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Abstract Asymmetrical flow field-flow fractionation (As-
FlFFF) is a widely used technique for analyzing polydisperse
nanoparticle and macromolecular samples. The programmed
decay of cross flow rate is often employed. The interdepen-
dence of the cross flow rate through the membrane and the
fluid flow along the channel length complicates the prediction
of elution time and fractionating power. The theory for their
calculation is presented. It is also confirmed for examples of
exponential decay of cross flow rate with constant channel
outlet flow rate that the residual sample polydispersity at the
channel outlet is quite well approximated by the reciprocal of
four times the fractionating power. Residual polydispersity is
of importance when online MALS or DLS detection are used
to extract quantitative information on particle size or molecu-
lar weight. The theory presented here provides a firm basis for
the optimization of programmed flow conditions in As-FlFFF.

Keywords Asymmetrical flow field-flow fractionation .

Programmed operation . Fractionating power . Outlet stream
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Symbols
bz Channel breadth at distance z from channel inlet
d Particle diameter
di Projected inversion diameter

dn Number average particle diameter
D Translational diffusion coefficient
Fd Particle-diameter-based fractionating power
FM Molecular-weight-based fractionating power
Fϕ ϕ-based fractionating power
f Final fraction of time interval required for peak

center of mass to reach channel outlet
f Ratio of d to di
Hneq(z, t) Non-equilibrium plate height at distance z from

channel inlet at time t
L Length of channel measured from inlet to outlet
M Molecular weight
Nm Limiting number of theoretical plates due to the

multipath effect in isocratic elution
R(t) Retention ratio at time t
Rc Core retention ratio
Rs Resolution
Sd Diameter-based selectivity
SM Molecular-weight-based selectivity
Sϕ ϕ-based selectivity
t Time
tr Elution time from focusing point to channel outlet
t1 Pre-decay time
〈v(z, t)〉 Mean channel flow velocity at distance z from

inlet and at time t
V Volume of channel measured from the inlet up to

distance z
˙V z; tð Þ Volumetric flow rate at distance z from channel

inlet at time t
V̇ V ; tð Þ Volumetric flow rate at fractional channel volume

V measured from the inlet at time t
˙VB Backward flow rate applied to the outlet during

sample introduction and focusing
˙V c tð Þ Volumetric flow rate through the membrane

at time t
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˙V c0 Initial volumetric flow rate through the membrane
V̇ F Forward flow rate applied to the inlet during

sample introduction and focusing
˙VL Constant outlet flow rate
V0 Effective void volume measured from focusing

point to channel outlet
VC
0 Channel volume

w Channel thickness
z Distance from channel inlet
z ′ Distance of sample focusing point from channel

inlet
α Ratio of the exclusion distance from the wall to

the channel thickness
ε Small multiplicative correction to δt yielding tr

− σt,m
λc Core retention parameter
λ0(t) Retention parameter at time t
σd Standard deviation in number distribution of par-

ticle diameter
σd,app Apparent σd calculated using Eq. 47
σt Standard deviation in retention time
σt,m Standard deviation in retention time due to the

multipath effect
σt,neq Standard deviation in retention time due to the

nonequilibrium effect
σz Standard deviation in distance traveled
τ Exponential decay time constant for programmed

cross flow rate
ϕ Selective parameter such as d or M
χ(t) Non equilibrium bandspreading parameter at time t
χc Core nonequilibrium bandspreading parameter

Introduction

Compared to other particle or polymer separation techniques,
such as size exclusion or gel permeation chromatography, the
field-flow fractionation (FFF) techniques tend to give greater
relative differences in elution time for small relative differ-
ences in particle size or molecular weight. In the terminology
of separation science, they exhibit higher selectivity. While
this can be advantageous for the separation of a small number
of slightly different species, it can lead to difficulties in the
analysis of widely polydisperse samples. Conditions suitable
for sufficient retention and resolution of the smaller compo-
nents can result in excessive retention of the larger compo-
nents. In the case of sedimentation FFF (SdFFF), the selectiv-
ity is so high that there may also be difficulty in detection of
the larger components as they are eluted over extended pe-
riods of time with consequent dilution in the outlet stream. It is
also possible that conditions giving sufficient retention for the
smaller components result in the interference of steric inver-
sion in the elution of the larger components. The continuous

programmed reduction of field strength during sample elution
takes care of these problems by effectively reducing the selec-
tivity in a controlled manner [1, 2].

The technique of symmetrical flow field-flow fractionation
(Sym-FlFFF) was introduced in 1976 [3–5] and the asymmet-
rical form (As-FlFFF) in 1986 [6, 7]. The selectivity of FlFFF
is not as high as that of SdFFF, but it was confirmed using
Sym-FlFFF that a programmed decay of cross flow rate is
advantageous for the analysis of samples consisting of com-
ponents having widely differing sizes [8, 9]. The nature of
Sym-FlFFF allowed the cross flow rate to be programmed
independently of the channel flow rate, which was usually
held constant. It also allowed the channel flow rate to be pro-
grammed, if desired. Dual programming of cross flow and
channel flowwas demonstrated to be advantageous for sample
analysis in the hyperlayer mode of operation [10], for exam-
ple. Hyperlayer and steric modes of operation are not of con-
cern here. In this publication, attention is confined to the nor-
mal or Brownian mode, applicable to submicron particles and
macromolecules. The independence of the cross flow rate and
the channel flow rate in Sym-FlFFF allows not only freedom
in the selection of flow rate conditions but also the relatively
simple prediction of elution time and fractionating power as a
function of particle size or molecular weight for various pro-
grammed cross flow decay functions of time [11–14]. This is
not the case for As-FlFFF.

In As-FlFFF, only the accumulation wall is permeable and
the fluid flowing through the membrane-covered accumula-
tion wall and channel outlet originates at the channel inlet. It
follows that, when some of the fluid exits through the mem-
brane, and it is assumed to exit with uniform membrane flux,
the volumetric flow rate must decrease along the length of the
channel. This form of FlFFF was named asymmetrical FlFFF
because of its characteristic flow configuration—the flow-
through the membrane is not matched by an equal flow
through an opposite permeable wall, and the inlet and outlet
flow rates are not equal. The interdependence of the channel
inlet and outlet flow rates and the cross flow rate make the
selection of suitable experimental conditions more complicat-
ed than for Sym-FlFFF. This is particularly true for pro-
grammed conditions where even the prediction of elution
times becomes non-trivial. In spite of these difficulties, it has
become the dominant form of FlFFF because it eliminates
problems associated with the permeable frit that serves as
the depletion wall in Sym-FlFFF. The flow through the frit
may be non-uniform due to variations in its porosity and due
to the pressure drop along the length of the channel under
elution conditions. The ultrafiltration membrane, offering a
much higher hydraulic resistance than the frit, requires a great-
er pressure drop across its thickness to maintain the cross flow.
The much lower pressure drop along the channel length there-
fore has relatively little effect on the uniformity of membrane
flux. However, the variation in frit flow due to the decreasing
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pressure along the channel can result in reduced channel flow
rate and higher retention times than expected. The effect is
related to that described byMartin and Hoyos for the Bno-field
method^ for void time determination in FlFFF [15].

For an As-FlFFF channel of constant breadth, the flow
velocity along the channel length necessarily decreases from
the inlet to the outlet as fluid is lost through the accumulation
wall. This can lead to problems in particle elution due to non-
idealities such as particle interactions with the membrane sur-
face. These interactions may increase as channel flow velocity
decreases, and some of the more retained particles may not
elute. The loss of volumetric flow rate along the channel
length may be partially compensated by gradually reducing
the channel breadth along its length. In 1991, Wahlund and
Litzén introduced the trapezoidal channel in which the chan-
nel breadth decreases linearly [16], and in 1997 an exponen-
tially decreasing channel breadth was proposed for use in As-
FlFFF [17]. The variation inmean channel flow velocity along
the length of these channels can be greatly reduced compared
to a rectangular channel. Under conditions of programmed
cross flow rate, the ratio of inlet to outlet flow rate is contin-
uously changing. The ratio, initially high, approaches unity as
cross flow rate approaches zero. A decreasing channel breadth
remains advantageous for programmed operation as the ratio
of inlet to outlet flow rate is likely to be considerably greater
than unity for much of the time.

It was mentioned above that in Sym-FlFFF, the cross
flow rate may be programmed independently of the
channel flow rate which may be held constant or pro-
grammed as desired. This is not the case for As-FlFFF.
The sum of the volumetric flow rates through the mem-
brane and the channel outlet at any instant must equal
the volumetric flow rate at the inlet. The programmed
reduction of flow rate through the membrane may be
carried out while maintaining a constant channel outlet
flow rate, in which case the flow rate at the channel
inlet must decrease at the same quantitative rate as the
cross flow. This approach has the advantage of not re-
quiring detector signal baseline adjustment, compensa-
tion for flow rate change through concentration-
sensitive detectors, or compensation for change in delay
times between multiple detectors. The programmed de-
cay of cross flow rate may alternatively be carried out
while maintaining constant channel inlet flow rate,
which would result in an increasing channel outlet flow
rate. It is also possible to program either the inlet or
outlet flow rate along with the cross flow rate, the non-
programmed flow being consistent with the difference
or sum of the other two, respectively.

The programming of flow rates in rectangular-channel As-
FlFFF was first carried out by Litzén andWahlund in 1989 for
the separation of human serum albumin from its dimer and
trimer [18]. They used a multistep program where the ratio of

cross flow rate to outlet flow rate was reduced in six abrupt
steps while the channel inlet flow rate was held constant. The
outlet flow rate therefore increased in stepwise fashion during
programming. The first peak, corresponding to the monomer,
did not elute until the cross flow program was completed and
baseline correction was not therefore required. They also used
a simple single-step program to separate two plasmid frag-
ments of 700 and 4600 bp. In this case, the cross flow rate
was reduced to zero following elution of the first peak.

In 1992, Kirkland et al. [19] used an exponential decay of
cross flow rate in rectangular-channel As-FlFFF to separate a
mixture of proteins and nucleic acids, a bacteria sample, and a
mixture of submicron silica particles. They elected to hold the
channel outlet flow rate constant to avoid baseline drift and to
maintain constant detector response for quantification pur-
poses. They were able to derive an analytical expression for
elution time as a function of diffusion coefficient based on a
simple high retention approximation for retention ratio (this is
discussed later in this manuscript).

In 2001, Moon and Hwang [20] gave an example of
a separation of four proteins obtained under linearly
programmed decay of cross flow rate with the outlet
flow rate held constant. Also in 2001, Moon [21]
showed two more examples of separations obtained un-
der linear decay of cross flow. In 2002, Moon et al.
[22] applied a variety of flow programs to As-FlFFF
using a trapezoidal channel. They were able to show
how approximate analytical solutions were derivable
for retention times with exponentially programmed cross
flow rate and constant or exponentially programmed
outlet flow rate, and that the solutions were independent
of the channel breadth profile. A mixture of polystyrene
sulfonate standards was separated under a variety of
conditions, including isocratic, linear decay of cross
flow rate with constant outlet flow rate, linear decay
of cross flow rate with linearly increasing outlet flow
rate (and linearly decreasing inlet flow rate), and power
programmed decay of cross flow rate with constant,
linearly increasing, and linearly decreasing outlet flow
rate. In cases where outlet flow rate varied, a baseline
correction was applied. The programming of outlet flow
rate was seen to influence sample elution to a much
smaller extent than the decay of cross flow rate.

In 2004, Andersson et al. [23] used successive intervals of
decreasing gradients of linear decay of cross flow rate to frac-
tionate ethyl hydroxyethyl cellulose samples. In 2006,
Leeman et al. [24] published a comparison of various linear
and exponential cross flow decay functions for the separation
of mixtures of pullulan standards, paying particular attention
to the effect of the rate of decay on the observed selectivity.

Since these early studies, the implementation of pro-
grammed decay of cross flow rate in As-FlFFF has become
very common. The conditions are generally selected by trial
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and error or by reference to previous analyses, and the char-
acterization of the fractionated samples commonly relies on a
secondary technique, such as flow-through multi-angle light
scattering (MALS) or dynamic light scattering (DLS) applied
to the eluent, rather than on fundamental FFF theory. While
the use of these secondary techniques for characterizing the
fractionated samples compensates for uncertainties in effec-
tive channel void volume as well as various non-idealities,
such as those due to sample–membrane interactions, the qual-
ity of the separation depends on the selected flow conditions.
The capacity of a separation system to resolve the components
of a polydisperse sample can be quantified in terms of the
fractionating power. It provides a measure of the relative res-
olution that can be obtained across the breadth of the sample
[11]. A modeling of elution time and fractionating power in
As-FlFFF is therefore necessary for a logical and systematic
optimization of separation conditions. This objective was ac-
complished for constant flow conditions in part I [25] and is
accomplished for programmed cross flow rate conditions in
the work presented here.

It was shown in part I [25] that, in the case of isocratic
analysis of a polydisperse sample by As-FlFFF, the residual
channel outlet polydispersity is inversely related to the pre-
dicted fractionating power. This relationship supports the use
of predicted fractionating power as a criterion for the selec-
tion of optimum flow rate conditions because the return of
reliable particle size or molecular weight by light scattering
detection software depends upon low outlet polydispersity
across the full range of the sample. It will be shown in this
manuscript that the relationship between outlet polydispersity
and fractionating power is also valid for conditions of pro-
grammed cross flow rate. The predicted fractionating power
is therefore key to the optimization of programmed condi-
tions in As-FlFFF. The consideration of fractionating power
is particularly important for programmed decay of cross flow
rate as the cross flow may be programmed in any number of
ways, as may be seen from the earlier discussion. The selec-
tion of the optimum type of cross flow decay program (math-
ematical function of time) as well as the rate of decay and the
magnitude of the channel flow rate may be made based upon
the predicted relationship between fractionating power and
particle size or molecular weight. It will be shown in this
manuscript how fractionating power may be calculated for
any programmed decay of cross flow or, in fact, for any
arbitrary decrease of cross flow rate with time during sample
elution.

Fractionating power

As mentioned above, the fractionating power is used to quan-
tify the relative resolving power of the FFF system for poly-
disperse samples. If ϕ represents a selective sample property,

such as particle diameter d or molecular weightM, then the ϕ-
based fractionating power is defined by [11]

Fϕ ¼ Rs

δϕ=ϕ
¼ ϕ

4σt

δtr
δϕ

ð1Þ

where Rs is the resolution, δtr/4σt, between sample compo-
nents having ϕ that differ by the small relative amount δϕ/ϕ,
whose retention times consequently differ by δtr, and have a
mean standard deviation in retention time of σt. In the limit of
δϕ/ϕ→ 0, Eq. 1 reduces to

Fϕ ¼ ϕ
4σt

dtr
dϕ

¼ tr
4σt

Sϕ ð2Þ

where Sϕ is the ϕ-based selectivity given by

Sϕ ¼ ϕ
tr

dtr
dϕ

¼ dlntr
dlnϕ

ð3Þ

For isocratic operation, Eq. 2 may also be written in the

form Fϕ ¼ ffiffiffiffi
N

p
Sϕ=4, where N is the number of theoretical

plates (= tr
2/σt

2); this is not the case for programmed opera-
tion. The fractionating power Fϕ is therefore a continuous
function of ϕ. In order to predict fractionating power, it is
necessary to predict both tr and σt as functions of ϕ. When
particles or molecules are negligibly small, and when particle–
particle and particle–membrane interactions are also negligi-
ble, the fundamental theory of FFF allows accurate prediction
of the retention ratio R, the ratio of mean particle migration
velocity to mean fluid velocity at any point in the channel [7].
Finite particle or molecular size can also be approximately
accounted for using a first-order steric exclusion correction
[26, 27]. For isocratic conditions, a knowledge of the void
time then allows prediction of tr. The method for predicting
tr under programmed conditions is described below.

There are two dominant contributions to bandspreading in
As-FlFFF: the nonequilibrium and the multipath contribu-
tions. The nonequilibrium contribution is predictable using
fundamental FFF theory [27–29], which may also include a
steric exclusion correction for finite particle or molecular size
[26, 27, 30]. The multipath contribution is the result of small
variations in membrane permeability and channel thickness
[25] and must be experimentally determined for each assem-
bled channel. It is described below how the contributions to
variance in retention time due to these effects may be predict-
ed for programmed conditions.

Volumetric flow rates and mean channel flow
velocities along channel length

The same assumptions and approximations regarding the uni-
formity of fluid flow in the channel are made here as were
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made in part I [25]. Particle–particle and particle–membrane
interactions are also assumed to be negligible. In addition, the
secondary relaxation effect due to the changing cross flow rate
during sample elution [31–34] is not considered in this
manuscript.

In programmed operation, the flow rate through the
accumulation wall ˙Vc is a function of time. It may be
held constant for a certain initial period, after which it
is generally reduced according to some continuous func-
tion of time. It may alternatively be reduced in stepwise
fashion or in a series of function segments. When the
cross flow rate is being reduced, either the channel inlet
or outlet flow rate, or possibly both, may vary.
Conservation of mass will always demand that

V
⋅
c tð Þ ¼ V

⋅
0; tð Þ−V⋅ L; tð Þ ð4Þ

where ˙V c tð Þ is the cross flow rate at time t and V̇ 0; tð Þ
and V̇ L; tð Þ are the flow rates at the channel inlet (at
z = 0, where z is the distance measured from the channel
inlet) and outlet (at z = L) at time t, respectively. The
local volumetric channel flow rate V̇ will be a function
of both the distance z from the channel inlet and time t
and is given by

V
⋅
z; tð Þ ¼ V

⋅
0; tð Þ− V̇c tð Þ w

V0
C

Zz
0

bz dz

¼ V
⋅
L; tð Þ þ V

⋅
c tð Þ 1−

w
V0

C

Zz
0

bz dz

0
@

1
A

ð5Þ

in which w is the channel thickness, VC
0 is the channel

volume, and bz is the channel breadth at distance z from
the inlet. Note that Eq. 5 assumes that the membrane
flux is uniform throughout the channel. The local mean
channel flow velocity 〈v〉 is then given by

v z; tð Þh i ¼ V̇ z; tð Þ
wbz

ð6Þ

Local volumetric channel flow rate can also be given as a
function of channel volume V measured from the inlet to dis-

tance z from the inlet, such thatV ¼ w∫
z

0
bz dz, and expressed in

the form

V
⋅
V ; tð Þ ¼ V

⋅
0; tð Þ−V⋅ c tð Þ V

V0
C

¼ V
⋅
L; tð Þ þ V

⋅
c tð Þ 1−

V
V0

C

� �
ð7Þ

It will be shown below how the use of Eq. 7 holds certain
advantages over that of Eq. 5.

Approximate analytical solutions for retention time

It was shown by Kirkland et al. [19] that an approximate
analytical solution for retention time is obtainable in the case
of As-FlFFF using constant breadth channels with constant
channel outlet flow rate and exponential decay of cross flow
rate. They considered only the time-delayed exponential
(TDE) program, where the initial constant cross flow period
t1 is equal to the exponential decay constant τ, and the simple
exponential decay program with t1 = 0. It was later shown by
Moon et al. [22] that an approximate analytical solution could
be obtained for As-FlFFF with channels of arbitrary breadth
profile, exponential decay of cross flow rate with arbitrary t1,
and outlet volumetric flow rate held constant or exponentially
programmed. This was shown to be the case by considering
the progress of a zone in terms of the fraction of the channel
volume that has been passed through rather than the distance
covered, as considered by Kirkland et al. [19]. The local rate at
which channel volume is passed through by the center of mass
of a monodisperse zone is given by

dV
dt

¼ R tð ÞV⋅ V ; tð Þ ¼ R tð Þ V
⋅
L; tð Þ þ V

⋅
c tð Þ 1−

V
V0

C

� �� �
ð8Þ

where R(t) is the time-dependent retention ratio. The strong
retention approximation for retention ratio is given by

R tð Þ ¼ 6λ0 tð Þ þ 6α ¼ 6DV0
C

w2 V̇ c tð Þ
þ 6α ð9Þ

in which λ0(t) is the ˙V c tð Þ -dependent and therefore time-
dependent retention parameter (equal to DV0

C=w
2V̇ c tð Þ ), D is

the particle ormolecule diffusion coefficient, andα is the ratio of
the exclusion distance for the particle or molecule center from
the wall to the channel thickness. Substituting Eq. 9 into Eq. 8,
and rearranging, results in the ordinary differential equation

dV
dt

þ 6D
w2

þ 6αV̇c tð Þ
V0

C

 !
V ¼ 6DV0

C

w2
þ 6αV̇c tð Þ

� �
V̇ L; tð Þ
V̇c tð Þ

þ 1

 !

ð10Þ

and the solution of this equation is given by

V ¼ exp −
Zt
0

6D
w2

þ 6αV
⋅
c tð Þ

V0
C

 !
dt

0
@

1
A

� V0
C−V

0 þ
Zt
0

exp

Zt
0

6D
w2

þ 6αV
⋅
c tð Þ

V0
C

 !
dt

0
@

1
A 6DV0

C

w2
þ 6αV

⋅
c tð Þ

� �
V
⋅
L; tð Þ

V
⋅
c tð Þ

þ 1

 !
dt

8><
>:

9>=
>;

ð11Þ

In this equation, V0 is the effective void volume for particle
elution measured from the initial sample focusing point to the
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channel outlet. The initial V corresponding to t = 0 is therefore
equal to VC

0 − V0. It has been shown [25] that V0 is given by

V0 ¼
˙VB

V̇ F þ V̇B

V0
C ð12Þ

where V̇ F and V̇B are the forward and backward flow rates
during sample introduction and focusing, respectively.
Equation 11 does not yield an analytical solution for any sim-
ple cross flow decay functions. The result is considerably
simplified, however, if α is negligibly small:

V ¼ exp −
6Dt
w2

� �
V0
C−V

0 þ 6DV0
C

w2

Zt
0

exp
6Dt
w2

� �
V̇ L; tð Þ
V̇ c tð Þ

þ 1

 !
dt

8><
>:

9>=
>;
ð13Þ

Equation 13 may be solved for elution time tr correspond-
ing to the time at which V = VC

0 for certain programmed flow
conditions. For example, it may be solved for the case of
constant channel outlet flow rate ˙VL and exponential decay
of channel cross flow rate described by

˙V c tð Þ ¼ ˙Vc0exp −
t−t1ð Þ
τ

� �
ð14Þ

in which t1 is a pre-decay time period during which the cross
flow rate is held constant at the initial rate of ˙V c0 and τ is the
exponential decay constant. When tr ≤ t1, elution takes place
under constant cross flow conditions, and the solution for tr is
given by

tr ¼ w2

6D
ln 1þ V0 ˙Vc0

V0
CV̇L

 !
ð15Þ

When tr > t1, the solution is given by

tr ¼ t1 þ τ

1þ 6Dτ=w2ð Þ ln 1þ V0

V0
C

V̇ c0

V̇L

 !
1þ w2

6Dτ

� �
exp −

6Dt1
w2

� �
−

w2

6Dτ

( )

ð16Þ

Note that this equation corrects an error in the final line of
the derivation given in the appendix of Kirkland et al. [19] and
is also more general in allowing t1 to differ from τ. The
corrected result for TDE programming of cross flow rate (for
which t1 = τ) at constant outlet flow rate, as considered by
Kirkland et al. [19], is given in the Electronic supplementary
materials (ESM). For exponential decay of V̇ c and constant
V̇L, Eq. 16 yields a good estimate of elution times for particles
that are well retained but are also eluted well before the
projected steric inversion. Equations 15 and 16 show how tr
is related to diffusion coefficient D, and therefore to particle
hydrodynamic diameter or to molecular weight. It will be
shown later that the determination of nonequilibrium

bandspreading under programmed flow conditions requires a
numerical approach. The parallel determination of elution
time using a more accurate calculation of R(t), as described
below, is recommended for exponential decay of cross flow
rate and is necessary for other mathematical forms of pro-
grammed cross flow rate.

Numerical determination of retention time

As mentioned above, the retention ratio R, being a function of
λ0, and therefore of ˙V c, is a function of time. It has long been
known that the retention ratio in As-FlFFF deviates from that
for symmetrical FlFFF due to the variation in cross flow ve-
locity across the channel thickness [7]. The deviation is most
significant for weakly retained sample components, and accu-
rate determination of elution time should take this into ac-
count. The expression for retention ratio in As-FlFFF with
correction for steric exclusion was recently presented [27].
ESM Table S1 shows numerically calculated values of R, the
nonequilibrium parameter χ, and the product χR over a wide
range of λ0 from 0.0001 to 1024. The tabulated values do not
include a steric exclusion correction. The incorporation of the
steric exclusion correction into the calculation of R in As-
FlFFF requires the integration of concentration profiles over
the region of the channel thickness that is accessible to the
particle or molecule centers. The core-channel approach taken
by Giddings [26] to derive an expression for R in conventional
FFF, where field-induced transverse velocity is constant
across the channel, is not strictly valid for As-FlFFF.
However, when particles or molecules are small in compari-
son to channel thickness, the errors associated with this ap-
proach are negligible while the savings in computation are
considerable, which is particularly important for the modeling
of programmed operation which requires repeated calcula-
tions at incrementally different conditions. The core-channel
retention ratio Rc is calculated for the fraction of the channel
thickness accessible to the particle or molecule centers. This
region has a thickness of (1 − 2α)w, and at the exclusion dis-
tance from the membrane, the transverse fluid velocity is
(1 − 3α2 + 2α3)|u0| [7, 27]. The core-channel retention param-
eter λc is therefore given by λ0/((1 − 2α)(1 − 3α2 + 2α3)).
Rather than numerically evaluating Rc for every λc corre-
sponding to each interval in time and each interval in ϕ, it is
far more efficient to use a cubic spline interpolation [35] from
tabulated values such as those of ESM Table S1. The estimate
of R is then obtained using the relationship [26]

R ¼ 6α 1−αð Þ þ 1−2αð Þ2Rc ð17Þ

ESM Figure S1 shows the error associated with the use of
Eq. 17 for the relatively large values of α of 0.0005, 0.001,
0.002, and 0.005, corresponding to spherical particle
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diameters of 0.25, 0.5, 1.0, and 2.5 μm for a channel thickness
of 250 μm. In each case, R is underestimated with the maxi-
mum error given at λ0 of about 0.075, corresponding to accu-
rate R values of 0.415, 0.418, 0.423, and 0.439 and errors for
Eq. 17 of 0.0203, 0.0403, 0.0792, and 0.188 %, respectively.
Errors are even smaller for both smaller α and smaller λ0. The
large saving in computational time is therefore justified.

Local sample zone velocity is expressed as

dz
dt

¼ R tð Þ v z; tð Þh i ¼ R tð Þ V̇ z; tð Þ
wbz

ð18Þ

A rearrangement of Eq. 18 shows that

δz ¼ R tð Þ V̇ z; tð Þ
wbz

δt ð19Þ

The distance δz migrated in the small time interval δt de-
pends on both the time t and the position of the particles z. The
migration of a monodisperse sample component may be
followed by summing increments in δz from the focusing po-
sition to the outlet in order to determine its elution time. The
time t at any point is simply the sum of the intervals δt so far
considered, and the position z is the summation of the corre-
sponding intervals δz from the initial position z′. Using a sim-
ple Euler approach, successive intervals may be calculated
using the conditions at the previous position:

δz jþ1 ¼
R t j
� �

V̇ z j; t j
� �

wb z j
� � δt ð20Þ

where tj = jδt and z j ¼ z 0 þ ∑
j

k¼1
δzk , so that t0 = 0, z0 = z ′, and

zj + 1 = zj + δzj + 1. This approach first necessitates the calcula-
tion of the focusing point z ′. The local volumetric flow rate is
given by

V
⋅
z j; t j
� � ¼ V

⋅
0; t j
� �

−
˙V c t j
� �

w

V0
C

Zz j
0

bz dz ð21Þ

or, alternatively, by

V
⋅
z j; t j
� � ¼ V

⋅
L; t j
� �þ V

⋅
c t j
� �

1−
w
V0

C

Zz j
0

bzdz

0
@

1
A ð22Þ

where the appropriate channel breadth function bz is used.
Successive δzj are summed until zj + 1 just equals or exceeds
L. Such an approach was followed by Nilsson et al. [36] for
exponential decay of cross flow rate. A possible advantage of
carrying out the summation in δzj is that the shear rate at the
membrane surface can be calculated for the center of mass of
each zone as it migrates along the channel. This might be of
interest if particle–membrane interactions are suspected to

influence retention. For example, there may be some critical
ratio of shear rate to flow velocity through the membrane
below which the particles or molecules become immobilized.
The influence of local conditions on the elution of a sample
component zone is complicated by the variation of conditions
across the breadth of the zone, however; part of the zone may
be adversely affected while other parts are not.

If particle–membrane interactions are not an issue, an alter-
native approach to that considered above is possible. The rate
that channel volume is swept through by the position of the
center of mass of the sample zone may be considered:

dV
dt

¼ R tð Þ V̇ V ; tð Þ ð23Þ

Successive intervals in channel volume passed through in
time intervals δt can be calculated using an equation analo-
gous to Eq. 20:

δV jþ1 ¼ R t j
� �

V̇ V j; t j
� �

δt ð24Þ

where local channel volumetric flow rate is written as a func-
tion of Vj, the volume of the channel from the inlet to the local
position, and discrete time tj. Following Eq. 7, it is apparent
that

V
⋅
V j; t j
� � ¼ V

⋅
0; t j
� �

−V
⋅
c t j
� �V j

V0
C

¼ V
⋅
L; t j
� �þ V

⋅
c t j
� �

1−
V j

V0
C

� �
ð25Þ

The current Vj is obtained via the summation of previous
increments to channel volume

V j ¼ V0
C−V

0 þ
Xj

k¼1

δVk ð26Þ

where the channel volume up to the initial point V0 is given by
V0 = VC

0 − V0, and it is not necessary to determine z′. It also
follows that Vj + 1 = Vj + δVj + 1. Equation 24 can now be writ-
ten in the form

δV jþ1 ¼ R t j
� �

V
⋅
0; t j
� �

−
V̇c t j
� �
V0

C

V0
C−V

0 þ
Xj

k¼1

δVk

 ! !
δt ð27Þ

or, alternatively, in the form

δV jþ1 ¼ R t j
� �

˙V L; t j
� �þ ˙V c t j

� �
V0
C

V0−
Xj

k¼1

δVk

0
@

1
A

0
@

1
Aδt ð28Þ

The summation of successive δVj is carried out until Vj + 1

just equals or exceeds VC
0 . The number of required intervals δt

then indicates the elution time (of course, the final interval will
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invariably be some fraction of δt consistent with the final
increment to channel volume necessary to exactly obtain
VC
0 ). For these numerical calculations, V̇ c t j

� �
, which also in-

fluences R(tj), can follow any smooth mathematical function
of time, or it can be a discontinuous function or series of
functions, or indeed have an arbitrary variation with time. It
is apparent from Eqs. 27 and 28 that, for any variation of ˙Vc

with time, provided non-idealities are insignificant and the
elution adheres to the expression used for the retention ratio,
the increments to channel volume are independent of the
breadth profile of the channel. This means that, provided the
retention ratio is not influenced by local channel flow velocity,
elution times will also be independent of the channel breadth
profile.

The equations and discussion above imply that a sim-
ple application of Euler’s method may be used for sum-
mation of δzj or δVj. In practice, to better represent the
gradually changing conditions across the intervals, a
fourth-order Runge–Kutta summation may be carried
out (see [37]). This involves the consideration of con-
ditions at half time intervals. In fact, Nilsson et al. [36]
used a similar approach. For the small time intervals
typically considered, the improvement is modest, and
very often negligible.

It is important to emphasize that Eqs. 27 and 28 are
perfectly general. The values for ˙V c t j

� �
and either V̇ 0; t j

� �
or V̇ L; t j

� �
may correspond to a defined set of pro-

grammed conditions, or they may be quantities that are
experimentally monitored during a sample analysis. The
monitoring of flow rates can account for deviation from
nominal set conditions or for flow rates that are arbitrarily
varied as opposed to following precise functions of time. In
any case, the mean elution time may be determined for any
assumed ϕ, provided it is known how D and α are related
to ϕ. The calculation of elution times for a series of dis-
crete ϕ allows the use of interpolation to associate a value
of ϕi to every discrete elution time ti. This is the basis of
the integral approach to FFF data reduction (transformation
of fractogram to size or molecular weight distribution)
[38]. The approach is here shown to be applicable to
As-FlFFF.

Bandspreading

As amonodisperse zone passes along the channel, its breadth is
influenced by the loss of carrier solution through themembrane
and by the changing channel breadth. It was explained in part I
[25] that the loss of carrier solution tends to reduce the zone
breadth while the reduction in channel breadth tends to in-
crease the zone breadth. For the calculation of the contributions
to bandspreading, the channel may be considered to be divided

into a series of small intervals, with each contributing to the
breadth of the zone as it migrates through it. The conditions
across the breadth of a zone can vary significantly, but it was
explained in part I [25] that a projected standard deviation in
breadth of the zone can be considered as corresponding to the
standard deviation expected when conditions at the center of
mass are assumed to apply across the full zone. Then as the
center of mass passes from one interval to the next, the zone
variance must be adjusted for the changing volumetric flow
rate and channel breadth before the next contribution to vari-
ance is added. In the case of programmed operation, this ad-
justment must take into account the change in flow rates with
time as well as position. The variance in zone breadth σz

2 for
center of mass at position and time (zi − 1, ti − 1) must therefore
be adjusted by the ratio bi−1 V̇ zi; tið Þ=bi V̇ zi−1; ti−1ð Þð Þ 2, or
equivalently (〈v(zi, ti)〉/〈v(zi − 1, ti − 1)〉)

2, as the center of mass
passes to (zi, ti), where the next contribution δσz,i

2 is added.
The summation of successive contributions to variance can
be written as

σz;i
2 ¼

Xi

j¼1
Cδσz; j

2 ¼ δσz;i
2 þ v zi; tið Þh i

v zi−1; ti−1ð Þh i
� �2Xi−1

j¼1
Cδσz; j

2 ð29Þ

where the subscript C on the summation signs indicates
that they do not represent simple summations but mean
velocity-corrected summations. In the same way as
shown in part I [25] for isocratic operation, the expan-
sion of successive terms in Eq. 29 shows that the mean
velocity-corrected summation reduces to the simple
summation:

σz;i
2 ¼ v zi; tið Þh i2

Xi

j¼1

δσz; j
2

v z j; t j
� �� �2 ð30Þ

The variances represented in Eqs. 29 and 30 correspond to
the projected variances where the conditions at the center of
mass are imagined to extend across the whole breadth of
the zone. As mentioned above, the conditions can vary
significantly across a zone, distorting the distribution along
the length or volume of the channel. The contributions to
variance in the time of elution may alternatively be con-
sidered, but they are not simply summed as in isocratic
operation, however; the change of retention ratio from
interval to interval must be taken into account. An in-
crease in R, as seen under programmed decay of cross
flow rate, will reduce the variance in elution time simply
because the zone velocity increases. Every fraction of the
zone is influenced simultaneously by an instantaneous
change in R. The progress of the center of mass of the
zone in the time domain may be considered and the var-
iance in elution time adjusted for the change in R from
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the previous interval to the current before adding the cur-
rent contribution:

σt;i
2 ¼

Xi

j¼1
Cδσt; j

2 ¼ δσt;i
2 þ R ti−1ð Þ

R tið Þ
� �2Xi−1

j¼1
Cδσt; j

2 ð31Þ

The subscript C on the summation signs again indicates
that they are not simple summations. By expanding successive
terms, this may be shown to be equivalent to the simple sum-
mation given by

σt;i
2 ¼ 1

R tið Þ2
Xi

j¼1

R t j
� �2

δσt; j
2 ð32Þ

The comments made with regard to the calculation of
elution times using Eq. 27 or Eq. 28 are equally appli-
cable to the calculation of σt

2 using Eq. 32. If δσt,j
2

may be calculated for local conditions for a zone mi-
grating along the channel, then the zone variance in
elution time may be predicted for any given variation
in channel and cross flow rates. This allows the calcu-
lation of Fϕ (by interpolation) for every discrete elution
time ti and corresponding ϕi. The integral approach to
FFF data reduction [38] not only performs the transfor-
mation of the fractogram to a size or molecular weight
distribution, it also provides the important knowledge of
Fϕ across the distribution.

Nonequilibrium bandspreading

As for the retention ratio, the core-channel approach can
be taken to obtain the nonequilibrium bandspreading
parameter χ in order to save computational time. The
core-channel λc is calculated as before. The core-
channel value of the product Rcχc can then be efficient-
ly obtained using cubic spline interpolation of the tab-
ulated data (ESM Table S1) and the product Rχ calcu-
lated via the relationship [14, 26]

Rχ ¼ Rcχc 1−2αð Þ6 ð33Þ

ESM Figure S1 shows the error associated with this ap-
proach, again for the examples of α of 0.0005, 0.001, 0.002,
and 0.005. Equation 33 slightly underestimates the correct
value, with maximum error occurring at λ0 of about 0.045.
A λ0 of 0.045 corresponds to R values of 0.256, 0.259, 0.265,
and 0.281, and the errors given by Eq. 33 are 0.105, 0.210,
0.417, and 1.028 %, respectively. For both smaller α and
stronger retention, the errors are smaller, justifying the ap-
proach. The savings in computational time are considerable

for calculations related to programmed cross flow rate
conditions.

The local nonequilibrium plate height is given by [29]

Hneq z j; t j
� � ¼ w2

D
χ t j
� �

v z j; t j
� �� � ð34Þ

where χ is the nonequilibrium parameter that is a function of
λ0, and therefore of time, and of α when the steric exclusion
correction is included [26, 27, 30]. The local contribution to
zone variance onmigrating a small distance δz is then given by

δσz; j
2 ¼ Hneq z j; t j

� �
δz ¼ w2

D
χ t j
� �

v z j; t j
� �� �

δz ð35Þ

Local zone velocity is given by

δz
δt

¼ R t j
� �

v z j; t j
� �� � ð36Þ

and therefore

δσz; j
2 ¼ w2

D
χ t j
� �

R t j
� �

v z j; t j
� �� �2

δt ð37Þ

This can be converted to an increment in variance of reten-
tion time by dividing by the square of the local zone velocity
R(tj)

2〈v(zj, tj)〉
2

δσt; j
2 ¼ w2

D
χ t j
� �

R t j
� � δt ð38Þ

Summing the contributions to variance in retention time
according to Eq. 32 shows that

σt;i
2 ¼ w2

DR tið Þ2
Xi

j¼1

χ t j
� �

R t j
� �

δt ð39Þ

Suppose that tr = (i + f)δt, where f is the final fraction of a
time interval δt required for the center of mass to reach the
channel outlet, then

σt;neq
2 ¼ w2δt

D R trð Þ2
Xiþ f

j¼1

χ t j
� �

R t j
� � ð40Þ

The calculation of elution time and variance in elution
time due to nonequilibrium bandspreading may therefore
be calculated by summations over small time intervals δt
without specifying a channel breadth profile. They are in
fact independent of the channel breadth profile. In prac-
tice, the summation represented by Eq. 40 is carried out
using Simpson’s 1/3 rule, taking values of the product of
χ and R at j and j + 0.5 intervals. Again, the improvement
over a simple interval summation is generally modest for
small time intervals.
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Multipath bandspreading

It was explained in part I [25] how slight unevenness in
the membrane surface and small variations in membrane
permeability must contribute to bandspreading. Different
fractions of the sample follow different paths along the
channel having different mean fluid velocities and dif-
ferent mean transverse fluid velocities through the mem-
brane. The fractions consequently reach the channel out-
let at slightly different times, thereby contributing to
bandspreading. Under isocratic conditions, this multipath
contribution is not expected to be a strong function of
retention ratio as the relative variation in mean fluid
velocity and relative variation in retention ratio should
be similar for all components. There should not be a
significant change in the multipath effect with change
of cross flow rate as the fractions of a component fol-
lowing different paths should show the same relative
change in R. It is possible that the membrane may be
forced into better contact with the supporting frit at high
cross flow rate, but this supposes that the membrane
draws away from the frit at a low cross flow rate,
which would result in very poor efficiency or even split
peaks. This possibility will therefore be discounted, and
it will be assumed that the membrane remains in good
contact with the frit at all cross flow rates.

It was also pointed out in part I [25] that the scale of the
multipath effect in As-FlFFF as well as its two-dimensional
nature do not allow lateral diffusional exchange of material
between streams, as may occur in packed bed chromatograph-
ic columns [39]. The flow pattern along the channel can be
assumed to be fixed and independent of the channel and cross
flow rates. The multipath bandspreading is therefore the result
of the distribution of sample across several independent
streams having slightly different mean channel flow velocities
and slightly different mean cross flow velocities, the relative
differences between streams remaining constant under pro-
grammed conditions. To model the contribution to multipath
bandspreading under programmed conditions, it will also be
assumed that the relative differences in mean velocities and
membrane permeabilities between different paths are fairly
constant along the channel length. It is not necessary to make
this assumption for isocratic conditions.

Consider a path for which the elution time for a
monodisperse material is one standard deviation σt,m
lower than the mean elution time tr. The difference is
due to the fact that, for this elution path, the increments
δVj + 1 are attained in slightly less time than would ma-
terial eluting at the mean migration rate from the same
Vj and tj, in time intervals of (1 − ε)δt, where ε is a
small positive correction factor. Therefore, δVj + 1 is cal-
culated using Eq. 24 or its equivalent, but the cumula-
tive elution time is incremented by (1 − ε)δt.

For the special case of isocratic elution, this gives the sim-
ple result

tr−σt;m ¼ 1−εð Þtr ð41Þ

For isocratic elution, the limiting multipath plate numberNm

has been defined as (tr/σt,m)
2 [25], and it follows from Eq. 41

that ε ¼ 1=
ffiffiffiffiffiffiffi
Nm

p
. ForNm = 3000, for example, ε = 0.0183. It is

now apparent that σt,m may be obtained for any sample com-
ponent eluting under programmed conditions by first solving
for tr and then for tr − σt,m by applying the multiplicative factor
(1 − ε) = (1 −Nm

− 0.5) to successive δt, with δVj + 1 as calculated
using Eq. 24 or its equivalent. The value for Nm depends on
each assembled channel and membrane and can be determined
experimentally as explained in the ESM of part I [25]. It may be
found in practice that Nm varies to some extent with particle
size, molecular weight, or flow conditions. Such variation could
be taken into account, but for the purposes of this work,Nmwill
be assumed to be constant.

Other contributions to bandspreading

Other contributions are relatively minor or can be made minor
by suitable selection of conditions, as in isocratic operation.
These are discussed in the ESM.

Comparison of programmed and isocratic elution

Typical parameters of channel thickness w = 0.025 cm, channel
volume VC

0 = 0.75 mL, carrier fluid viscosity η = 0.01 P, and
temperature T = 298 K were assumed, together with
Boltzmann constant k = 1.38065 × 10− 23 J/K. A polydisperse
nanoparticle sample was assumed to be initially focused at the
inlet (so that V0 =VC

0). This initial position was also considered
in part I [25], where it was explained that focusing of the sample
at some other position could have been considered, but this
would not have contributed to the discussion. The nanoparticles
were assumed to be spherical so that a simple steric exclusion
correction could be taken into account. To show the influence
of Fd on the outlet polydispersity (see the next section), two sets
of conditions involving exponential decay of cross flow rate
were considered. Condition I corresponds to an initial cross
flow rate ˙V c0 ¼ 2:0mL=min, constant outlet flow rate
˙VL ¼ 0:2mL=min, pre-decay time t1 = 1.0 min, and exponen-
tial time constant τ = 5.0 min. Condition II corresponds to
˙V c0 ¼ 6:0mL=min, ˙VL ¼ 0:6mL=min, and the same time con-
stants. These conditions were selected to obtain almost identical
elution times (see approximate Eq. 16, valid forα < < λ0 < < 1),
and therefore selectivity, but different levels of Fd. In each case,
amultipath bandspreading equivalent to a limiting plate number
Nm of 3000 under isocratic conditions was assumed.
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Figure 1 shows the predicted Fd as a function of d (on a log
scale) for programmed condition I (full black curve). Also
included for comparison are the predicted Fd curves for
isocratic elution at ˙Vc values of 2.0, 1.0, 0.5, and 0.25 mL/
min, with ˙VL held at 0.2 mL/min (full red, green, blue, and
purple curves, respectively). All full curves were calculated
using the equations for R and χR for As-FlFFF taking the
core-channel approximation for steric exclusion as explained
above. (It should be pointed out that the lower limit on particle
size for retention and fractionation is ultimately determined by
the membrane size cutoff. Particles smaller than the cutoff will
not be retained in the channel by the membrane and will be
lost. This aspect is not specifically considered in this work as
the focus is on illustrating the predictions made by the equa-
tions derived to model the system.)

For condition I, a maximum Fd of 1.98 is predicted for d =
0.0094 μm. For d values of 0.001, 0.01, and 0.1 μm, Fd is
predicted to be 0.545, 1.98, and 0.490, respectively. For com-
parison, the dashed curves were calculated using the equations
for conventional FFF in which field-induced transverse veloc-
ity is constant across the channel thickness. These equations
are valid for Sym-FlFFF where the transverse fluid velocity
component is assumed to be constant across the thickness.
These equations are therefore referred to as the Sym-FlFFF
equations in the following discussion. For the programmed
condition I, the Sym-FlFFF equations result in a slightly
higher predicted Fd than the As-FlFFF equations across the
full diameter range. A slightly higher Fd for smaller diameters
(weak retention) is predicted for isocratic conditions. Under
the programmed condition I, the Fd values predicted using the
Sym-FlFFF equations were 34, 14, and 27 % higher at d
values of 0.001, 0.01, and 0.1 μm, respectively, which is quite
significant.

For programmed condition I, the projected steric inversion
diameter di > 1.0 μm, whereas under the different isocratic
conditions, the projected di (where Fd falls to zero) values
are smaller than 1.0 μm and inversely related to ˙V0:5

c (see
Eq. 32 of part I [25], valid for isocratic conditions). The Fd

for isocratic elution may be much higher over some limited
range of d than for programmed conditions, but the range of
diameters eluted in the normal mode is reduced. For example,
isocratic elution at ˙V c of 2.0 mL/min shows no loss of Fd at
low d, a much higher maximum Fd of 11.4 at 0.058 μm, but a
projected di of about 0.28 μm. Isocratic elution at a lower
cross flow rate predicts higher projected di, but considerably
lower Fd for the smaller particle diameters.

The elution times for the larger d are greatly reduced by
the programmed decay of cross flow rate, which is, of
course, one of the objectives of programming. ESM
Figure S2 shows the predicted elution times as functions
of log d for the same set of programmed and isocratic con-
ditions. The maxima in the isocratic curves correspond to
the projected inversion diameters. The differences between
the elution times predicted using the As-FlFFF and Sym-
FlFFF equations are too small to distinguish on the scale of
the time axis, and only a single set of curves is included in
the figure. Relative differences are significant, however.

Figure 2 shows the variation of selectivity Sdwith log d for the
different conditions. In isocratic operation, Sd approaches but
does not quite attain a level of unity and remains fairly constant
until steric effects start to influence elution and Sd begins to fall,
approaching zero at the projected di. The range of d where Sd is
close to unitymoves to higher diameters as ˙V c is reduced, and the
range is also reduced to some degree. In part I [25], an approx-
imate equation for Sd for isocratic operation was presented which
is valid for the range of d where λ0 < < 1 and α < < 1; it is not

Fig. 1 Fractionating power Fd as
a function of d (log scale) for
programmed condition I (black
curves) and isocratic conditions
with ˙Vc values of 2.0, 1.0, 0.5,
and 0.25 mL/min (red, green,
blue, and purple curves, and as
labeled) and ˙VL ¼ 0:2mL=min
in all cases. Full curves calculated
using As-FlFFF equations and
dashed curves using Sym-FlFFF
equations
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valid for the range of d over which Sd rises to the plateau. The
plateau is attained when λ0 falls to about 0.07 in As-FlFFF,
corresponding to R = 0.387 (results for SM were plotted on a
linear scale inM in Fig. S1 of the ESM of part I [25], where this
rise to the plateauwas notmade evident). Under the programmed
condition I, Sd is predicted to rise over the region of d where λ0
decreases toward 0.07 and then to fall steadily over a wide range
of d as ˙V c decays. This shows the desired effect of programmed
decay of cross flow rate on selectivity mentioned in the introduc-
tion and reflects the reduced elution times predicted for the larger
particles. Note that Sd does not rise to the level attained for
isocratic conditions with ˙V c ¼ 2:0mL=min before falling. This
is because the cross flow rate starts to decay at t1 = 1.0 min,
which is very close to the void time of 0.899min. Those particles
for whichλ0 = 0.07 at V̇ c ¼ 2:0mL=min are eluted after the start
of the cross flow decay. In Fig. 2, the full curves were again
predicted using the As-FlFFF equations, and the dashed curves
the Sym-FlFFF equations. Note that the rise of Sd to the plateau
for isocratic operation is not so abrupt for the Sym-FlFFF equa-
tions, and the range of d for each plateau is consequently reduced.
This is also true in the case of programmed operation, but the

solutions for Sym-FlFFF andAs-FlFFF equations converge as V̇c
decays. The differences in predicted Sd are a consequence of the
slightly different dependence of asymmetrical RAs and symmet-
rical RSym on λ0. For FlFFF of spherical nanoparticles where
λ0 ∝ 1/d, it can be shown from Eq. 3 that

Sd ¼ λ0

R
dR
dλ0

ð42Þ

It is also interesting to compare the predicted contributions
to bandspreading as functions of d for the different conditions.
Figure 3 shows the nonequilibrium contribution σt,neq as a

function of log d for programmed condition I and the same
isocratic conditions. In the case of isocratic elution, the non-
equilibrium contribution rises to a relatively constant level
before decreasing as the projected steric inversion is
approached. This is as expected and is consistent with the
approximate Eq. 36 of part I [25]. For the assumptions made
here, this may be written as

σt;neq ¼ V0
C

V̇ c

2

3
ln

V̇ c

V̇L

þ 1

 ! !0:5

1þ f 2
� �−1:5 ð43Þ

in which f is the ratio of d to the projected di. Consistent with
Eq. 43, the level of each plateau in σt,neq increases with reduc-
tion of ˙V c. The final factor in Eq. 43 involving f accounts for
the roll-off in σt,neq from each plateau toward di and beyond.
In Fig. 3, the full curves were predicted using the equations for
As-FlFFF and the dashed curves using the Sym-FlFFF equa-
tions. The As-FlFFF equations predict a steeper climb and
some overshoot before reaching the plateau in σt,neq, while
the Sym-FlFFF equations predict a more gradual rise. There
is therefore a significant difference in behavior in the lower
region of the plateau. Under programmed condition I, σt,neq
increases with d for the range plotted, and the Sym-FlFFF
equations predict a considerably lower contribution to
bandspreading than the As-FlFFF equations. For example,
the Sym-FlFFF equations predict 6.6, 12, 20, and 21 % lower
σt,neq at d values of 0.001, 0.01, 0.1, and 1.0 μm, respectively.

Figure 4 shows the multipath contributions σt,m as func-
tions of log d. Under isocratic conditions, σt,m is seen to in-
crease with d, rising to some maximum at the steric inversion
point before falling again. Of course, under isocratic condi-
tions it is assumed that σt;m ¼ tr=

ffiffiffiffiffiffiffi
Nm

p
and in the region

before inversion, and σt,m is expected to increase with tr and

Fig. 2 Selectivity Sd as a function
of d (log scale) for programmed
condition I (black curves) and
isocratic conditions as given in
the caption to Fig. 1. Full curves
calculated using As-FlFFF
equations and dashed curves
using Sym-FlFFF equations
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therefore with ˙V c. Programmed condition I is predicted to give
a relatively small contribution to σt,m across the full range of d
plotted; multipath bandspreading is therefore suppressed un-
der programmed conditions. Equation 8 may be modified to
take into account the (1 − ε) factor for δt, as shown in ESM
Eq. S2. This may then be solved for the case of exponential
decay of ˙Vc, constant ˙VL, and the R ≈ 6λ0 approximation to
obtain an approximate solution for tr − σt,m in the form of
Eq. 16. The result, valid for α < < λ0 < < 1, is shown in ESM
Eq. S3. It is also pointed out in the ESM that a crude estimate
of σt,m ≈ τ ln(1/(1 − ε)) is obtained when Dτ/w2→ 0, and α
remains negligible. For condition I, approximate σt,m values
of 0.100 and 0.093 min are obtained using Eqs. 16 and S3 for
d values of 0.01 and 0.1 μm, respectively. These compare with

the values obtained numerically, and as plotted in Fig. 4, of 0.092
and 0.122 min, respectively, and the σt,m ≈ τ ln(1/(1 − ε)) esti-
mate of 0.092min.As expected, there is no observable difference
between predictions of σt,m based on the As-FlFFF and Sym-
FlFFF equations on the scale of the σt,m axis, and only one set of
curves is included in the figure. Relative differences are signifi-
cant at low retention, however. Finally, Fig. 5 shows the results of
summing the contributions to variance due to nonequilibrium
and multipath effects for the different conditions. Again, full
curves correspond to As-FlFFF equations and dashed curves to
Sym-FlFFF equations.

The results for programmed condition II are shown in ESM
Figs. S3 to S8, and they are also briefly discussed in the ESM.
In these figures, the programmed condition II is compared

Fig. 4 Predicted multipath
contribution to bandspreading
σt,m as a function of d (log scale)
for programmed condition I
(black curve) and isocratic
conditions as given in the caption
to Fig. 1. The curves calculated
using As-FlFFF and Sym-FlFFF
equations are indistinguishable on
the scale of the σt,m axis, as
mentioned in the text

Fig. 3 Predicted nonequilibrium
contribution to bandspreading
σt,neq as a function of d (log scale)
for programmed condition I
(black curves) and isocratic
conditions as given in the caption
to Fig. 1. Full curves calculated
using equations for As-FlFFF and
dashed curves using Sym-FlFFF
equations
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with isocratic elution with ˙Vc values of 6.0, 3.0, 1.5, and
0.75 mL/min and ˙VL ¼ 0:6mL=min. The maximum Fd for
condition II is predicted to be 5.81, almost three times higher
than for condition I, and at the same particle diameter
d = 0.0094 μm as for condition I. For d values of 0.001,
0.01, and 0.1 μm, Fd values were predicted to be 1.43, 5.80,
and 1.61, respectively. At this higher level of Fd, the Sym-
FlFFF equations for predicting Fd do not deviate so strongly
from the As-FlFFF equations. The Sym-FlFFF equations pre-
dict Fd values just 18, 1, and 3 % higher than the As-FlFFF
equations at d values of 0.001, 0.01, and 0.1 μm, respectively.
While the predicted Fd is almost three times higher for pro-
grammed condition II than for condition I, the elution times
are very similar when the steric perturbation remains small.
The elution times for conditions I and II are within 5 % of one
another for d between 0.002 and 0.4 μm. This is as expected
and is consistent with Eq. 16. For smaller particles, the differ-
ence is greater because initial void times differ, and for larger
particles, the difference increases because of the lower
projected di for condition II. The elution times for the isocratic
conditions shown in Figs. S2 and S4 (see ESM) are also very
similar whenα < < λ0. This is because both the void times and
the values of λ0 for the conditions shown in ESM Fig. S4 are
one third of those for the respective conditions of ESM
Fig. S2. Their influence on tr therefore approximately cancels
when α < < λ0.

Relation of fractionating power to channel outlet
polydispersity

The method of predicting outlet polydispersity for any given set
of experimental conditions was explained in part I [25]. It is

based on the approach taken by Schure [40]. A log-normal num-
ber distribution in particle diameter was assumed for the sample

with number average diameter dn of 0.01 μm and standard de-
viation σd of 0.0075 μm. The normalized number distribution is
given by

N dð Þ ¼ 1ffiffiffiffiffiffi
2π

p
dσ

exp −
lnd−μð Þ2
2σ2

 !
ð44Þ

in which

μ ¼ ln
�dn

1þ σd=�dn
� �2	 
0:5

0
B@

1
CA ð45Þ

and

σ ¼ ln 1þ σd=�dn
� �2	 
	 
0:5

ð46Þ

For each of the programmed conditions I and II described
earlier, a retention time–particle diameter matrix was set up
with 10,000 equal intervals in diameter up to 0.5 μm (so that
δd = 5 × 10− 5 μm) across the horizontal and 1740 equal inter-
vals in time up to 21.75 min (δt = 0.0125 min) in the vertical
direction. For each discrete d, a Gaussian elution curve was
assumed with mean elution time given by summing contribu-
tions to channel volume given by Eq. 28 until the outlet is
reached and standard deviation in elution time calculated by
summing contributions to variance due to nonequilibrium and
multipath contributions. The Gaussian was weighted by the
diameter number distribution function and put into the respec-
tive column of the matrix. The number distribution in particle

Fig. 5 Predicted σt, calculated by
summing the contributions to
variance due to nonequilibrium
andmultipath effects, as functions
of d (log scale) for programmed
condition I (black curves) and
isocratic conditions as given in
the caption to Fig. 1. Full curves
calculated using As-FlFFF
equations and dashed curves
using Sym-FlFFF equations
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size eluting at any discrete time is then given by the values
across the row corresponding to that time.

Figure 6 shows the predicted outlet number distributions in
particle diameter at elution times of 2, 4, 6, 8, 10, and 12 min
for the fractionation of the log-normal sample (full black
curves) under programmed condition I as determined using
the time–diameter matrix. The normalized log-normal distri-
bution assumed for the sample is also shown as a dash-dotted

blue curve, referring to the right-hand axis. Also included are
what Schure [40] referred to as the predicted apparent number
distributions calculated as Gaussians with standard deviations
in particle diameter given by

σd;app ¼ σt

dtr=dd
¼ d

4Fd
ð47Þ

Fig. 6 Predicted outlet particle diameter number distributions at 2, 4, 6,
8, 10, and 12 min for programmed condition I for a sample having a log-
normal number distribution in particle diameter with �dn ¼ 0:01 μm and
σd = 0.0075 μm. Nonequilibrium bandspreading and multipath
bandspreading consistent with a limiting overall system efficiency of
3000 plates under isocratic conditions were taken into account. Full black

curves correspond to data in respective rows of the tr–d matrix. Dashed
red curves correspond to Gaussians with mean d corresponding to mono-
disperse d predicted to elute at respective tr and σd corresponding to
apparent σd,app calculated using Eq. 47. Dash-dotted blue curve shows
the sample particle diameter number distribution referring to the right-
hand axis

Fig. 7 Predicted Fd (full curves)
and Sd (dashed curves, right-hand
axis) as functions of d (log scale)
for programmed conditions I and
II (red and black curves,
respectively)
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with d corresponding to the monodisperse particle diameters
predicted to elute at mean elution times of 2, 4, 6, 8, 10, and
12 min. The latter are plotted as dashed red curves.

There is fairly good agreement between the two sets of
distribution curves for all but the lowest elution time of
2 min. The poorer agreement at 2 min is attributable to two
factors: (1) the Fd is low (0.917) at this time so that the relative
polydispersity is high, and (2) the diameter d coincides with
the steep front of the sample size distribution. The number
distribution obtained from the row of the time–diameter ma-
trix corresponding to 2 min will therefore be correctly skewed
toward the sample distribution maximum. The predicted ap-
parent number distribution (dashed red curve) is a

symmetrical Gaussian and cannot account for this effect.
This effect leads to a discrepancy of almost 14 % between
the monodisperse particle diameter predicted to elute at a

mean tr of 2 min and the dn predicted at an elution time of
2 min. The approximation to σd as calculated using Eq. 47 is
also 8 % in error. The skewing of the outlet distributions at 8,
10, and 12 min is also apparent in Fig. 6, although consequent
errors are far less significant. Numerical data describing the
outlet distributions and discrepancies between the approaches
are listed in ESM Table S2.

The same exercise was carried out for programmed
condition II. Figure 7 shows the predicted Fd (full
curves, left axis) and Sd (dashed curves, right axis) for

Fig. 8 Predicted outlet particle
diameter number distributions at
2, 4, 6, 8, 10, and 12 min for
programmed condition II for the
same log-normal sample
considered for Fig. 6. Remaining
details correspond to the caption
for Fig. 6

Fig. 9 Predicted outlet number
polydispersities σd=�dn as
functions of tr for programmed
conditions I and II. Full black
curves calculated from data in
rows of tr–dmatrices. Dashed red
curves correspond to 1/4Fd. The
upper pair of curves correspond
to condition I and the lower pair
to condition II. Predicted particle
elution curves for conditions I and
II are shown as dash-dotted green
and dashed blue curves,
respectively
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conditions I and II (red and black curves, respectively)
as functions of log(d). The Fdfor condition II is predict-
ed to rise to a maximum of 5.81 at d = 0.0094 μm as
compared to a maximum of 1.98 at the same particle
size for condition I, as mentioned earlier. The Sd curves
for the two conditions are very close for d between
approximately 0.002 and 0.2 μm, as expected. In the
case of condition I, Sd decreases below 0.002 μm,
whereas for condition II Sd continues to increase until
d falls to about 0.0008 μm, a result of the stronger
retention of these smaller particles at the higher V̇c0 of
condition II. Figure 8 shows the predicted outlet distri-
bution curves at 2, 4, 6, 8, 10, and 12 min for condition
II. As in Fig. 6, the distributions obtained using the
time–diameter matrix approach are shown as full black
curves and the predicted apparent Gaussian number dis-
tributions as dashed red curves. The outlet distributions
in Fig. 8 are much narrower than those in Fig. 6 due to
the higher Fd. Also, the agreement between the sets of
curves in Fig. 8 is much better than in Fig. 6. The
numerical data describing the outlet distributions of
Fig. 8 are listed in ESM Table S3. Again, the greatest
discrepancy between the approaches occurs at tr = 2 min,
but at the higher F

d
of condition II, the monodisperse d

eluting at mean tr of 2 min differs only 1.5 % from dn,
and σd,app differs only 0.5 % from σd.

Finally, Fig. 9 shows plots of outlet polydispersities σd=dn
as functions of elution time, calculated using the data in
rows of the respective tr–d matrices for conditions I and II
(full black curves). Plots of 1/4Fd for the two programmed
conditions are shown as dashed red curves. Also included
are the predicted normalized particle elution curves for con-
ditions I and II shown as the dash-dotted green and dashed
blue curves, respectively. These were obtained by summing
the numbers of particles eluted across rows of the tr–d ma-
trices corresponding to the discrete elution times. These elu-
tion curves do not represent predicted fractograms of detec-
tor response versus time. To predict such a fractogram, con-
tributions for each discrete particle size would have to be
adjusted by the detector response function before summation
at each discrete elution time. The particle elution curve for
condition I is only very slightly broader than that for condi-
tion II. This is because the breadth is dominated by the
assumed polydispersity of the sample. The values for
1/4Fd may be seen to serve very well as estimated upper
bounds to outlet polydispersity for the two programmed
conditions. For condition I, the 1/4Fd approximation slightly
underestimates outlet polydispersity on the tail of the distri-
bution, but for condition II the agreement is excellent across
the full size distribution. Some discrepancy in the 1/4Fd

approximation may be expected at the extremities of the
distribution where the predicted Fd are lower. The effects
described earlier associated with the skew of outlet

distributions predicted by the tr–d matrix are exacerbated
at low Fd on the front and tail of the sample distribution.

Conclusions

The theory has been presented for predicting tr and Fϕ as
functions of selective parameter ϕ for As-FlFFF where the
cross flow rate as well as the inlet and outlet flow rates are
allowed to vary with time. An estimation for the contribution
to multipath bandspreading under programmed conditions
was included where it was assumed that the multipath effect
did not vary strongly along the channel length. It was shown
that, under exponentially programmed decay of cross flow
rate and constant outlet flow rate, the residual outlet polydis-
persity is very well approximated by 1/4Fϕ. This confirms the
importance of basing the optimization of programmed flow
rate conditions on the predicted fractionating power. This is
especially true when online MALS or DLS detection is used
to extract particle size or molecular weight information from
the eluent. The use of online MALS or DLS detection in
combination with guidance in the selection of programmed
conditions firmly based on fundamental FFF theory is recom-
mended. The quantitative information provided by light scat-
tering can correct for small perturbations from ideal FFF the-
ory and uncertainties in instrumental parameters (channel
thickness, channel volume, carrier fluid temperature and vis-
cosity, etc.), while the maximization of fractionating power
ensures that the light scattering information is obtained under
optimum conditions. A variety of cross flow decay programs
have been employed for sample analyses. It will now be pos-
sible to examine the utility of these different programs by a
comparison of the predicted Fϕ as functions of ϕ.
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