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Abstract Metabolomics protocols are used to comprehen-
sively characterize the metabolite content of biological sam-
ples by exploiting cutting-edge analytical platforms, such as
gas chromatography (GC) or liquid chromatography (LC)
coupled to mass spectrometry (MS) assays, as well as nuclear
magnetic resonance (NMR) assays. We have developed novel
sample preparation procedures combined with GC-MS, LC-
MS, and NMR metabolomics profiling for analyzing bron-
chial wash (BW) and bronchoalveolar lavage (BAL) fluid
from 15 healthy volunteers following exposure to biodiesel
exhaust and filtered air. Our aim was to investigate the re-
sponsiveness of metabolite profiles in the human lung to air
pollution exposure derived from combustion of biofuels, such
as rapeseed methyl ester biodiesel, which are increasingly
being promoted as alternatives to conventional fossil fuels.
Our multi-platform approach enabled us to detect the greatest
number of unique metabolites yet reported in BW and BAL
fluid (82 in total). All of the metabolomics assays indicated
that the metabolite profiles of the BW and BAL fluids dif-
fered appreciably, with 46 metabolites showing significantly

different levels in the corresponding lung compartments.
Furthermore, the GC-MS assay revealed an effect of biodiesel
exhaust exposure on the levels of 1-monostearylglycerol, su-
crose, inosine, nonanoic acid, and ethanolamine (in BAL) and
pentadecanoic acid (in BW), whereas the LC-MS assay indi-
cated a shift in the levels of niacinamide (in BAL). The NMR
assay only identified lactic acid (in BW) as being responsive
to biodiesel exhaust exposure. Our findings demonstrate that
the proposed multi-platform approach is useful for wide
metabolomics screening of BW and BAL fluids and can fa-
cilitate elucidation of metabolites responsive to biodiesel ex-
haust exposure.
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Introduction

Metabolomics studies aim to comprehensively characterize
the vast metabolite content of biological samples. Since these
small molecular weight analytes are typically found at very
different abundance levels and display diverse physicochem-
ical properties, meticulous sample preparation protocols and
detection techniques must be employed [1]. At present, no
single metabolomics platform is able to cover the whole bio-
chemical space of occurring metabolites. However, metabolo-
mics assays have been developed for mass spectrometry (MS)
and nuclear magnetic resonance (NMR) applications [1–6],
which are largely complimentary techniques, at least for plas-
ma analysis [7]. Hence, by using a multi-platform approach
exploiting liquid and gas chromatography (LC and GC)
coupled to MS as well as NMR, the largest possible portion
of detectable analytes in a given sample can be covered.
Subsequent classification of samples through multivariate
analysis and identification of differentially expressed metabo-
lites allow the sample class to be defined and provide infor-
mation about disturbed metabolic pathways in relation to a
particular stimuli or disease.

Metabolite profiling of lung lavage fluid presents a partic-
ular challenge due to extremely lowmetabolite levels and high
salt content [8, 9]. Nevertheless, metabolomics profiling of
bronchoalveolar lavage (BAL) fluid has been successfully
used to assess silica exposure in an animal model for lung
inflammation and in asthma models, as well as human lung
injuries and pulmonary diseases such as cystic fibrosis, asth-
ma, and respiratory distress syndrome [3, 4, 9–18]. As a result,
key metabolic markers have been identified and used to en-
hance the understanding of the studied pathologies. To date,
the analytical technique that has detected the greatest number
of unique metabolites in a BAL sample (23) is LC-MS [3].
However, no study has yet used GC-MS, LC-MS, and NMR
together to analyze aliquots of the same sample, which might
have contributed to the limited number of metabolites identi-
fied in previous studies.

The spatial resolution of sampling for different lung com-
partments during metabolite profiling can be increased by
performing a bronchial wash (BW) before BAL: The content
of the BW reflects the metabolite profile of the central air-
ways, while the BAL fluid reflects the metabolite profile of
the lungs’ more peripheral regions. This sequential approach
has been used to investigate compartment-specific fatty acid
metabolite (oxylipin) profiles [19]. A similar analysis of BW
and BAL fluids examining a wider range of metabolites could
provide important insights into the effects of fuel exhaust ex-
posure that would be complementary to information obtained

by studying traditional markers of exposure such as cellular
and soluble markers of inflammation [20–22].

The chemical and toxicological properties of particulate
matter (PM) originating from fossil fuel combustion allow it
to penetrate deep into the respiratory tract and cause signifi-
cant damage to the lungs when inhaled [23]. The effects of
exposure to such PM have been investigated in a variety of
ways. For example, controlled chamber exposure studies have
shown that exposure to petrodiesel exhaust induces
neutrophil-dependent inflammation and adverse cardiovascu-
lar effects in healthy human subjects, and the underlying
mechanisms have been thoroughly described [20–22,
24–30]. In addition, several epidemiological studies have
shown that PM exposure is associated with multiple adverse
health effects including increased risks of mortality, morbidity,
cardiovascular events, respiratory symptoms, and distorted
lung function [31–35]. Because global oil reserves are limited
and there are significant concerns about the negative environ-
mental and health effects of fossil fuel combustion, there is
considerable pressure to replace fossil fuels with biofuels de-
rived from renewable sources [36]. However, it is not yet clear
how switching from fossil diesel to biofuels such as rapeseed
methyl ester (RME) biodiesel will affect human health [37].

We hypothesized that metabolite profiling using multi-
platform metabolomics assays (GC-MS, LC-MS and NMR)
would overcome current limitations in the metabolite cover-
age of lung lavage fluids and reveal potential effects of bio-
diesel exhaust exposure on the metabolome that may indicate
adverse effects on pulmonary health. To enable such profiling,
we developed an extraction protocol for efficient identification
of a wide range of metabolites in BWand BAL fluid collected
from subjects exposed to biodiesel exhaust and filtered air in a
randomized fashion. Metabolites whose levels differed be-
tween the two exposure treatments were identified, providing
information on the metabolic pathways affected by exposure
to biodiesel exhaust. To our knowledge, this study is the first
to provide comprehensive information on the abundance of
compounds spanning a wide range of metabolites in BW and
BAL samples based on results acquired using three different
platforms/assays.

Materials and methods

Chemicals

All reagents for GC-MS analysis were of analytical
grade. Methyl stearate and methoxyamine were pur-
chased from Sigma (St. Louis, USA). N-Methyl-
N-(trimethylsilyl)trifluoroacetamide (MSTFA), 1 %
trimethylchlorosilane (TMCS), and pyridine (silylation
grade) were purchased from Thermo Scientific
(Rockford, IL, USA), and heptane was purchased from
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Fischer Scientific (Loughborough, UK). Water purified
with a MilliQ gradient system (Millipore, Milford, MA,
USA) was used to prepare all of the aqueous solutions
for the assays.

All solvents and chemicals for the LC-MS analysis were of
HPLC grade. Acetonitrile (ACN) was obtained from Merck
(Darmstadt, Germany). Isopropanol was from VWR
PROLABO (Fontenay-sous-Bois, France).

Sodium phosphates, including Na2HPO4 and NaH2PO4,
were purchased at analytical grade or higher from Scharlau
S.L. (Barcelona, Spain). Deuterium oxide (D2O, 99.9 % D)
and the reference species sodium 3-trimethylsilyl [2,2,3,3-
2H4] propionate (TSP) were purchased from Cambridge
Isotope Laboratories, Inc. (Tewksbury, MA, USA). The pre-
servative sodium azide (NaN3) was purchased from Sigma
Aldrich (Buchs, Switzerland).

Study design

Fifteen non-smoking healthy individuals (eight males, seven
females) were exposed to both pure biodiesel exhaust
(RME100) with an average PM10 concentration of 159 μg/
m3 and filtered air in a randomized, controlled, and double-
blind crossover trial. The bronchoscopy sampling (BW and
BAL) was performed after each exposure resulting in a total
of 60 (15×2×2) lung lavage samples. The study participants
gave their written consent and were informed of the risks and
purpose of the procedures, which were conducted in accor-
dance with the Declaration of Helsinki. The Regional Ethical
Review Board at Umeå University approved the study (Dnr
2013-184-31M).

Each exposure session lasted for 1 h, during which subjects
alternated between 15-min intervals of exercise and rest.
Exposures were carried out at least 3 weeks apart in a human
exposure chamber using the urban part of the European
Transient Cycle, in order to mimic urban driving conditions
[25, 28]. A Volvo engine (Volvo TD40 GJE, 4.0 L, 4 cylin-
ders) was used to generate the exhaust emissions, and the
controlled environment in the chamber was continuously
monitored for pollutant gases (total hydrocarbons 0.8 ppm,
NO2 0.6 ppm, NOx 6.9 ppm) as well as particulate number
and concentration. The subjects abstained from alcohol and
caffeine 24 h prior to exposure and were requested not to take
any anti-inflammatory drugs or dietary supplements during
the week before the experiment. Furthermore, they were
instructed to have a light, ordinary breakfast (with no ham),
and to eat as similarly as possible before the two exposures.

Bronchoscopy was performed, as described previously,
using a flexible video bronchoscope (Olympus BF-1T160;
Olympus, Tokyo, Japan) [38]. BW (2× 20 mL) and BAL
(3×60mL) samples were extracted with sterile saline solution
(pH 7.3, 37 °C) after the tip of the bronchoscope was carefully
inserted into the lingual or middle lobe bronchus. Aspirates

recovered from the first and second 20-mL instillations of the
BW and pooled BAL fluid were collected in separate silicon-
ized containers and immediately placed on ice. After collec-
tion, the fluids were centrifuged and the cell pellet removed
and stored separately. The samples were then frozen and kept
at −80 °C.

There were no significant statistical differences between
the recoveries of lavage fluid in either the air or biodiesel
exposure experiments as calculated with Student’s t test (see
Electronic Supplementary Material (ESM) Table S1).
Recoveries ranged from 33 to 70 % and 50 to 86 % for BW
and BAL, respectively.

Sample preparation for GC-MS analysis

BWand BAL samples were thawed at room temperature and
then subjected to a modified protocol for metabolite extraction
that was originally developed by A et al. [39] and is used as a
standard procedure at the Swedish Metabolomics Centre
(SMC) in Umeå, Sweden. Samples (1 mL) were evaporated
to dryness under vacuum with a miniVac QUATTRO concen-
trator (Genevac LTD, Ipswich, UK) for approximately 2–3 h
at room temperature. Next, 30 μL of toluene was added to
each sample to enhance the drying process, which was lengthy
because of the samples’ high salt contents. The dried extracts
were methoxymated with 15 μL of methoxyamine solution in
pyridine (15 μg/μL) by heating at 70 °C in an oven for 1 h
before being left to stand at room temperature for 16 h. After
methoxymation, the samples were trimethylsilylated with
15 μL of MSTFA at room temperature for 1 h, then 15 μL
of heptane (containing 0.5 μg of methyl stearate as an injec-
tion standard) was added. This modified procedure yielded a
20-fold higher concentration factor thanwas achievedwith the
unmodified protocol.

GC-MS analysis

One microliter of derivatized sample was injected splitlessly
using a CTC Combi Pal autosampler (CTC Analytics AG,
Zwingen, Switzerland) into an Agilent 7890A GC equipped
with a 30 m×0.25 mm i.d. fused-silica capillary column with
a chemically bonded 0.25 μm DB5-MS stationary phase
(J&W Scientific, Folsom, CA, USA). The injector tempera-
ture was set to 260 °C, and helium was used as a carrier gas at
a constant flow rate of 1 mL/min. For routine analysis, the
purge time was set to 75 s at a purge flow rate of 20 mL/
min. The column temperature was initially held at 70 °C for
2 min, then increased from 70 °C to 320 °C at 20 °C/min and
held at 320 °C for 12 min. The column effluent was
introduced into the ion source of a Pegasus HT TOFMS
(Leco Corp., St. Joseph, MI, USA), with the transfer line tem-
perature set to 250 °C and the ion source temperature set to
200 °C. Ions were generated using a 70-eV electron beam.
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Masses were acquired from m/z 50 to 800 at a rate of 20
spectra per second, and the acceleration voltage was turned
on after a solvent delay of 290 s. An alkane series (C10-C40)
was run in conjunction with all samples. Samples (58 in total)
were analyzed in randomized order to minimize the influence
of instrumental drift on the results.

Processing of GC-MS chromatograms and compound
identification

Sample files from the GC-MS analysis were exported in
MATLAB 8.1 (R20013a) (Mathworks, Natick, MA, USA)
in NetCDF format for further data processing and analysis.
CustomMatlab-based scripts were used to perform alignment
of chromatograms, peak detection, and identification based on
retention indices and full MS spectra from the in-house mass
spectra library established by the Umeå Plant Science Centre
(UPSC) and SMC (Umeå, Sweden). Normalization of analyte
peak areas against the peak area of the injection standard
(methyl stearate) was done in Excel.

Sample preparation for LC-MS analysis

Samples were prepared as for the GC-MS analysis, except that
after the drying step, samples were directly dissolved in 20 μL
of amethanol/watermixture (1:1). The final procedure yielded
a 20-fold higher concentration factor than was achieved with
the unmodified protocol.

LC-MS analysis

Extracted samples (2μL) were injected onto anAgilent UPLC
system (Infinity 1290) equipped with a UPLC column
(Acquity HSS T3, 2.1×50 mm, 1.8 μm C18 in combination
with a 2.1 mm×5 mm, 1.8 μm VanGuard precolumn; Waters
Corporation, Milford, MA, USA). The UPLC system was
coupled to an Agilent 6550 iFunnel Jet stream electrospray
ion source Accurate-Mass QTOFMSMS (Agilent
Technologies, Santa Clara, CA, USA). The mobile phases
were MilliQ water with 0.1 % formic acid (A) and 75:25
acetonitrile/2-propanol with 0.1 % formic acid (B). The pro-
portion of B in the eluent was increased from 0.1 to 10% over
2 min at a flow rate of 0.5 mL/min, increased to 99 % over
5 min, held at 99 % for 2 min, and finally returned to the
starting level of 0.1 % over 0.3 min. The proportion of B
was then held constant for 0.5 min during which the flow rate
was set to 0.8 mL/min, after which it was reduced to 0.5 mL/
min for 0.1 min to reset the system for the next injection. Two
aliquots of each sample were injected and analyzed per run,
the first in positive ion mode and the second in negative ion
mode. MS parameters were kept identical between the modes,
with the exception of the capillary voltage, as described
below.

A reference interface was connected to enable accurate
mass measurements. The reference ions purine (4 μM) and
HP-0921 (Hexakis (1H, 1H, 3H-tetrafluoropropoxy)
phosphazine) at 1 μM, both purchased from Agilent
Technologies (Santa Clara, CA, USA), were infused directly
into the MS at a flow rate of 0.05 mL/min for internal calibra-
tion. Themonitored masses for purine in positive and negative
ion modes were m/z 121.05 and 119.03632, respectively;
those for HP-0921 were m/z 922.0098 and 966.000725, re-
spectively. The gas temperature was set to 150 °C, the drying
gas flow to 16 L/min, and the nebulizer pressure to 35 psi. The
sheath gas temp was set to 350 °C and the sheath gas flow to
11 L/min. The capillary voltage was set to 4000 V in positive
ion mode and to 4500 V in negative ion mode. The nozzle
voltage was 300 V. The fragmentor voltage was 380 V, the
skimmer voltage was 45 V, and the OCT 1 RFVppwas 750 V.
The collision energy was set to 0 V, the m/z range was 70–
1700, and data were collected in centroid mode at an acquisi-
tion rate of 4 scans/s (1977 transients/spectrum).

Processing of LC-MS chromatograms and compound
identification

Targeted feature extraction of the acquired LC-MS data was
performed using the Profinder™ software package, version
B.06.00 (Agilent Technologies Inc., Santa Clara, CA, USA),
together with a local retention time and mass spectra library
containing data on 713 compounds. Feature detection was
based on the following parameters: peak height≥300 counts;
allowed ion species in positive ionization mode+H, +Na, +K,
+NH4; allowed ion species in negative ionization mode –H,
+HCOO; peak spacing tolerance = 0.0025–7 ppm; isotope
model, common organic molecules; charge state = 1; mass
tolerance=10 ppm; retention time tolerance=0.1 min. After
peak extraction, each compound was manually checked for
mass and retention time agreement with appropriate standards
from the in-house library. Peaks with poor characteristics (i.e.,
peaks that were overloaded, noisy, non-Gaussian, etc.) were
excluded from the analysis. The initial identities assigned to
peaks with a signal-to-noise ratio above 3 (relative to a blank)
were verified by MS/MS analysis. To confirm compound
identification, an appropriate standard was run in conjunction
with two BW and BAL samples: MS/MS spectra obtained
with collision energies of 10 and 40 V for samples and stan-
dards, respectively, were recorded and compared. Results for
compounds with MS/MS spectra that matched those of rele-
vant standards were included in the subsequent statistical
analyses.

Sample preparation for NMR analysis

BW and BAL samples (1 mL each) were thawed at room
temperature (25 °C) and evaporated to nearly dryness for
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4 h. The residual material was then redissolved in a solution of
200 μL of D2O/H2O (4:1) containing 0.05 M sodium phos-
phate buffer, 0.5 mM of TSP, and 0.02 % of NaN3. Proton
NMR spectra of the prepared samples were immediately ac-
quired using a Bruker DRX600 spectrometer. This protocol
was largely based on a previously published procedure, with
minor changes relating to the reconstitution volume and pro-
tein precipitation step [40].

NMR analysis

One-dimensional proton NMR spectra were obtained using
classic water suppression with a pre-saturation pulse se-
quence, which is a commonly used method for metabolite
profiling of biofluids [41]. Spectra were acquired with 128
scans and transformed to 64 k data points.

Processing of NMR spectra

Spectral fitting was performed with the Chenomx NMR Suite
professional software package (version 8.1, Chenomx Inc.,
Edmonton AB, Canada). All processed spectra were imported
into the software under the environment of targeted profiling.
The Chenomx NMR suite allows qualitative and quantitative
analysis of an NMR spectrum by automatically fitting indi-
vidual NMR resonances of interest using pure standard me-
tabolite compound spectra stored in Chenomx.

Statistical methods

Read-outs from the assays under study, i.e., GC-MS (nor-
malized peak areas), LC-MS (normalized peak areas), and
NMR (quantified metabolites), were imported into the
SIMCA software (version 14.0) from MKS Instruments
AB (Umeå, Sweden) for multivariate analysis. All data
were mean centered and scaled to unit variance. Principal
component analysis (PCA) was used to check for trends
and outliers in the data. Orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to compare
metabolite profiles of different sample classes; 1 + 1 com-
ponent models were used to avoid the risk of over-fitting
[42]. Sevenfold cross-validation was used in the calcula-
tion of all models [43]. The significance of a metabolite for
classification in the OPLS-DA models was specified by
calculating the 95 % confidence interval for the loadings
using jackknife [44].

Univariate analysis was performed with GraphPad
Prism 6 (San Diego, CA, USA) to check the normality
distribution for each metabolite and detect any significant
differences between air and biodiesel exhaust exposure, as
well as between BW and BAL sample types. Significant
differences were assessed using Student’s t test and
Wilcoxon’s t test for normal and non-normal distributions

at p< 0.05, respectively. Receiver operating characteristic
(ROC) curves [45] obtained from the OPLS-DA models
were calculated in Matlab (R2014a, Mathworks; MA,
USA) using predicted values for the fitted Y values for
observations in the dataset computed with the cross-
validation procedure.

Results and discussion

The modified extraction protocols were optimized with re-
spect to sample concentration because of the expected low
metabolite levels in lung lavage fluids. Omitting the pro-
tein precipitation step meant that sample dilution could be
avoided. The derivatization step for the GC-MS analysis
was performed as in the previous protocol [39] except that
the volumes of the methoxyamine, MSTFA, and injection
standard solutions were halved. Because the BW and BAL
samples contained high quantities of salts, it was necessary
to extend the drying time above 2 h and add toluene to
speed up the drying process. The optimized modified pro-
cedure yielded a concentration factor that was 20 times
greater than that achieved with the original protocol for
the GC-MS and LC-MS analyses, and 5 times greater for
NMR.

The GC-MS chromatograms (ESM Fig. S1A) were
deconvoluted using an in-house script based on a local GC-
MS library featuring data on 713 compounds, resulting in the
detection of 76 distinct metabolites. Peaks with a signal-to-
noise ratio above three (relative to blanks) were considered to
have been satisfactorily identified, giving a total of 53 identi-
fied metabolites (Table 1). Fourteen metabolites with signal-
to-noise ratios above three were identified in the LC-MS as-
says (Table 2) based on chromatograms in positive (ESM
Fig. S1B) and negative (ESM Fig. S1C) mode, while 23 were
identified based on NMR spectra (ESM Fig. S1D) using the
Chenomx environment, excluding interference with the anes-
thetic applied prior to the lavage procedure (Table 3). While
the detected metabolites collectively spanned a wide swath of
biochemical space (including fatty acids, sugars, amino acids,
and small organic acids), none were common to all of the
analytical platforms. However, seven compounds were detect-
ed in both the GC-MS and NMR assays (glucose, glutamate,
glycine, lactic acid, pyruvic acid, taurine, and valine), and one
compound detected in the LC-MS assay was also detected by
NMR (creatinine). The studied assays thus exhibited a high
degree of orthogonality, with higher mass and less polar com-
pounds (e.g., fatty acids) being detected by GC-MS and LC-
MS while lower mass and more polar species (e.g., acetic acid
and acetone) were detected by NMR (Fig. 1). It is thus ad-
visable to perform all three assays in order to achieve the
widest possible coverage of metabolites in BW and BAL
samples. Our study is the first to provide comprehensive
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Table 1 Metabolites detected by
the GC-MS assay and their
behavior in the OPLS-DA model
comparing bronchial wash (BW)
and bronchoalveolar lavage
(BAL) fluids; ↑ and ↓ denote
positive and negative trends,
respectively, in the BAL fluid
relative to the BW fluid

Metabolite Chemical class BW versus BAL
(after filtered air exposure)

p valuea

1,5-Anhydro-d-glucitol Monosaccharides ↑* 0.085

1-Monopalmitoylglycerol Monoacylglycerols ↓ 0.804

1-Monostearoylglycerol Monoacylglycerols ↑ 0.879

LysoPC(16:0) Glycerophospholipids ↑ 0.303

4-Hydroxybenzoic acid Benzoic acids and derivatives ↑* <0.0001

Adenosine Purine nucleosides ↑* 0.003

Threonine Amino acids ↑* 0.012

Alpha-tocopherol Prenol lipids ↑ 0.085

Aspartic acid Amino acids ↑* 0.024

Citric acid Organic acids ↑ 0.007

Dodecanoic acid Fatty acids ↑ 0.561

Eicosanoic acid Fatty acids ↓ 0.861

Eicosapentaenoic acid Fatty acids ↑ 0.027

Ethanolamine Amines ↑* 0.015

Fructose Monosaccharides ↑* 0.004

Fumaric acid Organic acids ↑* 0.027

Glucose-6-phosphate Monosaccharides ↑* 0.016

Glucose Monosaccharides ↑ 0.608

L-Glutamic acid Amino acids ↑* 0.003

Glycerol 3-phosphate Glycerophospholipids ↓ 0.135

Glycine Amino acids ↑* 0.015

Heptadecanoic acid Fatty acids ↓ 0.458

Hexadecanoic acid methyl ester Fatty acid esters ↑ 0.107

Hexadecanoic acid Fatty acids ↓ 0.674

Inosine Purine nucleosides ↑* <0.0001

Scyllitol Cyclic alcohols ↑* 0.027

Erythritol Sugar alcohols ↑ 0.357

Lactic acid Organic acids ↑ 0.330

Malic acid Organic acids ↑* 0.0003

Maltose Disaccharides ↑ <0.0001

Nonanoic acid Fatty acids ↑ 0.600

Linoleic acid Fatty acids ↓ 0.375

Octadecanoic acid Fatty acids ↓ 0.861

Oleic acid Fatty acids ↓ 0.679

O-Phosphoethanolamine Phosphoethanolamines ↑ 0.005

Ornithine Amino acids ↑* 0.208

Pentadecanoic acid Fatty acids ↓ 0.033

Phosphate Non-metal phosphates ↑ 0.068

Proline Amino acids ↑ 0.078

Pyroglutamic acid Amino acids ↑* 0.004

Pyruvic acid Organic acids ↑ 0.525

Rhamnose Monosaccharides ↑ <0.0001

Serine Amino acids ↑* 0.117

Sucrose Disaccharides ↑ 0.038

Taurine Amino acids ↑* 0.0001

Tryptophan Amino acids ↑ 0.107

Tyrosine Amino acids ↑* 0.010

Uridine Pyrimidine nucleosides ↑* 0.017

Valine Amino acids ↑ 0.074
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information on the abundance of compounds spanning a
wide range of molecular weights in BW and BAL samples
based on results acquired using three different platforms/
assays. In previous studies, several metabolites were de-
tected in human BAL fluid by GC-MS [15, 16]; however,
not many were identified. Similarly, in previous NMR
studies of human BAL samples, 19 metabolites were de-
tected and quantified [10, 14, 15, 17]. In addition, 23 me-
tabolites were identified and analyzed in earlier studies of
BAL fluid using LC-MS [3, 46].

To determine whether the detected metabolites could be
employed in a biological context, we performed pathway
analysis with MetaboAnalyst 3.0 [47] on the GC-MS, LC-
MS, and NMR metabolic sets. Data on the significance and
impact of the represented pathways are presented in
Tables S8-S10 (see ESM). Many canonical pathways were

represented by the detected metabolites, although only a
few were significant based on the calculated p values.
The metabolites and metabolic pathways identified in this
work related mainly to amino acid and fatty acid metabo-
lism. For example, glycerolipid metabolism was the most
significantly represented pathway in the GC-MS and NMR
datasets based on both p values (which reflect the number
of metabolites from the pathway that are detected) and
pathway impact (which measures the degree to which each
metabolite in the given pathway is connected to the other
metabolites of that pathway). Fewer metabolic pathways
were covered in the LC-MS dataset. This was probably
because fewer metabolites were detected in the LC-MS
analyses and those that were detected were less common
than compounds such as amino and fatty acids, meaning
that they were connected to fewer metabolic pathways. The

Table 1 (continued)
Metabolite Chemical class BW versus BAL

(after filtered air exposure)
p valuea

Cholesterol Steroids ↑ 0.028

Urea Organic carbonic acids ↑ 0.639

Lysine Amino acids ↑* 0.109

Glycerol-2-phosphate Glycerophospholipids ↓ 0.120

Metabolites labeled with an asterisk (*) are predicted to differ significantly between the two sample types by the
OPLS-DA models; values shown in italics differ significantly according to univariate data analysis (p ≤ 0.05)
a The statistical test did not account for multiple comparisons. Significance is indicated at the α= 0.05 level,
giving approximately three false positives for the GC-MS data set (53 metabolites)

Table 2 Metabolites detected by
the LC-MS assay and their
behavior in the OPLS-DA model
comparing bronchial wash (BW)
and bronchoalveolar lavage
(BAL) fluids; ↑ and ↓ denote
positive and negative trends,
respectively, in the BAL fluid
relative to the BW fluid

Metabolite Chemical class BW versus BAL
(after filtered air exposure)

p valuea

Caffeine Alkaloids ↓* 0.002

Niacinamide Organoheterocyclic compounds ↓ 0.756

Sphingosine Lipids and lipid-like molecules ↓ 0.372

Creatinine Organoheterocyclic compounds ↓ 0.008

Hypoxanthine Organoheterocyclic compounds ↓ 0.236

Ophthalmic acid Organic acids ↑ 0.020

5-Methyl-THF Benzenoids ↓ 0.007

Spermidine Organonitrogen compounds ↑

Chenodeoxycholic acid
glycine conjugate

Lipids and lipid-like molecules ↑* 0.466

Cortisone Lipids and lipid-like molecules ↓* 0.013

Docosahexaenoic acid (22:6) Lipids and lipid-like molecules ↑* 0.004

Uric acid Alkaloids ↓ 0.564

p-Salicylic acid Benzenoids ↑ 0.002

Glutathione oxidized Organic acids ↑* 0.013

Metabolites labeled with an asterisk (*) are predicted to differ significantly between the two sample types by the
OPLS-DA models; values shown in italics differ significantly according to univariate data analysis (p ≤ 0.05)
a The statistical test did not account for multiple comparison, significance is indicated at the α= 0.05 level, giving
approximately one false positives for the LC-MS data set (14 metabolites)
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wide coverage of biochemical pathways represented by the
metabolites detected using the multi-platform approach
shows that metabolomics analysis of BW and BAL sam-
ples has great potential for providing insights into process-
es occurring in the airways.

Differences in the metabolite profiles of BW and BAL
fluid samples

OPLS-DA modeling indicated that the metabolite profiles
determined for BW and BAL fluid samples obtained after
filtered air exposure differed significantly from one anoth-
er for all three of the assays used in this work, although
LC-MS and NMR produced stronger models compared to
GC-MS (Fig. 2). Merging data from all three platforms

corroborated these results (ESM Fig. S2). We focused on
filtered air exposure data when comparing BW and BAL
samples to exclude potential variability due to the biodiesel
exhaust exposure. The GC-MS data for the filtered air ex-
posures indicated that 20 metabolites were significantly
more abundant in the BW samples than in the BAL fluid
(Table 1). The LC-MS data indicated that three com-
pounds—chenodeoxycholic acid glycine conjugate, oxi-
dized glutathione, and docosahexaenoic acid (22:6)—were
present at significantly higher levels in BW than BAL fluid
after filtered air exposure, while the reverse was true for
another two compounds (caffeine and cortisone; see
Table 2). Finally, the NMR data indicated that acetone,
glutamine, glycine, and taurine were present at significant-
ly higher levels in the BW samples, while alanine and
dimethyl sulfone were significantly more highly concen-
trated in the BAL samples. For the seven metabolites de-
tected by both NMR and GC-MS, the differences in the
measured levels for the BW and BAL fluids by the two
analytical methods were comparable in all cases except
those of glucose and valine. The inconsistencies observed
for glucose and valine may be due to the presence of other
substances that influenced their detection by GC-MS and/
or NMR and thus affected the deconvolution of the metab-
olite signal. The only compound detected by both LC-MS
and NMR was creatinine, for which the levels determined
by the two platforms were very similar in all cases.

Relative standard deviations (RSDs) for each metabolite
detected with GC-MS and LC-MS approaches are listed in
ESM Tables S5 and S6, respectively. These values were
higher than those typically observed for metabolomics assays
in plasma, which can be as low as a few percent [48, 49].
Contributing factors for the higher variability could be the
low concentrations of the metabolites (close to the noise level)
and sub-optimal sampling and extraction protocols. The RSD

Table 3 Metabolites detected by the NMR assay and their behavior in
the OPLS-DA model comparing bronchial wash (BW) and
bronchoalveolar lavage (BAL) fluids; ↑ and ↓ denote positive and
negative trends, respectively, in the BAL fluid relative to the BW fluid

Metabolite Chemical class BW versus BAL
(after filtered
air exposure)

p valuea

3-Hydroxybutyrate Fatty acids ↑ 0.455

Acetate Organic acids ↓ 0.574

Acetone Ketones ↑* 0.001

Alanine Amino acids ↓* 0.043

Creatine Amino acids ↑ 0.154

Creatinine Azolines ↓ 0.274

Dimethyl sulfone Sulfones ↓* <0.0001

Dimethylamine Amines ↑ 0.695

Glucose Monosaccharides ↓ 0.024

Glutamate Amino acids ↑ 0.023

Glutamine Amino acids ↑* 0.002

Glycine Amino acids ↑* 0.016

Isoleucine Amino acids ↑ 0.225

Lactate Organic acids ↑ 0.213

Leucine Amino acids ↑ 0.106

Propionate Organic acids ↓ 0.585

Propylene glycol Polyols ↑ 0.910

Pyruvate Organic acids ↑ 0.077

Taurine Amino acids ↑* 0.003

Uracil Diazines ↑ 0.066

Valine Amino acids ↓ 0.673

myo-Inositol Polyols ↑ 0.011

Metabolites labeled with an asterisk (*) are predicted to differ significant-
ly between the two sample types by the OPLS-DAmodels; values shown
in italics differ significantly according to univariate data analysis
(p ≤ 0.05)
a The statistical test did not account for multiple comparisons, signifi-
cance is indicated at the α= 0.05 level, giving approximately 1.1 false
positives for the NMR data set (22 metabolites)

Fig. 1 Schematic overview of the number of unique and commonly
identified metabolites by the gas chromatography (GC) coupled to mass
spectrometry (MS) assay, the liquid chromatography (LC) coupled toMS
assay, and the nuclear magnetic resonance (NMR) assay; none were
common to all three platforms
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Fig. 2 OPLS-DA (1 + 1 + 0)
score plots of metabolite profiles
after filtered air exposure in BAL
(open circles) and BW (closed
circles) fluids. (A) GC-MS
(R2X=0.595, Q2(cum) = 0.290,
CV-ANOVA p-value = 0.060),
(B) LC-MS (R2X= 0.283,
Q2(cum) = 0.586, CV-ANOVA p
value = 0.00014), and (C) NMR
(R2X=0.574, Q2(cum) = 0.613,
CV-ANOVA p value = 0.00023)
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values determined for the NMR data were in general lower
than those for the GC-MS and LC-MS assays (ESM
Table S7).

Biodiesel exhaust exposure alters the metabolite profiles
of BW and BAL

The metabolite profiles were generally compartment-specific
for both exposure regimes. However, some individual metab-
olites responded differently to biodiesel exhaust exposure in
BWand BAL fluid. According to the GC-MS assay, levels of
pentadecanoic acid in the BW samples increased significantly
after biodiesel exhaust exposure, while in the BAL samples
the levels of ethanolamine, inosine, and nonanoic acid in-
creased significantly and those of 1-monostearoylglycerol de-
creased significantly (Table 4 and ESM Fig. S3). The trend
towards decreased levels of fatty acid glycerol esters like 1-
monostearoyglycerol and hexadecanoic acid methyl ester in
response to biodiesel exhaust exposure in BAL samples and
the increased levels of ethanolamine, phosphate, glycerol-3-
phosphate, and unsaturated fatty acids suggest that biodiesel
exposure enhances the degradation of cell membrane lipids.
However, this conclusion is tentative and requires further
validation.

The LC-MS assay indicated that biodiesel exhaust expo-
sure led to reduced levels of chenodeoxycholic acid glycine
conjugate in BW fluid and elevated levels of niacinamide in
BAL fluid (ESM Fig. S4). Niacinamide is a component of the
coenzyme NAD and is thus connected to the redox state of the
cell.

The only metabolite found to respond significantly to bio-
diesel exhaust exposure in the NMR assay was lactic acid,
whose concentration fell in the BW fluid (ESM Fig. S5).

Table 4 Metabolites detected by the GC-MS assay and their behavior
in the OPLS-DA models after exposure to biodiesel exhaust (BD) and
filtered air (the sham treatment)

Metabolite BD versus
Air in BW

BD versus
Air in BAL

1,5-Anhydro-d-glucitol ↓ ↓

1-Monopalmitoylglycerol ↑ ↓

1-Monostearoylglycerol ↓ ↓* (0.002)a

LysoPC(16:0) ↓ ↓

4-Hydroxybenzoic acid ↓ ↓

Adenosine ↓ ↑

Threonine ↓ ↑

Alpha-tocopherol ↑ ↑

Aspartic acid ↓ ↑

Citric acid ↓ ↓

Dodecanoic acid ↑ ↑

Eicosanoic acid ↓ ↓

Eicosapentaenoic acid ↑ ↑

Ethanolamine ↑ ↑* (<0.0001)

Fructose ↑ ↑

Fumaric acid ↓ ↑

Glucose-6-phosphate ↓ ↑

Glucose ↓ ↓

L-Glutamic acid ↑ ↑

Glycerol 3-phosphate ↓ ↑

Glycine ↑ ↑

Heptadecanoic acid ↓ ↑

Hexadecanoic acid methyl ester ↓ ↓

Hexadecanoic acid ↓ ↓

Inosine ↑ ↑* (0.013)

Scyllitol ↓ ↑

Erythritol ↓ ↓

Lactic acid ↓ ↑

Malic acid ↓ ↑

Maltose ↓ ↑

Nonanoic acid ↑ ↑* (0.001)

Linoleic acid ↑ ↑

Octadecanoic acid ↓ ↓

Oleic acid ↑ ↑

O-Phosphoethanolamine ↓ ↓

Ornithine ↑ ↓

Pentadecanoic acid ↑* (0.014) ↑

Phosphate ↓ ↑

Proline ↓ ↑

Pyroglutamic acid ↑ ↑

Pyruvic acid ↓ ↑

Rhamnose ↓ ↑

Serine ↓ ↓

Sucrose ↑ ↑*(0.048)

Taurine ↓ ↑

Tryptophan ↑ ↑

Table 4 (continued)

Metabolite BD versus
Air in BW

BD versus
Air in BAL

Tyrosine ↓ ↓

Uridine ↑ ↑

Valine ↑ ↓

Cholesterol ↑ ↑

Urea ↑ ↑

Lysine ↓ ↑

Glycerol-2-phosphate ↓ s

The symbols ↑ and ↓ denote positive and negative trends, respectively, for
BD exposure relative to filtered air exposure. Metabolites labeled with an
asterisk (*) are predicted to differ significantly between the two treatment
types by the OPLS-DAmodels; values shown in italics differ significant-
ly according to univariate data analysis (p ≤ 0.05)
a The statistical test did not account for multiple comparisons.
Significance is indicated at the α= 0.05 level, giving approximately three
false positives for the GC-MS data set (53 metabolites)
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The GC-MS data also suggested that the levels of lactic
acid in the BW and BAL samples fell after exhaust expo-
sure, although the differences were not significant; this
may have been due to the greater variability in the mea-
sured concentrations of this compound by GC-MS com-
pared to NMR. Changes in lactic acid levels may be con-
nected to glycolysis and/or gluconeogenesis. Lactic acid
production in aerobic organisms increases when the supply
of oxygen is not sufficient to meet the demand for its con-
sumption, so it can serve as an early marker of imbalances
in oxygen supply and demand.

We used OPLS-DA modeling to obtain an overview of
how the metabolite patterns changed following biodiesel
exposure. No significant model was produced using com-
bined data from all three platforms. Only the GC-MS assay
alone was able to detect significant shifts in the overall
metabolite profile in response to biodiesel exhaust

exposure (Fig. 3, data for individual metabolites are
shown in Table 4). OPLS-DA models were constructed
for the BWand BAL samples separately. Both models were
valid according to cross-validation, meaning that we were
able to observe a metabolic effect of biodiesel exhaust ex-
posure in both BW and BAL samples. As demonstrated by
the OPLS-DA cross-validated score values (Fig. 3), most
of the subjects showed the same direction of change (met-
abolic response) between biodiesel exhaust and filtered air
exposure, albeit with different magnitudes. However, a few
subjects, namely the individuals labeled 4, 5, and 13 (BW)
and 2, 4, and 6 (BAL), displayed deviating behavior. The
fact that the magnitude of the metabolic response to bio-
diesel exposure differed between subjects is not surprising
because it is already known that individuals respond dif-
ferently to external stimuli. Thus, the results demonstrate
that the presented methodology can be used to monitor
exposure effects on an individual basis [41, 50].

The strongest OPLS-DA model (CV-ANOVA p val-
ue=0.0009) relating biodiesel and filtered air exposure was
obtained for the BAL samples (Fig. 4). The most significant
metabolites for the OPLS-DA exposure model of BAL samples
according to jack-knife intervals were 1-monostearylglycerol
(negative correlation with biodiesel exposure) and sucrose, ino-
sine, nonanoic acid, and ethanolamine (positive correlation
with biodiesel exposure), in agreement with the univariate anal-
ysis. In the corresponding BWmodel, only pentadecanoic acid
(positive correlation with biodiesel) was significant, again in
agreement with the univariate analysis (Table 4).

These results imply that the more peripheral regions of
the lung were more responsive to biodiesel exhaust expo-
sure with regard to metabolite levels. Another explanation
could be that exposure effects were more visible in the
BAL samples because of lower within-group variation
compared to the BW samples for the majority of the de-
tected metabolites (ESM Table S5), which may be
reflected in the lower recovery of BW compared to BAL
fluid (ESM Table S1). It is important to remember that
metabolomics involves studying very small changes in
metabolite levels that can be easily obscured by analytical
and noise factors.

In addition, we tested the performance of the OPLS-DA
models by creating receiver operating characteristic (ROC)
curves based on predictions obtained from the cross-
validated procedure (ESM Fig. S6). ROC curves [51] are
widely used to evaluate the performance of diagnostic pa-
rameters in clinical studies. The accuracy of each model
was estimated as the area under the curve (AUC), which
was above 0.75 for all studied models. These results show
that the approach based on OPLS-DA modeling of meta-
bolic profiles and verification by constructing ROC curves
can be used to accurately classify the effects of biodiesel
exhaust exposure.

Fig. 3 Normalized cross-validated scores for the metabolite profiles of
individual participants (t(cv)) derived from the OPLS-DA models for
exposure to biodiesel exhaust and air based on GC-MS assays;
normalized score vector for each individual was obtained by subtracting
OPLS-DA cross-validated score for filtered air sample from the cross
validated OPLS-DA score for biodiesel exposed sample, thus generating
a measurement of the shift in profile; (A) bronchoalveolar lavage fluid
(BAL) and (B) bronchial wash (BW). The results for most participants
(other than subjects’ 2, 4, and 6 BAL samples and 4, 5, and 13 BW
samples) indicate a positively directed shift in the composition of the
metabolome after biodiesel exhaust exposure
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Conclusions

We have shown for the first time that extensive multi-
platform metabolite profiling can be performed on BW
and BAL fluid samples, providing important and novel
information on the metabolome of the respiratory tract.
Eighty-two different small molecule compounds were de-
tected in BW and BAL samples from healthy individuals
after air and biodiesel exhaust exposure. This largest to
date number of unique metabolites detected in such sam-
ples proves that application of several orthogonal analyti-
cal platforms dramatically enhances the number of detect-
ed metabolites. Enhanced metabolite coverage is directly
connected to the amount of covered biochemical pathways,
which was shown by the extended number of covered path-
ways obtained after pathway enrichment analysis on all
detected metabolites compared to the ones detected only
by one platform. A larger number of biochemical pathways
represented by the detected metabolites increase the
chances for obtaining a valid biological interpretation of
the studied system; thereby, it is a crucial issue in any
metabolomics investigation.

Furthermore, we have shown that there are significant
differences in the levels of certain metabolites found in
BW and BAL samples. This proves that the sampling

procedure presented herein, which was designed to en-
able separate sampling of the central and peripheral air-
ways, provides new molecular information on the metab-
olome of the lungs and, by increasing the spatial resolu-
tion of airway sampling, can enhance our understanding
of processes occurring in this organ.

In summary, we conclude that the BWand BAL samples
contained significantly different metabolite profiles, dem-
onstrating the importance of sampling them independently.
Moreover, different kinds of biochemical information can
be obtained by using samples from both of the correspond-
ing compartments in lung studies, which is particularly
important from a clinical perspective. For instance, we ob-
served shifts in the metabolite profiles of the lungs follow-
ing exposure to biodiesel exhaust when compared to fil-
tered air, particularly in the BAL samples, and identified
individual metabolites whose levels shifted significantly in
response to the biodiesel exhaust. Because metabolite
levels in BAL and BW fluids presumably reflect the mo-
lecular species produced, at least in part, by the lung epi-
thelium, we conclude that exposure to air pollution derived
from biodiesel exhaust can alter human lung metabolism.
Our methodology represents a promising tool for future
metabolomics studies on the lungs and further investiga-
tions into the effects of air pollution on human health.

Fig. 4 Predictive correlated loading values (p(corr)) for different
metabolites from the OPLS-DA model for the effects of biodiesel and
air exposure in BAL samples measured by GC-MS. Metabolites are

colored according to their p(corr) values and grouped according to
chemical similarity; p(corr) values indicate how each metabolite is
affected by biodiesel exposure
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