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Abstract Counterfeit medicines are a global threat to public
health. High amounts enter the European market, which is
why characterization of these products is a very important
issue. In this study, a high-performance liquid chromatogra-
phy—photodiode array (HPLC-PDA) and high-performance
liquid chromatography—mass spectrometry (HPLC-MS)
method were developed for the analysis of genuine Viagra®,
generic products of Viagra®, and counterfeit samples in order
to obtain different types of fingerprints. These data were in-
cluded in the chemometric data analysis, aiming to test wheth-
er PDA and MS are complementary detection techniques. The
MS data comprise both MS1 and MS2 fingerprints; the PDA
data consist of fingerprints measured at three different wave-
lengths, i.e., 254, 270, and 290 nm, and all possible combina-
tions of these wavelengths. First, it was verified if both groups
of fingerprints can discriminate between genuine, generic, and
counterfeit medicines separately; next, it was studied if the
obtained results could be ameliorated by combining both
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fingerprint types. This data analysis showed that MS1 does
not provide suitable classification models since several genu-
ines and generics are classified as counterfeits and vice versa.
However, when analyzing the MS1_MS?2 data in combination
with partial least squares-discriminant analysis (PLS-DA), a
perfect discrimination was obtained. When only using data
measured at 254 nm, good classification models can be ob-
tained by & nearest neighbors (kNN) and soft independent
modelling of class analogy (SIMCA), which might be inter-
esting for the characterization of counterfeit drugs in develop-
ing countries. However, in general, the combination of PDA
and MS data (254 nm_MS]1) is preferred due to less classifi-
cation errors between the genuines/generics and counterfeits
compared to PDA and MS data separately.

Keywords Counterfeit medicines - Viagra® -
Chemometrics - High-performance liquid chromatography -
Photodiode array detection - Mass spectrometry

Introduction

Counterfeit medicines pose a huge threat to public health [1].
The World Health Organization states that a counterfeit med-
icine is “one which is deliberately and fraudulently
mislabelled with respect to identity and/or source.
Counterfeiting can apply to both branded and generic products
and counterfeit products may include products with the correct
ingredients or with the wrong ingredients, without active in-
gredients, with insufficient active ingredients or with fake
packaging” [2]. As a matter of fact, counterfeit medicines
can range from inactive and useless formulations to harmful
and toxic products [1].

Medicine counterfeiting not only exists in developing
countries; industrialized countries, such as European

@ Springer


http://dx.doi.org/10.1007/s00216-015-9275-0
http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-015-9275-0&domain=pdf

1644

D. Custers et al.

countries, the USA, and Japan, are exposed to this health
threat as well [1]. It is estimated that about 1 % of the total
medicines market of industrialized countries consists of coun-
terfeit medicines, while in African countries and parts of Asia
and Latin America, about 30 % of the medicine market is
covered by counterfeit pharmaceuticals [1]. In spite of effec-
tive regulatory systems and market control, the quantity of
counterfeit medicines seized in Europe has increased expo-
nentially in recent years [3]. A total of 148 cases of counterfeit
medicines was registered by EU customs in 2005; by 2013,
this number increased up to 1175 cases, peaking in 2009 with
3368 registered cases [4]. This increase is most likely due to
the extension of the Internet and more thorough border con-
trols by EU customs [5, 6]. The types of medicines which are
sold most as counterfeit in industrialized countries are com-
monly referred to as “life style drugs” and comprise phospho-
diesterase type 5 (PDE-5) inhibitors for the treatment of erec-
tile dysfunction, weight loss products, anabolic hormones, and
products treating hair loss [3, 7]. These forged pharmaceuti-
cals are often manufactured by uncontrolled or street labora-
tories [8], and therefore their safety, efficacy, and quality can-
not be guaranteed [2].

Despite all efforts to tackle the distribution of counterfeit
medicines [3, 9], high amounts keep entering the European
market [4]. Moreover, the sale of counterfeit medicines is not
only restricted to the internet since there is a significant risk of
these forged products to enter the legal medicine supply chain.
For instance, in the UK, nine pharmaceutical recalls, due to
counterfeit medicines which had reached official pharmacies,
were reported [9]. This clearly shows the need for analytical
techniques able to detect these counterfeit pharmaceuticals
and distinguish them from genuine medicines. Numerous an-
alytical techniques have already been described in literature;
they can be divided in two main groups: chromatographic and
spectroscopic techniques [5]. Despite the fact that spectro-
scopic techniques are often preferred due to their short analy-
sis time and often non-destructive character, chromatographic
techniques have proven to be useful as well [10].

Liquid chromatography coupled to UV detection (LC-UV)
is a valuable tool in the detection and characterization of coun-
terfeit medicines due to its low cost and ease of use. Its im-
portance is demonstrated by the numerous methods described
for the separation and quantification of PDE-5 inhibitors and
detection of analogues [11-17]. However, LC-UV has also
widely been used in the detection and characterization of other
counterfeited pharmaceuticals such as anti-malaria medicines,
antibiotics, and weight loss products [10]. Liquid chromatog-
raphy equipped with mass spectrometry (LC-MS) is often
preferred when screening counterfeit medicines since it allows
target analysis, identification, and structural elucidation.
Owing to LC-MS, a number of non-registered analogues of
the PDE-5 inhibitors have been detected and identified (often
in combination with NMR) [10]. This method has also proven
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to be useful as a screening method for the PDE-5 inhibitors
and their analogues [14, 17-21]. In addition, LC-MS has also
been used in a quantitative way by Lebel et al. [22]. An over-
view of available analytical techniques in the field of pharma-
ceutical counterfeiting, including the identification of un-
known analogues, is provided in the review by Deconinck
etal. [10].

In this study, a high-performance liquid chromatography—
photodiode array (HPLC-PDA) and a high-performance lig-
uid chromatography—mass spectrometry (HPLC-MS) method
were developed for the analysis of genuine Viagra®, generic
products of Viagra®, and counterfeit samples. The difference
between these two methods and the UV/MS methods men-
tioned earlier is that these newly developed methods do not
aim at identifying and quantifying active pharmaceutical in-
gredients (APIs) and/or their analogues but to obtain finger-
prints which contain as much information as possible from
each sample. To do so, both methods were developed in a
way to detect the present impurities and secondary compo-
nents. Chromatographic fingerprinting has already proven its
usefulness in the field of pharmacognosy for the identification
and quality control of plants. A fingerprint is a characteristic
profile which reveals the complex composition of a sample; it
generates a holistic view of a sample rather than focusing on
specific and predefined characteristics. Most of the literature
dealing with the issue of characterizing counterfeit medicines
focuses on the identification and quantification of the present
APIs. This strategy has the disadvantage that a product can be
evaluated as relatively safe based on the present APIs and
dosage while it, in actual fact, can contain potential toxic
secondary components such as impurities and residual sol-
vents [23]. Therefore, the fingerprint approach might be more
interesting for the detection (and possibly identification) of
these secondary components in counterfeit medicines as well,
instead of focussing on active ingredients. Since the finger-
print approach is used in this study, high amounts of data are
generated, which requires the need for chemometric data anal-
ysis (both explorative and supervised pattern recognition tech-
niques). It will be tested whether a distinction can be obtained
between genuine, generic, and counterfeit medicines. For this
purpose, the influence of potential present APIs will be elim-
inated, thereby ensuring that the aimed discrimination will
solely be based on the detected secondary components and
impurities.

First, both types of fingerprints (PDA and MS fingerprints)
will be tested separately for their discriminating abilities.
Secondly, the potential complimentary character of both de-
tection techniques will be explored. For this second aim, the
discriminating abilities of PDA and MS will be compared in
order to investigate which detection technique is most suited
for the desired discrimination. Moreover, it will also be veri-
fied whether the combination of fingerprints from both detec-
tors will result in an improvement of the acquired diagnostic
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models. To our knowledge, this is the first paper that explores
which detection technique (or perhaps combination of detec-
tion techniques) is most suited to obtain the desired discrimi-
nation. This study will allow to determine which strategy is
most successful in the detection and distinction of counterfeit
medicines, which could be useful for other laboratories in-
volved in the detection of counterfeit medicines.

Materials and methods
Samples

A sample set was tested consisting of 13 genuine Viagra®
samples (Pfizer), 33 generic products of Viagra® (Pfizer,
Apotex, Mylan, Sandoz, Eurogenerics, and Teva), and 97
counterfeit samples.

Genuine Viagra® samples and generic products were pur-
chased in a local pharmacy. All three dosages (25, 50, and
100 mg sildenafil) were included. Inspection of the batch
numbers, for both genuine and all generic products, revealed
that all samples originate from a different production batch.
All counterfeit samples were donated by the Federal Agency
for Medicines and Health Products (FAMHP) in Belgium. Not
all counterfeit samples mentioned a dosage on the package;
however, in case of mentioning, it was stated that the samples
contain 100 mg sildenafil. All samples were delivered in blis-
ters or closed jars and stored, protected from light, at ambient
temperature.

Standards and reagents

Ethanol and methanol (HPLC grade) were purchased from
Biosolve (Valkenswaard, The Netherlands). Formic acid was
purchased from VWR Prolabo (Fontenay-Sous-Bois, France).
Ammonium formate was procured from Sigma-Aldrich (St.
Louis, USA). A sildenafil citrate reference standard was kind-
ly donated by Pfizer (New York City, USA). The water, used
during this study, was produced by a Milli-Q Gradient A10
system (Millipore, Billerica, USA) and will be referred to as
“water” in the next paragraphs.

An ammonium formate buffer (0.020 M) pH=3 was pre-
pared which served as aqueous phase during the HPLC-PDA
analysis.

A reference solution of sildenafil citrate (0.1 mg mL™") in
ethanol/water (50/50 v/v%) was prepared and analyzed under
the same experimental conditions as the samples in order to
determine the specific retention time.

Sample preparation

One tablet from each sample was crushed and homogenized
using a pestle and mortar; capsules were opened and

homogenized as well. Then, 30 mg of this powder mixture
(Sartorius Analytic AC 210S, Goettingen, Germany) was
brought to suspension in 10 mL of a mixture of ethanol/
water (50/50 v/v%) and sonicated (M8800, Branson,
Danbury, USA) for 15 min. Afterwards, the samples were
centrifuged (Heraeus Multifuge 3SR, Thermo Scientific,
Waltham, USA) at 894 g during 10 min.

HPLC-PDA: equipment and chromatographic conditions

The samples were analyzed using a HPLC system (Waters
2695 Separations Module, Milford, USA) coupled to a PDA
detector (Waters 2998 Photodiode Array Detector, Milford,
USA). The analysis was performed on an Alltima C18 column
(250 mm x 3 mm; 5 pwm particle size) (Grace, Columbia,
USA). The mobile phase consisted of a gradient with an am-
monium formate buffer (0.020 M) pH=3 and methanol. First,
a ratio of 90 % buffer and 10 % methanol was held for 2 min.
During the next 5 min, the ratio changed to 50 % buffer and
50 % methanol. This ratio was kept for 7 min. The next 6 min,
the gradient altered to 10 % buffer and 90 % methanol, which
was held for 5 min. During the last 5 min, the gradient
returned to its starting condition, making a total run of
30 min for each sample. This gradient was run at a flow rate
of 0.5 mL min™". Five microliters of each sample was injected
at a temperature of 15 °C, while the column temperature was
set at 30 °C. PDA signals were measured in the range of 210 to
400 nm. Data acquisition was achieved using the Empower
software version 3 (Waters, Milford, USA).

HPLC-MS: equipment and chromatographic conditions

All the samples were analyzed a second time using a HPLC
(Dionex Ultimate 3000 UHPLC™ focussed, Thermo
Scientific, Waltham, USA) equipped with a MS system
(Bruker, Billerica, USA). For these analyses the same
Alltima C18 column (Grace) was used. Although the mobile
phase gradient (used in the HPLC-PDA method) was trans-
ferred entirely, the aqueous and organic phases were slightly
altered. The aqueous phase consisted of water, the organic
phase of methanol. Formic acid was added to both phases in
a concentration of 0.01 % (v/v). The other HPLC parameters
(injection and column temperatures, injection volume, flow
rate, and run time) remained the same.

The mass spectrometer used for this analysis was an
AmaZon Speed ETD iontrap (Bruker). Ionization was obtain-
ed by electrospray which was operated in positive mode with a
spray voltage of 4.5 kV and an end plate voltage of 500 V. The
nebulizer was set to 3 bar. The desolvation gas temperature
was heated to 300 °C, and the flow rate was fixed at
12 L min'. The mass spectrometer was operated in Auto
MS? mode in the mass range of 50 to 1200 m/z and total ion
chromatograms (TIC) were collected. For the selection of MS/
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MS precursors, the most intense ions were isolated above the
absolute intensity of 2500 and 5 % relative intensity threshold.
The ion charge control was set to 200.000 with a maximum
accumulation time of 200 ms. Collision-induced dissociation
was performed with helium as collision gas. The target mass
was set to 475 m/z, which is the mass of the sildenafil base,
with a fragmentation amplitude of 100 % using SmartFrag™
Enhanced for amplitude ramping (75-150 %). The
SmartFrag™ function enables the system to determine the
optimal fragmentation voltage automatically depending on
the stability of the precursors. Fragmentation time was set to
20 ms. After analyzing the samples, it was observed that the
detection of impurities was not optimal due to the high quan-
tities in which sildenafil is present and the fact that relative
intensities are recorded. Signals due to impurities were hardly
visible on the acquired fingerprints, which is a prerequisite
when analyzing fingerprints by chemometrics. Furthermore,
it was also perceived that almost all impurities elute before
sildenafil. As a consequence, the mass spectrometer was pro-
grammed to detect the first 17 min only, despite the fact that
one run lasts 30 min. In that way, sildenafil, which has a
retention time of 17.7 min, was not detected, resulting in
higher relative intensities for the present impurities.

Chemometric approaches

The purpose of the HPLC-PDA and HPLC-MS analyses was
to obtain as much information as possible about all samples.
Therefore, it was chosen to include both MS1 and MS2 fin-
gerprints in the data analysis. The MS1 fingerprints are the
TIC profiles (relative intensity in function of retention time).
The MS2 fingerprints are a visualization of the fragments of
precursors detected in MS1. All acquired fingerprints were
surveyed at different UV wavelengths, including less specific
wavelengths such as 210 and 230 nm. Furthermore, a review
of'the literature [17, 24-35] was performed to assist the choice
of wavelengths to be included in the data analysis.
Surprisingly, the best fingerprints were acquired at wave-
lengths 254, 270, and 290 nm in terms of the largest number
of peaks and concomitant intensities. As a matter of fact, a
lower number of peaks was observed at 210 and 230 nm and
the peaks, visible at both wavelengths, showed higher inten-
sity at 254, 270, and 290 nm. Therefore, it was decided to
include these three wavelengths in the chemometric analysis.

Data pre-processing

During the collection of chromatograms, peaks can shift along
the elution time axis due to column aging, instability of the
instrument, or variance in mobile phase composition [36].
Despite the taken precautions to reduce peak shifts as much
as possible, i.e., one batch of mobile phase and all samples
analyzed on the same column in one series, the acquired
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chromatograms had to be aligned. Alignment of chromato-
grams is considered to be a critical step prior to the application
of chemometric techniques [37]. For this purpose, correlation
optimized warping (COW) was used.

COW is a technique which performs a fragment-wise
stretching and compressing of the time axis in order to align
chromatographic profiles. It uses the correlation coefficient as
a similarity measure of the involved fingerprints [38]. First, a
target profile (7) is selected with which the other profiles are
aligned. The target profile is the one that is characterized by
the highest mean correlation coefficient among all chromato-
grams [37]. Both the target profile and the profiles to be
aligned are divided into a number of sections A, each contain-
ing approximately the same number of sampling points. Each
section may be warped to a smaller or greater length by linear
interpolation. However, only a finite number of possible
warping magnitudes can be explored for each section [38].

All sections are aligned individually, starting at the end
node and working backwards to the first section of the profile.
Finding the optimal overall alignment is achieved by usage of
dynamic programming, which explores all possible warping
magnitudes for each section. The quality of alignment is de-
termined by calculating the correlation coefficient between
section 7 after alignment and the corresponding section of
the target profile. During the dynamic programming, all sub-
optimal combinations of warping are discarded, retaining only
the optimal warping combination. This optimal combination
is characterized by the largest value of the summed correlation
coefficients [38, 39]. More detailed information about COW
can be found in refs. [38, 39].

Exploratory analysis of chromatographic
fingerprints—principal component analysis (PCA)

PCA was performed to test whether this technique can visual-
ize a discrimination between genuine, generic, and counterfeit
samples.

PCA is a widely used method that projects high-
dimensional data into a low-dimensional space, which is de-
fined by new latent variables. These latent variables are com-
monly referred to as principal components (PCs) and are lin-
ear combinations of the original (high dimensional) variables.
The first constructed PC represents the highest variance in the
data; the second PC explains the highest residual variance
around the first PC and is therefore, by definition, orthogonal
to the first. The same principle is repeated for PC3 around the
plane defined by PCs 1 and 2, etc. Since data structure can
usually be summarized efficiently by a few PCs, PCA helps in
reducing data dimensionality [40].

PCA results in two matrices: a loading matrix and a score
matrix. The loadings express the contribution of each original
variable to a given PC. The scores represent the projections of
each object (= sample) on the constructed PCs. Therefore,
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they provide information about the (dis)similarities among the
objects [5, 40].

It should be mentioned that the clustering, acquired when
using PCA, is only a visual one. PCA is an unsupervised
projection technique, not a clustering technique. Therefore,
this technique does not explicitly seek for present clusters, it
only aids at visualizing and interpreting data [40].

Selection of a training and test set

In order to validate any model, the data set was split into a
training set and a test set using the Kennard and Stone algo-
rithm. The training set is used to generate the classification
models; the test set is selected to perform an external valida-
tion of the obtained prediction models.

The Kennard and Stone algorithm starts by selecting the
sample which is situated closest to the data mean. This
sample (s;) is assigned to the training set. The second sample,
which is included in the training set (s;), is situated furthest
away from s;. The third sample to be allocated to the training
set (s3) is the one most remote from both s; and s,. This
procedure is repeated until the required number of samples
in the training set is selected. The test set is composed of the
remaining non-assigned samples [41].

Modelling techniques

A number of modelling techniques were applied to test wheth-
er appropriate classification models could be obtained which
also might serve to classify unknown samples. It was chosen
to include partial least squares-discriminant analysis (PLS-
DA), soft independent modelling of class analogy (SIMCA),
and k& nearest neighbors (kNN) since these techniques are the
main techniques found in literature for the discrimination be-
tween genuine and counterfeit samples. Moreover, they are
relatively simple techniques, easy to understand, and are al-
ready applied successfully by our group [5, 42—45].

The genuine samples (Viagra®) are defined as class 1, the
generic samples of Viagra® constitute class 2, and class 3
consists of all the counterfeit samples.

PLS-DA PLS-DA is a supervised technique which aims to
differentiate between groups of samples. The group mem-
bership of samples is indicated by a categorical dependent
variable y. A PLS-DA model is acquired by constructing
so-called PLS factors, which are linear combinations of the
original variables. These PLS factors are constructed in a
way that they represent maximum covariance between the
original variables and response variable y. In order to ob-
tain the best performing PLS-DA model, its complexity,
i.e., number of PLS factors, is optimized using leave-one-
out cross-validation [42, 44, 46].

This technique not only enables the construction of a diag-
nostic model, it also gives insight into the data structure by
exploring the space of the latent variables (PLS factors).

SIMCA SIMCA is a supervised classification technique that
models each class of samples separately by defining a number
of PCs derived from PCA. First, the optimal number of PCs is
determined which is required to describe each training class
individually. This optimal number of PCs is found using a
cross-validation procedure. Next, classification rules are con-
structed by considering two critical values: (1) one for the
Euclidean distances towards the model and (2) the
Mahalanobis distances calculated in the space of scores.
These two critical values define a restricted space around the
samples of one particular class. The position of a new sample
(object) is calculated using the scores and loadings of the
created model. If the object is situated within the restricted
space around a training class, then the object is assigned to
that class [5, 42].

Confidence limits were set at 95 %. Contrary to PLS-
DA, SIMCA is a soft classification method, meaning that a
sample can be assigned to one or more existing classes or
to any [5, 42].

KNN kNN is a fairly simple technique helping to construct
classification models. In this method, the Euclidean dis-
tance between an unknown object and each of the objects
of the training set is calculated. If the training set includes
n samples, then n distances are calculated. Subsequently,
the & nearest objects to the unknown object are selected and
a majority rule is applied, i.e., the object with unknown
label is assigned to the class to which the majority of the
k neighboring objects belongs. The number of nearest
neighbors (k) to be included in the construction of a clas-
sification model has to be optimized [47]. A number of
kNN models are built using a different number of neigh-
bors. The best model is selected based on the cross-
validation error obtained using a tenfold cross-validation
procedure.

Software

All data treatments were performed using Matlab version
8.0.0 (The Mathworks, Natick, USA). The algorithms of
PCA, kNN, and Kennard and Stone were part of the
ChemoAC toolbox (Freeware, ChemoAC Consortium,
Brussels, Belgium, version 4.0). The toolboxes for SIMCA
and PLS-DA were downloaded from the Matlab Central [48,
49]. The COW algorithm was downloaded from http://www.
models.kvl.dk/DTW_COW [50].
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Results and discussion
Data pre-processing

Prior to the chemometric data analysis, all chromatograms
were aligned using COW. This alignment procedure was per-
formed separately for all three included wavelengths (i.e., 254,
270, and 290 nm) and both MS1 and MS2 profiles. The chro-
matograms recorded at the three wavelengths show a large
sildenafil peak. This peak was used as a marker for the align-
ment. Both MS1 and MS2 profiles were aligned without a
marker peak. As an example, Fig. 1 shows the marker peak
of the chromatograms measured at 254 nm, before and after
alignment.

These aligned chromatograms were used as fingerprints.
All PDA fingerprints were cut in order to limit the profile to
the elution time window between 2 and 28 min since other
regions did not contain any useful information. In order to
focus the data analysis on secondary substances and impuri-
ties, the large sildenafil peak was eliminated as well by remov-
ing the section between 20 and 21.5 min. No cutting was
performed on the MS1 and MS2 fingerprints since they were
measured between 0 and 17 min only. Figure 2 shows a num-
ber of exemplary fingerprints.

Prior to data analysis, all five types of fingerprints were
normalized. In addition, both MS1 and MS2 fingerprints were
log10-transformed.

Throughout the data analysis, the measured UV intensities
and relative MS intensities in the fingerprints were used as
explanatory variables; the class numbers (see Table 1) were
incorporated as response variables.

Selection of the test and training set

The selection of the test and training set was performed by the
Kennard and Stone algorithm on one large data set containing
the data from all three wavelengths and both MS1 and MS2.
That way, a number of samples were assigned to the test set.
For each subsequent data analysis, the test set was composed

25

of these respective samples. More details about the used test
and training set can be found in Table 1.

PDA
Single wavelengths

Exploratory analysis When performing a PCA for all three
wavelengths separately, 254 nm generated the best result as
can be seen on the corresponding score plots in Fig. 3. It was
chosen to limit the number of PCs to two since 96.23 % of the
total variance was explained for the data obtained at 254 nm
(PC1=93.22 % and PC2=3.01 %). For the fingerprints mea-
sured at 270 nm, 97.17 % of the total variance was explained
by two PCs (PC1=96.51 % and PC2=0.66 %), and at
290 nm, the percentage of explained variance totals 97.48 %
(PC1=96.86 % and PC2=0.62 %).

The score plot resulting from the data measured at 254 nm
(Fig. 3a) shows one large cluster on the left side of the score
plot, mainly consisting of counterfeit samples. Unfortunately,
a number of genuine samples are part of this cluster. On the
right side, two smaller clusters can be observed; the lower one
contains generic samples and a small number of genuines
only. The upper cluster is composed of four counterfeit sam-
ples and one genuine. Overall, the discrimination obtained at
254 nm is not optimal since a number of genuine samples
cannot be distinguished from the counterfeits. However, this
discrimination is better compared to the results obtained at
270 and 290 nm. At these wavelengths, a small cluster with
counterfeit samples is indistinguishable from the generic and
genuine samples (Fig. 3b, c).

Fingerprints obtained using three wavelength channels
were also analyzed separately using PLS-DA. The obtained
score plots (figures not shown) were very similar to those
obtained by PCA. In this case, 254 nm also resulted in the
best, however, suboptimal discrimination; a number of genu-
ine samples were clustered together with the counterfeit sam-
ples. The results acquired for 270 and 290 nm failed in
supporting differentiation of genuine/generic samples from

25

Fig. 1 Overlay of the largest
peak measured at 254 nm, before
(a) and after (b) alignment
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Fig.2 Exemplary fingerprints obtained by PDA measured at 254 nm (a)
and MS1 (b) for a genuine, generic, and counterfeit sample. For both
types of fingerprints, the large sildenafil peak was eliminated. The

counterfeit ones since a number of the latter were clustered
together with the genuines/generics (just like with PCA).

Modelling techniques Three different modelling techniques,
i.e., PLS-DA, SIMCA, and kNN, were applied to verify
whether they can successfully discriminate between the dif-
ferent sample classes. It was also tested if these methods can
predict the class membership of unknown samples, using an
external validation of the model (i.e., prediction of the test set
samples).

An overview of the results obtained by each of the model-
ling techniques for the three included wavelengths can be
found in the Electronic Supplementary Material (ESM, see
Table S1). The best model for the data measured at 254 nm
is obtained by kNN for £=3. This model shows a correct
classification rate of cross-validation of 97.37 % which is
due to the misclassification of only three samples; three gen-
uines are classified as generics. Therefore, this model shows a
perfect discrimination between genuine/generic samples and
counterfeit samples. The test set exhibits a correct classifica-
tion rate of 96.55 % since only one sample is classified incor-
rectly; one genuine sample is considered to be counterfeit. In
overall, kNN produces a satisfactory diagnostic model.

When analyzing the fingerprints acquired at 270 nm, the
best model is acquired by the SIMCA approach. Seven PCs
were used to model both classes 1 (genuines) and 2 (generics),

dotted line on the PDA fingerprints indicates the time window between
20 and 21.5 min which was eliminated from the fingerprints

whereas 12 PCs were necessary to describe class 3 (counter-
feits). This model results in a 97.37 % correct classification
rate of cross-validation due to three generic samples which are
misclassified as counterfeit samples. The external validation
shows a correct classification rate of 93.10 %. Two out of 29
test set samples are misclassified. Unfortunately, this misclas-
sification concerns two genuine samples which are assigned to
the counterfeit group.

The best diagnostic model constructed for the 290 nm data
is offered by PLS-DA. The optimal PLS-DA model includes
four PLS factors. This model is characterized by a correct
classification rate of 91.23 % for cross-validation and
89.66 % for external validation. A total of ten training set
samples is misclassified, which are all ten genuines present
in the training set: three are misclassified as generic, and the
remaining seven samples are considered to be counterfeit.
This indicates that this model is not capable to classify
genuine medicines. This is also demonstrated by the test set;
all three genuine samples are wrongly classified: one as
generic, the two others as counterfeit.

Comparison of these models shows that the best model is
obtained using kNN for the 254 nm data. Only this model
results in a perfect discrimination between genuines/generics
and counterfeits for the training set. The fact that three genuine
medicines are recognized as generic pharmaceuticals does not
pose any problems since both genuine and generic products

Table 1 Overview of the sample

classification and composition of Class number  Type of samples Total no. of samples ~ No. of samples ~ No. of samples
the used training and test set per class in training set in test set
1 Genuine Viagra® samples 13 10 3
Generic products of Viagra® 33 31
3 Counterfeit samples 97 73 24
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Fig. 3 Score plots obtained by principal component analysis of each included wavelength separately: (a) 254 nm, (b) 270 nm, and (¢) 290 nm

have to comply with the same quality requirements. The test
set contains only one misclassification: a genuine sample con-
sidered to be counterfeit. This misclassification is also accept-
able since a genuine sample, which is suspected to be coun-
terfeit, poses less risks to public health than a counterfeit sam-
ple, which is believed to be genuine.

Combinations of wavelengths

All possible combinations of the three wavelengths were test-
ed: (1) 254 nm_270 nm, (2) 254 nm_290 nm, (3)
270 nm_290 nm, and (4) 254 nm_270 nm_ 290 nm.

Exploratory analysis The results obtained with PCA and
PLS-DA for all four combinations (score plots not shown)
are very similar to those shown in Fig. 3b, c. A number of
counterfeit samples are clustered together with the genuine/
generic samples. Therefore, no clear distinction could be made.

Modelling techniques The correct classification rates obtain-
ed using all three modelling techniques for all tested PDA data
combinations are summarized in the ESM (see Table S2). The
best model for the 254 nm_270 nm fingerprint combination is
generated by SIMCA. This model is characterized by a correct
classification rate of cross-validation of 98.25 % which is due
to the misclassification of two genuines as generic pharma-
ceuticals. The test set exhibits a correct classification rate of
93.10 %. Two genuine samples are assigned to a wrong class:
one as a generic, the other as a counterfeit.

SIMCA also provides the best model for the
254 nm_ 290 nm data combination. Correct classification rates
0f 98.25 % for the training set and 93.10 % for the test set are
obtained. Study of the occurring misclassifications shows that
this SIMCA model not only results in the same type of mis-
classifications compared to the SIMCA model of
254 nm_270 nm but also that these misclassifications concern
exactly the same genuine samples as in the 254 nm_270 nm
SIMCA model.

@ Springer

From a chemometric point of view, the best model for the
data combination 270 nm_290 nm is achieved by PLS-DA
when including three PLS factors. This model has a correct
classification rate of cross-validation of 91.23 % (ten samples
are misclassified). Unfortunately, these misclassifications con-
cern all ten genuine samples present in the training set. Three
genuine samples are considered to be generic; the remaining
misclassifications concern genuine samples which are wrong-
ly classified as counterfeit. The test set is characterized by a
89.66 % correct classification rate due to the misclassification
of all three genuine samples: one as generic, the other two as
counterfeit. This shows that this model is not capable of
modelling or predicting the genuine samples in a correct
way and therefore this model is less suitable.

When combining all three wavelengths, SIMCA results in
the best model with a 100 % correct classification rate for the
training set. The external validation presents a correct classi-
fication rate of 93.10 %. This percentage is due to the misclas-
sification of two genuine samples: one is assigned to the ge-
nerics class, and the second is considered to be a counterfeit.

Comparison of the abovementioned models demonstrates
that the best model is obtained by SIMCA when combining all
three wavelengths. This model shows a perfect discrimination
between genuine, generic, and counterfeit medicines for the
training set. Prediction of the test set results in two misclassi-
fications. A genuine sample which is considered to be generic
does not pose any problems for public health, and a genuine
medicine which is regarded as counterfeit threatens public
health much less than a counterfeit considered to be genuine.
However, it should be mentioned that the misclassifications of
the SIMCA models, observed for the test set of the 254 270,
254 290, and 254 270 290 nm fingerprint combinations,
concern exactly the same genuine samples for all three com-
binations. The training sets of 254 nm_ 270 nm and
254 nm_290 nm only show two genuine samples which are
believed to be generics. Therefore, the SIMCA model obtain-
ed by 254 nm_270 nm_290 nm differs only little from the
SIMCA models acquired by 254 270 and 254 290 nm.
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Consequently, the superiority of the 254 nm_270 nm_290 nm
data combination could be questioned. Furthermore, the com-
putation time for this triplex fingerprint combination was con-
siderably longer compared to the duo combinations and the
single wavelength data.

Comparison of the models obtained for the single wave-
length data sets and the mentioned combinations of wave-
lengths shows that, in overall, the best prediction model is
obtained by kNN for 254 nm merely since this model exhibits
the highest correct classification rate for external validation.

MS

The MS data were analyzed twice; firstly, the MS1 data were
analyzed separately, and secondly, the combination of MS1
and MS2 data (MS1_MS2) was tested.

Exploratory analysis

PCA (score plots not shown) did not result in a good discrim-
ination between genuine, generic, and counterfeit samples.
The resulting score plots of PLS-DA are shown in Fig. 4. It
was chosen to limit the number of PLS factors to two since a
third PLS factor did not provide any extra information. The
score plot obtained for the MS1 data (Fig. 4a) does not show a
clear distinction between the three groups of samples.
However, a tendency of discrimination is present. The genuine
samples are clustered in the lower left corner, the counterfeit
samples are mostly clustered in the upper part of the plot, and
the generics are mainly grouped between the genuine and
counterfeit samples. This tendency of distinction is also present
on the plot acquired for the combination of MS1 MS2 data
(Fig. 4b); only on this plot the trend seems to be more clear.

Modelling techniques

An overview of the acquired results for both MS data sets is
provided in the ESM (see Table S3). The best model for the
MSI1 data is obtained by PLS-DA. This model includes six
PLS factors and exhibits a correct classification rate of cross-

validation 0f 95.61 %. One genuine sample is considered to be
generic. The four remaining misclassifications concern gener-
ic samples of which two are regarded as genuine and the other
two as counterfeit. The test set presents a correct classification
rate of 93.10 % since only two misclassifications occur.
Unfortunately, these misclassifications concern two counter-
feit samples of which one is classified as genuine, the other as
generic.

The results obtained for the MS1_MS?2 fingerprint combi-
nation show that PLS-DA (including seven PLS factors) clear-
ly performs best since both cross-validation and external val-
idation are featured by a correct classification rate of 100 %.
This indicates that a perfect discrimination between genuine,
generic, and counterfeit samples is acquired for both training
and test set.

For both MS1 and MS1_MS2, the models obtained with
SIMCA are not satisfying. The external validation shows a
correct classification rate of 82.76 % for both data sets.
Survey of the misclassifications reveals that for both data sets,
all three genuine samples and both generic samples are clas-
sified as counterfeit, indicating that this model is not capable
of discriminating between genuine/generic and counterfeit
medicines. Also, the kNN approach does not provide reliable
models. The test set presents a correct classification rate of
96.55 % for both data sets since only one sample is
misclassified. For the MS1 data, this misclassification con-
cerns a genuine sample attributed to the counterfeits class;
for the MS1 MS2 data, one counterfeit sample is considered
to be genuine. However, these two models show a large num-
ber of misclassifications in the training set: 11 misclassified
samples and one unclassified sample for the MS1 data and 11
misclassified and five unclassified samples for the MS1 MS2
data. Therefore, these KNN models are considered to be less
suitable. When comparing the obtained SIMCA and kNN
models, SIMCA shows a larger correct classification rate for
the cross-validation compared to the external validation while
kNN exhibits the opposite. This might be due to the fact that
the SIMCA model shows overfitting, in contrast to kNN.

These results clearly show that the best model is obtained
using PLS-DA for the MS1_MS2 data combination.

Fig. 4 Score plots obtained by 3 a 2 b
partial least squares of both MS 2 * ;
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PDA-MS

A survey of the loadings of all three wavelengths in the re-
spective PLS-DA and SIMCA models was performed in order
to determine which wavelength should be combined with the
MSI1 data in order to obtain the best model. This survey sug-
gested the combination of MS1 data with the data measured at
254 nm (254 nm_MS1).

Exploratory analysis

The score plots obtained by PCA and PLS-DA for this com-
bination of data are shown in Fig. 5a, b. Only two PCs
(Fig. 5a) were retained, since they explain 95.65 % of the total
variance (PC1=92.26 % and PC2=3.39 %). In case of the
PLS-DA analysis (Fig. 5b), two PLS factors were included.
These two score plots are not only very similar to each other,
but they also show a great conformity with the PCA plot
obtained for the data measured at 254 nm (Fig. 3a). Despite
the fact that the obtained clustering is not optimal, a relative
good discrimination between the three classes of samples can
be made. However, a number of genuine samples are
exempted from this observation as they are clustered together
with the counterfeit samples.

Modelling techniques

kNN results in the best model for this data combination. It
includes three nearest neighbors and shows a correct classifi-
cation rate of cross-validation of 97.37 %. Three genuine sam-
ples are classified incorrectly, but these misclassifications do
not pose any problems since they are all three considered to be

generics. The test set generates a correct classification rate of
96.55 %. Only one misclassification occurred: a genuine sam-
ple which is assigned to the counterfeit class.

The PLS-DA model obtained with eight PLS factors is also
quite suitable. The training set features a correct classification
rate of 98.25 % due to the misclassification of two genuine
samples which are considered to be generic. Two out of 29 test
set samples are misclassified as well, resulting in a 93.10 %
correct classification rate. One genuine and one counterfeit
sample are regarded as generic.

SIMCA, on the other hand, results in a less suited model.
Six PCs were retained to model class 1, nine PCs were used to
describe class 2, and ten PCs were kept for class 3. Despite a
100 % correct classification rate of cross-validation, the test
set is characterized by a correct classification rate of 89.66 %.
All three genuine samples are misclassified: one as generic,
the other two as counterfeit. This indicates that this model is
not capable of discriminating and predicting the authentic na-
ture of genuine samples.

Sensitivity and specificity

Table 2 presents an overview of the best models obtained for
the different tested data sets. For both cross-validation and
external validation, the performance of these models is
expressed in correct classification rates.

The associated confusion matrix is shown in Table 3.

It could, however, also be interesting to express the perfor-
mance of these models in terms of sensitivity and specificity.
Since the classification problem considered in this study is a
three class problem and sensitivity and specificity are statisti-
cal evaluation measurements of binary classification models,

Table 2 General overview of the

best performing models 254 nm 254 nm_270 nm_290 nm MS1_MS2 254 nm_MSI1
kNN SIMCA PLS-DA kNN
Cross-validation 97.37 % 100 % 100 % 97.37 %
External validation 96.55 % 93.10 % 100 % 96.55 %

Performance of the models is expressed as percentages of correct classification
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Table 3 Overall confusion
matrix summarizing the 254 nm Predicted class
classification results obtained by
the model performing best for Genuine Generic Counterfeit
each fingerprint combination
Actual class Genuine 2(7) 3) 1
Generic 231
Counterfeit 24(73)
254 nm_270 nm_290 nm Predicted class
Genuine Generic Counterfeit
Actual class Genuine 1 (10) 1 1
Generic 2 (31
Counterfeit 24 (73)
MS1_MS2 Predicted class
Genuine Generic Counterfeit
Actual class Genuine 3 (10)
Generic 231
Counterfeit 24(73)
254 nm_MSI Predicted class
Genuine Generic Counterfeit
Actual class Genuine 2(7) 3) 1
Generic 231
Counterfeit 24(73)

The matrix shows the number of (mis)classifications for the test set (and training set)

the considered classification has to be slightly modified. This
modification can easily be performed by combining classes 1
and 2. Class 1 consists of genuine Viagra® samples, and class
2 is composed of generic products of Viagra®. Since both
groups of medicines are produced in a legal way and have to
comply with the same quality requirements, their fusion into
one class is justified.

Sensitivity is a measure for the true positive rate; in this
study, a true positive is defined as a counterfeit which is con-
sidered to be counterfeit. Specificity expresses the true nega-
tive rate, which signifies the rate of legal medicines (genuine
and generic) regarded as legal. The sensitivity and specificity
values for each of the models in Table 2 are presented in
Table 4.

Table 4  Sensitivity and specificity of the best performing models
Data set Model  Validation Sensitivity Specificity
(%) (o)
254 nm kNN Cross-validation 100 100
External validation 100 80
254 nm 270 nm_ SIMCA Cross-validation 100 100
290 nm External validation 100 80
MS1_MS2 PLS-DA Cross-validation 100 100
External validation 100 100
254 nm_MS1 kNN Cross-validation 100 100
External validation 100 80

For all models, a sensitivity and specificity of 100 % is
obtained for the training set despite the fact that the correct
classification rates for the kNN models obtained for the
254 nm and 254 nm_MSI1 data do not equal 100 %
(Table 2). This is due to misclassifications of genuine samples
as generics. Since genuines and generics constitute the same
class for the calculation of sensitivity and specificity, these
misclassifications are not taken into account.

Only the PLS-DA model obtained for the MS1 MS2 fin-
gerprint combination exhibits a 100 % correct classification
rate for external validation (Table 2), which is mirrored in the
perfect sensitivity and specificity for the test set of this model.
The remaining models show a perfect sensitivity and a spec-
ificity of 80 % which is due to the misclassification of a gen-
uine as a counterfeit. The external validation of the SIMCA
model obtained for the 254 nm_ 270 nm_290 nm data combi-
nation shows one additional misclassification, i.e., a genuine
considered to be generic, which is not taken into account in the
calculation of sensitivity and specificity.

Conclusion

Counterfeit medicines pose a threat to public health world-
wide, even in Europe. Therefore, characterization of these
products is a very important issue. During this study, a set of
143 samples was analyzed using a PDA and MS (ion trap)
detector in order to obtain different types of fingerprints
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revealing the present impurities and other secondary compo-
nents. The purpose is to explore whether or not PDA and MS
are two complementary detection techniques by trying to re-
solve the question which technique (or perhaps combination
of both) is most suited to distinguish genuine/generic medi-
cines from counterfeit ones.

Exploratory analysis of all combinations of PDA data re-
vealed that neither PCA nor PLS-DA is capable to yield a
satisfying discrimination between genuine, generic, and coun-
terfeit medicines. Surprisingly, PLS-DA is not capable to im-
prove the acquired discrimination compared to PCA, despite
the fact that PLS-DA is a supervised method. However, for the
MS fingerprints, observations are different; the PCA score
plot does not provide a useful clustering, while PLS-DA re-
sults in a clear tendency of discrimination.

Since no optimal visual clustering is obtained, supervised
techniques were applied to model the data. Overall, very ade-
quate diagnostic models are obtained by means of three basic
chemometric techniques. When comparing all models ac-
quired for the PDA data combinations, it can be concluded
that the 254 nm fingerprint set provides the best result since
the external validation generates the highest correct classifica-
tion rate. When exploring the MS data, it is clear that the best
diagnostic model is obtained for the MS1 MS2 combination
which is characterized by a perfect discrimination for both
training set and test set. Based on a survey of the loadings, it
was decided to combine the fingerprints measured at 254 nm
and the MS1 data. For this data combination, the best diag-
nostic model is obtained by kNN; only one misclassification is
of importance which is a genuine sample misclassified as a
counterfeit. The acquired PLS-DA model also generates cor-
rect classification rates which are better than those obtained
for the 254nm and MS1 fingerprints separately. The only mis-
classification of importance concerns a test set counterfeit
which is considered to be a generic sample. For SIMCA, con-
clusions are more complicated. The training set is character-
ized by a 100 % correct classification rate but the test set
performs less compared to 254 nm. This is due to only one
additional genuine sample which is misclassified as a coun-
terfeit. However, this SIMCA model is quite suitable since the
misclassification of genuine samples poses less risks to public
health than a counterfeit sample which is considered to be
genuine. A counterfeit sample will be retained from the mar-
ket until a thorough analysis identifies its true nature. If the
respective sample turns out to be genuine after all, it will be
released again.

Based on the results obtained for this data set, it could be
concluded that MS provides less suitable models (except for
PLS-DA) since several genuines and generics are classified as
counterfeits and vice versa. This is probably due to the high
complexity of the data and the good overall results obtained
with the PDA data. However, when selecting the appropriate
chemometric techniques carefully, the preferred detection
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method can be used. For instance, when combining MS1
and MS2 data, a perfect discrimination can be obtained using
PLS-DA; when applying kNN, good classification models can
be obtained by UV detection at 254 nm. This might be an
interesting observation for the characterization of counterfeit
drugs in developing countries since more sophisticated equip-
ment is often not available. Nevertheless, if no selection of
chemometric tools can be performed in advance, the combi-
nation of PDA and MS data (254 nm_MS]1) is likely to gen-
erate better classification models than PDA or MS individual-
ly. In general, taking all three modelling techniques into ac-
count, this combination results in less classification errors be-
tween the genuines/generics and counterfeits compared to the
PDA and MS data separately. Most occurring misclassifica-
tions concern genuine samples which are considered to be
generics, which does not pose any public health threats since
both genuine and generic medicines have to comply with the
same quality requirements. Therefore, this combination of da-
ta is preferred.

The results obtained in this study might be useful for other
laboratories responsible for detection of counterfeit medicines.
Moreover, the strategy presented here could be tested and
useful for other groups of medicines which are often
counterfeited such as slimming products, pain killers, and
sleeping aids.
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