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Abstract Chemical features observed using high-resolution
mass spectrometry can be tentatively identified using online
chemical reference databases by searching molecular formu-
lae and monoisotopic masses and then rank-ordering of the
hits using appropriate relevance criteria. The most likely can-
didate “known unknowns,” which are those chemicals un-
known to an investigator but contained within a reference
database or literature source, rise to the top of a chemical list
when rank-ordered by the number of associated data sources.
The U.S. EPA’s CompTox Chemistry Dashboard is a curated
and freely available resource for chemistry and computational
toxicology research, containing more than 720,000 chemicals
of relevance to environmental health science. In this research,
the performance of the Dashboard for identifying known un-
knowns was evaluated against that of the online ChemSpider
database, one of the primary resources used by mass

spectrometrists, using multiple previously studied datasets re-
ported in the peer-reviewed literature totaling 162 chemicals.
These chemicals were examined using both applications via
molecular formula and monoisotopic mass searches followed
by rank-ordering of candidate compounds by associated ref-
erences or data sources. A greater percentage of chemicals
ranked in the top position when using the Dashboard, indicat-
ing an advantage of this application over ChemSpider for
identifying known unknowns using data source ranking.
Additional approaches are being developed for inclusion into
a non-targeted analysis workflow as part of the CompTox
Chemistry Dashboard. This work shows the potential for use
of the Dashboard in exposure assessment and risk decision-
making through significant improvements in non-targeted
chemical identification.
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Introduction

Data processing workflows in non-targeted analysis (NTA)
and suspect screening analysis (SSA) routinely identify a
small percentage (often <5%) of likely chemical compounds
in environmental samples [1, 2]. Improvements in compound
identification can enhance exposure assessment, especially
when the use of confirmation standards is not practical or
possible (at the “tentative” or “probable” degrees of certainty
[3–5]). Online reference databases can be useful for identify-
ing “known unknowns” by searching intrinsic properties, spe-
cifically molecular formula and monoisotopic mass, and rank-
ordering by the number of associated references or data
sources [6, 7]. In this process, the most likely candidate
“known unknowns,” which are those compounds unknown
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to a researcher but known in a reference dataset or resource,
are elevated to the top of a search results list. Researchers have
previously reported that the freely available chemical database
ChemSpider (http://www.chemspider.com/) [8, 9] proved
more useful than the Chemical Abstract Service (CAS)
RegistrySM when identifying known unknowns, with a key
distinction of ChemSpider being the ability to search by mon-
oisotopic mass [7]. Since this initial work, additional studies
have reported using ChemSpider (among other databases) to
support structure identification [10–13]. However, to enhance
compound identification strategies, calls have also increased
for improvements to open reference databases and analysis
workflows (including “one-pass analysis”), and for public
sharing of mass spectral data [2, 10, 11, 14].

The United States Environmental Protection Agency (US
EPA) is developing a public resource for computational chem-
istry, toxicology, and exposure research efforts. This freely
available resource, known as the CompTox Chemistry
Dashboard (https://comptox.epa.gov/dashboard; hereafter
referred to as the Dashboard), is part of a suite of databases
and applications developed by the National Center for
Compu t a t i o n a l Tox i c o l ogy ( h t t p s : / /www. ep a .
gov/aboutepa/about-national-center-computational-
toxicology-ncct), and integrates data from the Distributed
Structure-Searchable Toxicity (DSSTox) database (DSSTox_
v2) [15]. The underlying database has been expanded, with an
emphasis on curation and characterizing data quality, to in-
clude hundreds of thousands of chemicals. Recent efforts have
involved incorporating specific search tools into the
Dashboard to benefit NTA. The Dashboard’s current utilities
include the ability to search a reference database of ∼720,000
chemicals by monoisotopic mass and molecular formula. In
this research, we evaluated the effectiveness of the Dashboard
in the identification of known unknowns, comparing results
against those from the de facto freely available online database
for mass spectrometry based structure identification,
ChemSpider, using the same method of rank-ordering of as-
sociated references or data sources reported by Little et al. [7].
Determining the utility of the Dashboard relative to the current
standard of freely available chemistry databases will benefit
future research applications both within the US EPA and the
scientific community as a whole by highlighting the effective-
ness of tools designed for NTA users with a new, highly cu-
rated chemical reference database.

Methods

A total of 162 chemicals were selected for the assessment of
the Dashboard using search and data source rank-ordering
techniques (see Electronic Supplementary Material (ESM)
Table S1). The selected chemicals (n=162) were compiled
from the Little et al. [7] article that initiated this approach for

NTA and from recent environmental and NTA literature.
Selected chemicals include pharmaceuticals, dyes, surfactants,
chemicals used in manufacturing, and personal care products
that have been previously reported in environmental media
(water [2, 13, 16], wastewater [16], dust [1], etc.).
Monoisotopic masses, formulae, and structural identifiers for
all chemicals are reported in the ESM (see Table S1).

The workflow of known unknown identification by data
source ranking has been previously described [6, 7]. The same
workflow was followed here with minor amendments. Using
the Advanced Search option in the Dashboard, a user can enter
either a defined mass range (i.e., 263.87 to 263.89 amu) or a
single mass with an associated error range (i.e., 263.881
± 0.005 amu), see ESM Figs. S1–S6 for more details.
Currently, the Dashboard allows for mass search ranges and
error to be entered in atomic mass units (amu) only. Therefore,
monoisotopic masses of selected chemicals were searched
using the Advanced Search tools in both ChemSpider and
the Dashboard with an error of 0.005 amu.Most accurate mass
measurement instruments can achieve a standard deviation of
5 ppm or better mass error; in order to be applicable for users
with a range of accurate mass capabilities, the error window
used in this work (0.005 amu) encompasses at least two stan-
dard deviations for all but the highest molecular weight
chemicals. Advanced Search results were sorted in descend-
ing order by the number of associated references (in
ChemSpider per Little et al. [7]) or data sources (in the
Dashboard). References in ChemSpider are the number of
external IDs for a given chemical and data sources in the
Dashboard represent the number of times that a dataset in
the DSSTox database contains a particular chemical.
Prevalence across many data sources and/or references is in-
dicative, in this context, of a chemical’s relative likelihood of
occurrence [7]. The rank of each chemical of interest within
the search results after sorting was recorded (Fig. 1). The
method was repeated in each application using molecular for-
mulae for every chemical of interest to compare results of
formula-based searching to those of mass-based searching.

For a complete comparison, ranking results in both appli-
cations of the 89 chemicals from Little et al. [7] were also
evaluated independently to explicitly assess the Dashboard
relative to the dataset that initiated this approach. Little et al.
[7] also evaluated their workflow on a set of large molecular
weight unique commercial polymers not included in the set of
89. For continuity of comparison, these 12 compounds were
searched and rank-ordered following the above methods sep-
arately from the 162 chemicals.

Nomodifications to the search parameters or software were
made during this study. All methods are demonstrated in the
ESM (see Figs. S1–S6) and can be repeated in the publicly
available Dashboard. Searches were executed in both applica-
tions in July 2016. Statistical analyses were conducted in the R
Statistical Computing Environment [17].
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Results and discussion

Overall rank-ordering

The goal of rank-ordering unidentified chemicals using their
monoisotopic mass or molecular formula is to bring the most
likely candidate chemicals to the top of the list for either ten-
tative identification or further investigation. Entering mono-
isotopic masses with an error range of 0.005 amu and ranking
by data sources, the average position rank of all 162 chemicals
in the Dashboard was 1.31 with the number 1 rank occurring
85% of the time (Table 1). Using ChemSpider, the average
position rank across all chemicals was 2.20 with the number 1
rank occurring in 70% of the 162 searches (this average in-
cludes the removal of an outlier where the rank of one partic-
ular chemical was 201); average position rank in the
Dashboard was significantly lower than in ChemSpider
(Mann-Whitney U test, p=0.0005). Formula-based searching
yielded improved ranking statistics, consistent with what has
been previously reported in the literature [7]. Mean rank po-
sition and percentage of chemicals occurring in the number
one position improved when searching molecular formulae in
both applications and independently, the Dashboard signifi-
cantly outperformed ChemSpider (p=0.0083, Table 1 and
ESM Tables S2–S3). Interestingly, mass-based searching in
the Dashboard resulted in similar mean rank position and a
higher percentage of chemicals in the number one rank posi-
tion than formula-based searching using ChemSpider.
Chemical formula assignment can vary in certainty with

varying mass accuracy. As mass accuracy declines, more po-
tential formulae can be generated from the samemonoisotopic
mass, introducing more error to formula assignment.
Therefore, skipping the step of formula generation and assign-
ment before chemical identification would represent an ideal
situation leading toward a one-pass analysis [11]. These data
indicate that for the chemicals included in this study, it is just
as reliable to directly search the Dashboard using a monoiso-
topic mass than it would be to attempt to first generate a
formula and search ChemSpider using the formula.

Rank-ordering of chemical class

The two largest classes of compounds compiled for this study
were pharmaceutical drugs and industrial chemicals. When
searching monoisotopic masses, 82 and 76% of pharmaceutical
drugs ranked number one using the Dashboard and ChemSpider,
respectively (Tables 2 and 3). Pharmaceutical drugs are increas-
ingly important in environmental NTA and risk assessment due
to their ubiquitous presence in water and other environmental
media [18, 19], and correctly identifying these compounds is
important to document for researchers in environmental and hu-
man health risk assessment. Greater than 80%of the chemicals in
several other compound classes ranked number one using mass-
based searches in the Dashboard, including industrial chemicals,
steroid hormones, pesticides, and veterinary drugs (Table 2). For
those classes containing more than five chemicals, personal care
products resulted in the worst average rank position of searched
masses in both ChemSpider and the Dashboard. Two chemicals

Fig. 1 Advanced search results table in the CompTox Chemistry Dashboard (https://comptox.epa.gov/dashboard) after an advanced search of
monoisotopic mass 228.115± 0.005 amu. Results are ranked in descending order by the number of data sources
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in particular, paraxanthine, a caffeine metabolite, and hexyl
dodecanoate, a skin conditioning emollient, fell outside of the
top five rank-ordered results when searched by both mass and
formula. In the case of paraxanthine, two other more prevalent
metabolites of caffeine precede it in the data source ranking.
Hexyl dodecanoate has several constitutional isomers,
many of which are also emollients, which rank ahead of
it in terms of number of sources. This identifies a potential
drawback of this rank-ordering workflow in that metabo-
lites and isomers may not be distinguishable by data source
ranking alone.

Comparison to Little et al. datasets

For continuity and comparison, the 89 chemicals used to doc-
ument ChemSpider’s utility in known unknown identification
were analyzed further (Table 4). On this smaller subset, the
Dashboard again significantly outperformed ChemSpider
(p=0.009) when searching monoisotopic mass, and the aver-
age rank of molecular formula searches were similar (Table 4).
A greater number of chemicals ranked number one when rank
ordering after a mass search in the Dashboard than after a
formula search in ChemSpider, mirroring what was observed

on the entire set of 162 chemicals. However, one chemical
within the Little et al. [7] list was present in ChemSpider but
not in the Dashboard. Tephrosin, a natural toxin, is not
contained within the DSSTox database, and therefore not
searchable in the Dashboard. Additionally, ChemSpider’s per-
formance based on this analysis did not match that which was
previously reported [7]. Specifically, the number of times each
chemical ranked number one when searched by molecular
formula declined.

A set of 12 large molecular weight chemical compounds
(all MW >600 Da) were evaluated separately from the list of
89 in the initial research by Little et al. [7] to determine iden-
tification efficacy of unique commercial polymer additives.
For a complete assessment, these 12 compounds were sepa-
rately evaluated following the same methods. Two of the 12
compounds were absent from the Dashboard while all 12 were
contained within ChemSpider (see ESM Table S4). By rank-
ordering, all of the compounds in this list that were contained
in the Dashboard ranked number 1 by both mass and formula
searching. However, this does highlight that chemicals outside
the domain of the database are not captured in this method,
indicating that for true unknowns, other identification process-
es need to be incorporated.

Table 2 Results of searching by
monoisotopic mass and rank-
ordering by number of data
sources in the CompTox
Chemistry Dashboard, listed
by compound class

Compound class Number in class Average rank Number of compounds in each
position rank-ordered

#1 #2 #3 #4 #5+

Pharmaceutical drug 72 1.3 59 8 3 2

Industrial chemicals 42 1.2 38 1 1 2

Personal care products 8 2.6 6 2

Steroid hormones 7 1.0 7

Perfluorochemicals 6 1.3 5 1

Pesticides 12 1.3 10 1 1

Veterinary drugs 3 1.0 3

Dyes 2 1.0 2

Food product/natural compounds 4 1.5 3 1

Illicit drugs 2 1.5 1 1

Misc. molecules 3a 1.0 3

a One organic molecule (tephrosin) not present in the Dashboard

Table 1 Summary statistics of
rank-ordering all 162 chemicals
using data sources or associated
references in both the CompTox
Chemistry Dashboard and in
ChemSpider

Mass-based searching Formula-based searching

Dashboard ChemSpider Dashboard ChemSpider

Average rank position 1.3 2.2a 1.2 1.4

Percent in #1 position 85% 70% 88% 80%

aAverage rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the
average rank position is 3.5
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The number of entries in ChemSpider has doubled since
2012, from 26million to 57million today. More entries can be
beneficial (as reflected in the omissions in the Dashboard), but
it can also interfere with the identification of likely candidate
chemicals as reported in this research (Table 4). This is also
true for other resources such as PubChem (presently contain-
ing more than 90 million chemicals [20]) as well as the
Chemical Abstracts Service (CAS) RegistrySM (containing
more than 100 million chemicals). A comparison of the num-
ber of possible results returned from formula searches in each
platform illustrates this complication (see ESM Table S5). For
the formula of piperine (C17H19NO3), PubChem returns
20,000 possible results, ChemSpider returns 9000, and the
Dashboard returns 100. Based on data source ranking, piper-
ine was the top result in the Dashboard and the fourth highest
in ChemSpider. The Dashboard is being developed with a
focus on high-quality data of particular value to the environ-
mental sciences and toxicology communities. Large-scale col-
lections of chemicals extracted from patents and chemical
vendor collections are not included in the database as support
for these efforts is already provided by PubChem and

ChemSpider. This approach leads to a cleaner database
allowing for more precise known unknown identification.

Ongoing work

Rank-ordering methods

Additional search and rank-order criteria are presently under-
going testing within the CompTox Chemistry Dashboard for
further improvements in known unknown chemical identifi-
cation. Under the premise of this work and the work of others
(e.g., [6, 7]), chemicals of interest in environmental media are
likely those with the most sources, or are the most “popular”
chemicals. Preliminary results indicate that searching the
unique InChIKey identifier of chemicals of interest in
Google, and rank-ordering the results by the number of result
hits, provides an even more accurate identification than using
the Dashboard and data sources. These data could be used to
enhance or replace data sources within the Dashboard for
known unknown investigations. Additionally, rank-order

Table 3 Results of searching by
monoisotopic mass and rank-
ordering by number of associated
references in ChemSpider, listed
by compound class

Compound class Number in class Average rank Number of compounds in each
position rank-ordered

#1 #2 #3 #4 #5+

Pharmaceutical drug 72 1.4 55 9 6 2

Industrial chemicals 42 5.5 28 6 3 5

Personal care products 8 6.1 3 1 4

Steroid hormones 7 1.0 7

Perfluorochemicals 6 1.2 5 1

Pesticides 12 2.3 6 2 3 1

Veterinary drugs 3 1.3 2 1

Dyes 2 1.0 2

Food product/natural compounds 4 3.8 2 1 1

Illicit drugs 2 2.0 1 1

Misc. molecules 3 a 1.3 2 1

a Tephrosin was removed from average rank calculations as it was not present in a Dashboard search

Table 4 Summary statistics and
rank-ordered position in the
CompTox Chemistry Dashboard
and ChemSpider of the 89
compound subset from the Little
et al. [7] study

Average rank Number in each position rank-ordered

(±SD) #1 #2 #3 #4 #5+

Mass-based Dashboard 1.2 ± 0.7 77a 5 3 3

ChemSpider 2.2 ± 6.1b 68 8 7 1 5

Formula-based Dashboard 1.1 ± 0.4 78a 8 2

ChemSpider 1.3 ± 1.0 77 8 2 1 2

aOne chemical (tephrosin) not present in the Dashboard
bAverage rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the
average rank position is 4.4
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statistics improve when tightening the search window around
a monoisotopic mass. Further research developing a sliding
mass search scale based on relative monoisotopic mass (i.e., a
smaller search window around a smaller mass) could result in
more accurate identification of known unknowns.

To further identify chemicals in environmental media,
functional use and product occurrence data, as contained in
the US EPA’s CPCat database [21], can be incorporated into
searching and rank-ordering. Chemical use and function cat-
egory data, organized with descriptors such as detergent, food-
additive, etc., are currently available in the Dashboard. These
data may further inform tentative chemical identification
through filtering by use category relative to sample medium
or through compiled use ranking metrics; testing in the
Dashboard is ongoing. Further research to create a
weighting-based or tiered ranking approach for identification
using all aforementioned criteria as inputs is underway.

MS-ready structures

Charged and salted forms of chemicals contained within
chemical reference databases complicate the search and iden-
tification process as these forms are not consistent with the
form an analyst would detect via high-resolution mass spec-
trometry in NTA. As an example, the colorant FD&C Blue
No. 1 (or Brilliant Blue FCF) is present in both ChemSpider
and the Dashboard as a charged molecule with two sodium
ions. Therefore, when searching a neutral unidentified mono-
isotopic mass on both applications, neither resource would
return the chemical identified via NTA. Chemical structure
curation and standardization can remove duplicates and incon-
sistencies in structures to allow for cleaner tentative identifi-
cation. Mansouri et al. developed chemical structure standard-
ization approaches to create quantitative structure–activity re-
lationship (QSAR)-ready structures for use in estrogenic re-
ceptor activity screening [22]. This workflow has since been
applied to all chemical structures contained in the DSSTox
database and exposed in the Dashboard. QSAR-ready struc-
tures are neutral, de-salted, and contain no stereochemistry
information, and are consistent with the chemical forms de-
tected in mass spectrometry (when corrected for charge-state).
In other words, structures standardized into QSAR-ready form
happen to offer usMS-ready structures as a benefit. These will
be incorporated into the Dashboard, allowing users to be able
to easily identify the associated substances, whether they be
salts, associated with solvents of hydration, etc. The ability to
search MS-ready structures has already been delivered via an
iOS mobile app by making our data freely available from the
NCCT website (ftp://newftp.epa.gov/COMPTOX/Sustainable_
Chemistry_Data/Chemistry_Dashboard). The m/z EPA
CompTox app (https: / / i tunes.apple.com/app/m-z-
comptox/id1148436331) is already freely available, thereby
providing accessibility for NTA users.

API development

Planned developments for the Dashboard include an applica-
tion programming interface (API) and access to a suite of web
services. Programmatic access will allow third parties to in-
vestigate and interrogate the data within the database for their
own known unknown analyses. Within an investigation of
observed chemical features, a user could include
ChemSpider for expansive coverage, the Dashboard for fo-
cused high-quality data, and even more focused resources like
FOR-IDENT (http://for-ident.hswt.de/) [23] for water-specific
analyses, among others. Additional capabilities within the API
will enable the user to access and incorporate algorithmically
generated mass spectral fragmentation resources and metabo-
lite databases for known unknown chemical identification (in-
cluding spectral library resources like MassBank [24] and
mzcloud [25], in silico fragmentation resources like MetFrag
[12, 26], and metabolite databases such as Metlin [27]).
Chemical metabolites and degradants in environmental media
present a difficult problem from an identification perspective.
Using the Dashboard to identify known unknowns in the
workflow presented here does not include an avenue for me-
tabolites or fragments. However, linking the Dashboard via
web services to the open resources available for algorithmi-
cally generated metabolites and mass spectra can advance
chemical identification in NTA through structure elucidation
and metabolite identification.

Conclusions

The Dashboard is a highly curated freely available online ref-
erence database that is an effective investigative tool for the
identification of known unknowns. Comparisons with the
ChemSpider database, a primary database for mass
spectrometrists to utilize for structure identification purposes,
show better performance overall for the test sets reported here.
Expanding the data, functionality and access to support pro-
jects within the EPA, and in the scientific community as a
whole, will further demonstrate its utility for risk analysis
and general chemical identification both as part of larger, more
developed workflows and as a stand-alone investigative tool.
Future research on expanded utility employing further chem-
ical identification mechanisms will advance the field of NTA
and chemical identification in a public arena for widespread
use.
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