm, and additional peak purity
measurements were executed at 260 nm in order to exclude
samples containing impurities in the retention window of
caffeine.

Fourier-transform near-infrared spectroscopy

A Bruker MPA™Multipurpose Fourier-transform near-infra-
red spectroscopy (FT-NIR) analyzer (Bruker Optik GmbH,
Ettlingen, Germany) was used for FT-NIR measurements.
The device is equipped with a quartz beam splitter, an inte-
grated Rocksolid™ interferometer, a thermostated sample
compartment equipped with a flow-through cuvette, and a
TE-InGaAs detector working in the 800–2500 nmwavelength
range (12,500–4000 cm−1 wavenumber). OPUS 6.5 (Bruker
Optik GmbH, Ettlingen, Germany) software was integrated as
a device manager. Transmission mode was used for the col-
lection of absorption spectra. The spectral resolution was
8 cm−1, the scanner speed was 10 kHz, and each spectrum
was the average spectrum of 32 subsequent scans. The sam-
ples were measured three times, and averages were used for

Table 1 Summary of the examples for the determination of caffeine and sugar content in energy drinks, soft drinks, and coffees. The original units
were preserved

Name Method Matrix Components Other

E. Abourashed et al. [10] HPTLC-UV densitometric analysis Energy drinks,
herbal products

Caffeine Recovery = 98.90 ± 3.46
Accuracy = 99.84 ± 2.87

S. Armenta et al. [8] Solid-phase FT-Raman spectrometry Energy drinks Caffeine LOD = 18 mg L−1

C. Pieszko et al. [9] UV/Vis derivative spectrophotometry +
solid-phase extraction

Energy drinks Caffeine, taurine LOD = 0.21 μg ml-1

LOQ = 0.63 μg ml−1

H. Sereshti et al. [11] Dispersive liquid-liquid microextraction
(DLLME) + gas chromatography-nitrogen
phosphorus detection (GC-NPD)

Tea, coffee,
various
beverages

Caffeine LOD = 0.02 μg ml-1

LOQ = 0.05 μg ml−1

D. C. Grant et al. [12] Surfactant-mediated MALDI-TOF-MS Energy drinks Caffeine, riboflavin,
nicotinamide,
pyridoxine

RSD <20 %

B. Vochyánová et al. [13] Short-capillary electrophoresis with contactless
conductivity detection

Energy drinks Sugar content: sucrose,
glucose, fructose

LOD = 15 mg L-1

LOQ = 52 mg L−1 for
sucrose

R. Lucena et al. [14] Continuous solid-phase extraction + UV-Vis
and ELSD detectors

Soft drinks Total sugars, class IV
caramel, caffeine

RSD = 2.6 % for sucrose
and RSD = 4 % for
caffeine

M. Aranda et al. [15] Planar chromatography-multiple detection Energy drinks Riboflavin, pyridoxine,
nicotinamide,
caffeine, taurine

RSD % between 0.8 and
1.5 (all substances in
matrix)

V. V. Khasanov et al. [16] Capillary electrophoresis (CE) Energy drinks Caffeine, vitamin C, PP,
and B6

Relative error: 1.45–2.65 %
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the further analysis. Derivation and standardization of the
spectra were used as data pretreatment methods in each case
of model building.

Partial least-squares regression

Partial least-square regression is one of the most com-
monly used multivariate regression techniques. One of
the most understandable and explanatory papers about
partial least-squares regression (PLSR) is the work of
Geladi and Kowalski [19]. Soon after being published,
PLSR became more and more popular in the field of
chemistry. The method is based on the regression be-
tween the PLS components of the X (independent) and
Y (dependent) variables. There is an interrelation be-
tween the PLS components of the X and Y matrices,
which can be assigned to the regression coefficient, b.
The number of latent variables (PLS components) is re-
ally important, if it is not chosen in a proper way, then
one can easily over- or underfit the model. One com-
monly used method for choosing the optimal number is
the minimum value of the root mean squared error of
cross-validation (RMSECV):

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X N

i¼1
ŷCV ;i− yi

� �2

N

v

u

u

t

ð1Þ

where ŷCV ;i denotes the predicted y values with cross-

validation, yi is the measured y value, and N is the num-
ber of samples [20].

The validation of the regression models is also important.
Sevenfold cross-validation, leave-one-out cross-validation, in-
ternal test validation, and external validation are the most
common techniques. However, cross-validation is probably
the most widely used method for estimating prediction error
[21]. The goodness of the final regression models is deter-
mined with several commonly used performance parameters
like R2, Q2, RMSECV, etc. R2 is the coefficient of determina-
tion for the calibration model, which can be calculated with
the following equation [22]:

R2 ¼ 1−

X n

i¼1
yi−ŷi

� �2

X n

i¼1
yi−yi

� �2 ¼ 1−
RSS

TSS
ð2Þ

where yi is the measured y value, yi is the predicted y value,
and yi is the mean of the measured y values. Q2 is calculated
with the same equation as R2, but from the validation data.
RSS is the residual sum of squares and TSS is the total sum of
squares. OPUS 6.5 [23] was applied for PLSR model
building.

Linear discriminant analysis with the use of principal
component scores

Linear discriminant analysis is another popular technique in
the field of classification methods [24]. It is a supervised
method, i.e., we must know the class memberships before
the analysis. It is similar to principal component analysis
(PCA), but here canonical variables (roots) are calculated,
and ellipses (or hyperellipsoids) are plotted around the points
of the groups. The discriminant function is defined as a line,
which connects the intersections of the ellipses. If the number
of groups is N, the number of canonical variables is N-1.

Linear discriminant analysis (LDA) has a limitation in the
number of variables, but PCA can compress the information
into a smaller number of variables, which can easily be used in
linear discriminant analysis to replace the original variables.
Principal component analysis [25] can be thought of as the
pair of PLSR in the multidimensional pattern recognition
world, in terms of being as popular as PLSR. However, it
cannot be used as a classification method, but only to recog-
nize different patterns and groupings in our dataset without the
use of any dependent (grouping) variable(s). The basic idea of
this method is the following: the original dataset can be
decomposed into two matrices, P and T, where P contains
the loadings and T contains the score vectors. The loading
and score vectors are calculated from the linear combinations
of the original variables using orthonormality as a constraint.
The principal components explain parts of the variance in the
original data matrix in decreasing order.

STATISTICA 12 [26] was applied for both the PCA and
LDA analyses.

Results and discussion

Determination of caffeine content

The 42 original energy drink samples were measured first with
the HPLC-UV method. The other 33 mixtures were prepared
from the original ones. Since we knew the exact concentration
values and the used amounts in the mixtures, only a few mix-
ture samples were checked again with HPLC. Relative stan-
dard deviations were calculated for these samples: the propor-
tional error differences of standard deviation were below 5 %
(5 % threshold was chosen by the authors). Every sample was
measured three times with HPLC-UV, and then the average of
the calculated caffeine concentrations were used for the FT-
NIR measurements as reference values. Peak purity was also
checked for the method: the samples were measured at
260 nm, as well. The results were compared with the original
measurements at 270 nm, and there were no significant differ-
ences according to the t test (the predefined error limit was
5 %). The running time of the HPLC-UVanalysis was 18 min.
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The retention time for the caffeine peak was around 9.5 min.
One of the measured chromatograms can be seen on Fig. 1 as
an example.

Every sample was examined three times from 10 ml vials
with a quartz flow cuvette with the FT-NIR analyzer. Figure 2
shows an example of the measured spectra and its derivative
form. The concentration range of caffeine was between 118
and 338 ppm, based on HPLC-UV determination. This mea-
surement was really delicate because the caffeine concentra-
tion was really low in the samples compared to other
components.

Principal component analysis was used for spectral outlier
detection. There was no spectral outlier in our dataset, thus the
final number of samples was 75. Then, the models were opti-
mized with different wavelength selections and data preprocess-
ing methods with OPUS 6.5 software. The applied data prepro-
cessing methods were derivation and standardization (standard
normal variate). The number of smoothing points was 17. The
selected wavenumber ranges were 12,490–7498, 6102–5446,
and 4605–4243 cm−1. The number of latent variables was eight,
which was chosen based on the global minimum of the root
mean squared error of cross-validation (RMSECV).

Figure 3 shows the final sevenfold cross-validated model.
Sevenfold cross-validation is an appropriate and common val-
idation procedure suggested in ref. [21].

The coefficient of determination, R2, of the calibration
model was 96.63 %, and the root mean squared error of cali-
bration (RMSEC) was 13.4 ppm. RMSEC values were calcu-
lated with the following equation:

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X N

i¼1
ŷi− yi

� �2

N−A−1ð Þ

v

u

u

t ð3Þ

Where yi, yi, and N are the same as in Eq. 1.; A is the
number of latent variables [20].

In the case of cross-validation, Q2 (determination coeffi-
cient of the cross-validated model) was 92.79 % and the root
mean squared error of cross-validation was 18.3 ppm.

Finally, external validation was carried out with 13 com-
mercially available new energy drink samples, as the final
verification of our model. Here, the externally validated coun-
terpart of R2, the Q2 value, reached 89.81 %, and the root
mean squared error of prediction (RMSEP) value was

Fig. 1 One example of the
measured chromatograms. The
retention time and area are written
above the caffeine peak

Fig. 2 An example of the
measured samples spectra and its
derivative form. Absorbance is
plotted on the left Y axis, first
derivative absorbance on the right
Y axis and wavenumbers are on
the X axis. The original spectrum
is marked with blue and the
derivative is marked with red
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36.3 ppm. (The smaller degree of freedom causes higher pre-
diction error.) RMSEP values are calculated with the follow-
ing equation:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X Np

i¼1
ŷi− yi

� �2

Np

v

u

u

t ð4Þ

Where yi and yi are the same as in Eqs 1 and 2. The number
of samples in the validation or external test set is denoted with
Np [20].

The selected spectral areas can be assigned to functional
groups and bonds such as methyl antisymmetric and symmet-
ric stretch first and second overtones [27], first overtone of C–
O and N–H, or CONH amide combination bands [28, 29].

Determination of sugar content

Seventy-one original and 20 mixed samples (91 in all) were
used for the determination of sugar content in the energy

drinks. Themixture samples were made from the original ones
with the use of different mixing ratios. (The producers prefer
the usage of a few dedicated, typical sugar concentrations;
thus, we had to extend the number of samples with mixtures
for a better coverage.)

The Schoorl method was applied as the reference for
the determination of sugar concentration. This method is
frequently used for the determination of sugar content in
food analysis. The applied technique was based on an
AOAC standard [30]. Seventy-five of the 91 samples
were chosen and measured in this way. However, the
method has a large bias and relatively large standard
deviation (namely 12.4 %), especially in the range
of small amounts of sugar (1–2 g/100 ml). Thus,
we decided to use and compare both of the original
(indicated on the can) and the measured values, because
the nominal concentrations have less error (based on a
simple weighing).

In this case, every sample was analyzed three times from
10 ml vials in a quartz flow cuvette with an FT-NIR analyzer,
as well. The average of the spectra was used for further che-
mometric analysis. First, PCA was applied to detect spectral
outliers. The result is shown in Fig. 4. Only two samples from
the 91 were out of the 95 % confidence range (Hotelling-T
ellipse).

PLS regression was used for model building. The model
optimization for the 89 samples was carried out with OPUS
6.5; first derivative and standardization (standard normal
variate) were used for data preprocessing. The concentra-
tion range for sugar was between 0.0 and 14.9 g/100 ml.
Six latent variables were enough for model building, based
on the global minimum of the RMSECV curve (like in the
previous case). Two spectral ranges were chosen for the

Fig. 3 The final validated model for caffeine. Predicted Y values are
plotted against measured Y values

Fig. 4 Spectral outlier detection
in the case of sugar content
determination. The second
principal component score is
plotted against the first one. The
Hotteling-T2 ellipse is marked
with a red dotted line
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regression analysis: 7506–6796 and 4605–4243 cm−1 (141
variables). The R2 value for the calibration set was 99.75 %
and the RMSEC value was 0.219 g/100 ml. The values
were calculated in the same way as in the previous case
(Eqs. 2 and 3.).

Sevenfold cross-validation and external test validation
were used as validation procedures for our model. Figure 5
shows the result of cross-validation. In this case, Q2 was
99.54 % and RMSECV was 0.29 g/100 ml. Twelve new sam-
ples were used for the external validation of the model. Quite
convincing results were obtained: Q2 was 99.58 % and
RMSEP was 0.26 g/100 ml. In other words, in each case,
the root mean squared error of the model was under 0.3 g/
100 ml.

The selected peak areas can be assigned to functional
groups and bonds such as the first overtone of OH stretching
or the combination of CH stretching and CH2 deformation
bands [27].

Model building was repeated with the reference
dataset based on the sugar content measurements. The
two spectral outliers (as in the previous case) were omit-
ted from the dataset, thus the final number of samples
was 73. In this case, the component range extends be-
tween 0.1 and 15.3 mg/100 ml. Again, first derivative
and standardization (standard normal variate) were used
as data preprocessing methods. Two spectral ranges were
chosen for the regression analysis: 4506–4243 and 7506–
5446 cm−1. The variable selection method and also the
PLS regression use the information of the Y (dependent)
variables. Thus, the chosen intervals are slightly differed
from the previous case (7506–6796 cm−1). The above
ranges contain the vibration bands expected from theory
and earlier examinations. Six PLS components were used
for model building, which were chosen based on the
global minimum of RMSECV values. Figure 6 shows
the final validation model. Sevenfold cross-validation
was used for validation.

The R2 value for the calibration was 94.25 % and RMSEC
was 1.00 g/100 ml. After the validation process, the Q2 value
was 91.87 % and RMSECV was 1.13 g/100 ml. Eleven new
samples were used for the external validation step. In this case,
the Q2 value was 93.51 % and RMSEP was 1.23 g/100 ml.
These results are also acceptable and useful, but in comparison
with the previous results, we can conclude that it contains
larger error. It is not surprising because the measurement of
sugar content has large bias and error (the standard deviation
was 12.4 % based on duplicates), which is much bigger than
the error of a simple weighting. When the nominal values
indicated on the cans were used, smaller errors were observed.

The detailed summary of the model performance parame-
ters can be seen in Table 2. The basic statistics table and
histograms of the reference values (for every models) are
shown in the Electronic Supplementary Material as Fig. S1.
The values are not normally distributed, because some con-
centration segments have greater popularity among the pro-
ducers. The data sets are available from the authors upon
request.

Classification of energy drinks

In this part of the study, FT-NIR spectra of 108 energy
drinks samples were evaluated with PCA and LDA. LDA
is a commonly used supervised pattern recognition tech-
nique in many fields of science. It is simpler compared to
others, such as machine learning or tree-based methods.
With the use of PCA as a Bdata reduction^ technique, we
could eliminate the limitation of the number of variables.
The aim of the evaluation was to classify the energy
drinks into three groups, based on whether (i) it contains
arginine, (ii) it contains taurine, or (iii) there is no tau-
rine and arginine in the samples. As it was mentioned in
the BIntroduction^ section, some producers replace tau-
rine with arginine on such markets as Hungary, and some
of them simply omit taurine. Samples from Slovakia,

Fig. 5 The final validated model for the sugar content determination
based on the nominal values (indicated on the cans). Predicted Y values
are plotted against the nominal Y values

Fig. 6 The final validated model for the sugar content determination
based on the measured values (Schoorl method). Predicted Y values are
plotted against the measured Y values
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Greece, and Hungary were used for the qualitative deter-
mination of energy drinks.

In the first step, the average spectra of the samples from
12,500 to 4000 cm−1 were used for principal component anal-
ysis. Standardization (standard normal variate) was applied as
data preprocessing. After that, the first 20 PCA scores were
used for the further analysis with LDA.

LDA, as implemented in STATISTICA™ (Tulsa,
Oklahoma, USA), has different options to select the sig-
nificant variables for model building, such as forward
stepwise, backward stepwise, or all effects. Forward step-
wise model building method and threefold cross-
validation were applied in the evaluation. Proper valida-
tion is very important; it should be tested, whether the
results are artefacts or not. For this purpose, as another
validation method for the model, X-scrambling random-
ization test was used three times. Figure 7a, b shows the
final result with the comparison of a typical example for
X-scrambling validation model. The three earlier men-
tioned groups can be clearly classified based on LDA
and PCA analysis (and only FT-NIR spectra) and the
validation of the model returned good results as well.
The correct classification rate of the cross-validated mod-
el was 95.68 %.

Conclusion

The application of FT-NIR spectroscopy for the quantita-
tive determination of caffeine and sugar concentrations in
energy drinks is a great opportunity, not just because it
saves time and money, but all of the validated models’ R2

values are above the 90.0 % level (see details in Table 2).
The models can replace HPLC and other frequently used
(but time-consuming and costly) methods in the field of
the determination of caffeine and sugar concentration.
Almost a hundred energy drink samples were examined,
thus these models cover virtually the whole market of
commercial energy drinks in Hungary. In the case of
sugar content determination, we can obtain better models
with the use of nominal concentrations, instead of using
the Schoorl method; it means that the latter method has a
larger bias than the simple weighing.

The samples with arginine, taurine, or without them
were clearly classified with PCA and LDA analysis with
a 95.7 % correct classification rate. The classification of
these samples based on our grouping system can be used
for the verification and detection of adulteration of the
energy drinks. This type of classification of energy
drinks is unique in the literature.

Fig. 7 a The final classification model for the original (without taurine or arginine), taurine, and arginine groups of samples. b The same model with the
use of X-scrambled data as randomization test. The second canonical variable is plotted against the first one

Table 2 Summary of the final
regression models for caffeine
and sugar content determination
in energy drinks

N Ca R2, b Q2
ext

b Q2, b RMSECVc RMSEPc

Caffeine model 75 8 96.63 94.94 92.79 13.4 16.8

Sugar model (with measured conc.) 73 6 94.25 93.51 91.87 1.13 1.23

Sugar model (with nominal conc.) 89 6 99.75 99.58 99.51 0.29 0.26

a C is the number of used PLS components
b The unit of performance parameters is %
c The unit of the RMSECV and RMSEP values in the case of sugar models were g/100 ml. The unit of the
RMSECVand RMSEP values in the case of caffeine model was ppm
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