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Abstract The number and capability of explosives detection
and analysis methods have increased dramatically since
publication of the Analytical and Bioanalytical Chemistry
special issue devoted to Explosives Analysis [Moore DS,
Goodpaster JV, Anal Bioanal Chem 395:245–246, 2009].
Here we review and critically evaluate the latest (the past five
years) important advances in explosives detection, with details
of the improvements over previous methods, and suggest
possible avenues towards further advances in, e.g., stand-off
distance, detection limit, selectivity, and penetration through
camouflage or packaging. The review consists of two parts.
Part I discussed methods based on animals, chemicals (includ-
ing colorimetry, molecularly imprinted polymers, electro-
chemistry, and immunochemistry), ions (both ion-mobility
spectrometry and mass spectrometry), and mechanical
devices. This part, Part II, will review methods based on
photons, from very energetic photons including X-rays and
gamma rays down to the terahertz range, and neutrons.
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Explosives glossary
AN Ammonium nitrate
ANTA 3-Amino-5-nitro-1,2,4-triazole
DNB Dinitrobenzene (isomers 1,3-DNB and 1,4-DNB)

DNT Dinitrotoluene (isomers 2,4-DNT and 2,6-DNT)
FOX-7 1,1-Diamino-2,2-dinitroethene (DADNE)
HME Homemade explosive
HMTD Hexamethylene triperoxide diamine
HMX Octagen; octahydro-1,3,5,7-tetranitro-1,3,5,7-

tetrazocine
IED Improvised explosive device
Picric
acid

2,4,6-Trinitrophenol

NG Nitroglycerine; nitro; glyceryl trinitrate; RNG;
trinitroglycerine

NTO Nitrotriazalone
PETN Pentaerythritol tetranitrate; 2,2-

bis[(nitroxy)methyl]-1,3-propanediol; dinitrate
RDX Cyclonite; hexogen; hexahydro-1,3,5-trinitro-1,3,

5-triazine
Semtex Composition of PETN (or RDX and PETN) with

heavy oils and rubbers
TATP Triacetone triperoxide
Tetryl Methyl-2,4,6-trinitrophenylnitramine
TNT 2,4,6-Trinitrotoluene; 2-methyl-1,3,5-

trinitrobenzene

Introduction

Part I provides a more complete introduction to this review
[1]. This part, Part II, will cover many of the newest and most
capable explosives detection and analysis capabilities that use
photons to interrogate the sample. Also included are methods
using neutrons. We include several exciting new stand-off
detection developments at distances of 100 m and beyond.
Our principal focus will be on archival scientific literature,
rather than vendor information, in order to concentrate on
the scientific principles and advances rather than commercial
off-the-shelf (COTS) embodiments, except in selected cases.
The recent shift in predominant usage from military
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explosives to homemade explosives (HME) has driven sub-
stantial changes in detection methods, particularly to differen-
tiate threats from benign usage (e.g. farming) of HME
components.

Methods using ionizing radiation or neutrons

X-ray diffraction

X-ray diffraction (XRD) of a sample provides crystalline
structure information. It is a promising non-invasive,
non-contact method to detect and identify liquid and solid
materials [2, 3]. In energy-dispersive (ED) XRD, a polychro-
matic X-ray beam is used to probe the photon–matter interac-
tions of coherent scattering in the sample. An energy-resolved
detector at a fixed scattering angle measures the material-
specific spectrum. The specificity of the spectrum results from
the atomic planar spacing (d) and radiation wavelength (λ) of
the material according to Bragg’s law (2dsinθ=nλ, n is an
integer). Alternatively, as in angle-dispersive X-ray diffraction
(AD-XRD), one can keep λ fixed and vary θ [4]. These iso-
morphic detection techniques are most applicable to TSA or
detection portals, because the equipment is non-portable due
to size and shielding requirements.

Advantages of XRD over typical X-ray imaging techniques
are covered in Well’s comprehensive review from 2012 [3].
X-ray diffractive-imaging devices are commercially available,
and their intrinsic features necessary for detecting solid and
liquid explosives and inert materials are summarized by
Harding [5]. Much work over the past five years has been
on improving detectability through combining detection tech-
niques [4, 6], analysis methods [7], and optimization of X-ray
geometry [8–12] and detector geometry [11]. Combining AD-
XRD and ED-XRD with a pixelated energy-resolved detector
requires no moving parts and short acquisition times (~1 s),
when merged with principal component and discrimination
analysis, to differentiate between inert materials and explo-
sives including Semtex and ammonium nitrate emulsions
[6]. X-ray emission spectroscopy for future trace and small-
scale-bulk detection is also being investigated, but to a much
lesser extent [13–15].

Neutron activation and gamma emission

Active neutron-interrogation methods are used to identify the
relative chemical content of specific elements (N, O, Cl, and
H) via their characteristic gamma-ray emission, neutron scat-
tering, and neutron absorption. Abnormally high nitrogen
content is typically used as a detection flag for an explosive.
Neutron activation works well for high-nitrogen explosives,
but not all explosives are nitrogen based, e.g., the homemade
explosives TATP and potassium chlorate plus sugar. Two

main advantages of using neutron activation are the ability
of neutrons to pass through high-atomic-number materials,
for example metals, and the specificity to differentiate be-
tween organic and inorganic materials. The largest disadvan-
tages are that neutron sources produce harmful radiation doses
if not shielded properly or at the correct stand-off, and neutron
interrogation can cause unwanted material activation.

There are five main neutron-activation interrogation tech-
niques: thermal-neutron analysis (TNA), fast-neutron analysis
(FNA), pulsed fast–thermal neutron analysis, fast-neutron
elastic scattering (NES), and neutron transmission/fast neu-
tron radiography. A 2014 review by Whetstone and Kearfott
describes the basic principles behind each of these interroga-
tion techniques and emphasizes their advantages and disad-
vantages, and gives an overview of the different neutron
sources currently used for each technique [16]. An alternative
detection method suggests using gamma rays to induce neu-
tron scattering for detection [17].

Advances in this field focus on fusion of different tech-
niques, advances in neutron sources in terms of energy and
portability, and increases in detection sensitivity. FNA, TNA,
and dual X-ray imaging were combined to analyze ratios of
four common elements (Cl, H, Fe, and N). Use of different
ratios of the elements (e.g., N–H, Cl–H, and Cl–N) was found
to reduce the false alarm rate, and use of eight detectors in
front and eight behind a container enabled location of a sus-
pect material (Fig. 1) to within an area 0.4×0.4 m [18]. A
tabletop 10Hz thermal-neutron generator for gamma spectros-
copy has been developed in France using a dense-plasma-
focus technique [19]. Scintillator development for TNA
gamma-emission detection was found to increase medium-
to-large antitank-landmine detection to a depth of 30 cm and
horizontal displacement of 30 cm, and enable detection of
moderate-to-large ammonium nitrate-based IEDs (improvised
explosive devices) in culverts [20]. Further experiments on
IEDs and UXO (unexploded ordinance) suggest the gamma-
emission count time depends on a combination of the soil
moisture, cladding thickness of the explosive containment,
and, to a lesser extent, the explosive composition [21].
Recent work by Batyaev measured and calculated gamma-
emission receiver operating characteristic (ROC) curves on
explosives (TNT, Tetryl, NG, and RDX) and benignmaterials,
and revealed that it was possible to estimate ROC curves [22].

Terahertz methods

Terahertz spectroscopy and imaging

Terahertz (THz) spectroscopy (the spectral region is usually
defined as frequencies from 0.5 to 10 THz, or wavenumbers
from 15 to 300 cm−1) and other long-wavelength spectros-
copies (e.g. millimeter wave, GHz) probe the low-energy
modes of molecules and longer-range intramolecular modes,
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yielding another set of molecular Bfingerprints^ for explosives
detection. One promising attribute of THz spectroscopy is its
ability to penetrate and detect non-metallic items, which is of
benefit for detecting hidden or concealed objects. There is still
a great deal of research being performed on obtaining the
spectral signatures of different conventional and homemade
explosives, and developing signal-processing techniques for
both spectroscopy and imaging schemes. There are few THz
detection papers containing quantitative analytical metrics, for
example detection limits. The selectivity of the method is
discussed in several papers, especially where it involves
THz spectral signatures and their variation with sample type
or matrix.

A common technique for THz spectroscopy is time-domain
spectroscopy (THz TDS), a pump–probe method. A THz
pump pulse (generated by an ultrafast laser) is sent through a
sample to a detector, where it is combined with a shorter probe
pulse from the laser. The THz electrical field can be recorded
over a period of time, and can be Fourier transformed to a
frequency spectrum. A great deal of research has been per-
formed on the spectral signatures of explosives and related
materials through THz TDS, including the conventional mo-
lecular explosives RDX, HMX, PETN, and simulant mole-
cules [23–28]. Likewise, the spectral signatures of explosive
mixtures and plastic compositions have been studied [26–33].
Additionally, spectral signatures of homemade explosives and
related materials have been analyzed [34–36]. Using
THz TDS for stand-off detection, where the operator is phys-
ically separated from the sample, has also been investigated
[25, 31].

There are several challenges associated with THz spectros-
copy for explosives detection, including interference from bar-
rier or concealment materials (envelopes, clothing, etc.),

surface roughness of the samples, and water vapor or humidity
present in the air [30, 37]. Many researchers have addressed
these challenges through developing methods to separate
spectral fingerprints of explosives from barrier materials [30,
31, 38–40], and signal-processing algorithms to compensate
for water-vapor absorption [32].

THz imaging has been suggested to be a more viable option
for explosives detection than spectroscopy, although subject
to similar challenges [37]. Two common techniques in recent
THz imaging research are passive imaging, where the system
detects naturally occurring radiation in the THz frequency
range, and THz reflection imaging, where chemical identifi-
cation is possible. The research on passive imaging has largely
focused on image processing for high-resolution images.
Trofimov et al. [40–42], along with collaborators in China
[43], have developed several sets of spatial filters to apply to
the obtained images to detect hidden objects. The challenge of
surface roughness in THz imaging was addressed by Zurk and
coworkers by a novel three-dimensional imaging technique
through a synthetic aperture and by other methods [44–48].
Research to both detect and identify explosive objects has also
been performed by several groups. Sleiman et al. used
THz TDS for chemical mapping of RDX, PETN, and
RDX–PETN mixtures [28]. Startsev et al. used a tunable op-
tical parametric oscillator (OPO) to frequency raster-scan sev-
eral explosives; the imaging analysis assessed the chemical
composition of the materials studied (Fig. 2) [49]. Palka
et al. compared the THz transmission spectra of explosives
by THz TDS and an OPO-based system [50].

Researchers have coupled THz spectroscopy and imaging
to other technologies. Carriere and coworkers [51–53] com-
bined THz with Raman spectroscopy (THz-Raman) for ex-
tremely low frequency (~5 cm−1) Raman measurements of

Fig. 1 Two-dimensional TNA elemental distribution of (1)hydrogen, (2)nitrogen, (3)chlorine, (4)iron, and (5)the combined X-ray image with
elemental distribution. From Ref.18, used with permission

Advances in explosives analysis—part II: photon and neutron methods 51



explosives. Lu et al. used a flexible tube-lattice fiber probe
combined with THz TDS for THz hyperspectral imaging
[54]. Perov et al. developed a new THz imaging scheme based
on a backward-wave oscillator and heterodyne detector to
detect concealed objects [55]. Simoens et al. developed a
microbolometer-array prototype for explosives detection at
two different frequencies [56, 57]. Bolduc et al. used a
microbolometer-based THz imaging camera to detect a
concealed plastic knife [58].

Vibrational and electronic spectroscopies

Infrared

Infrared (IR)-absorption, reflectivity, and attenuated-total-
reflection (ATR) spectroscopies are powerful methods of ex-
plosive identification and detection via measurement of the
vibrational spectrum. Portable devices that measure ATR spec-
tra of unknown materials for identification by library matching
are available from several commercial sources. ATR avoids the
sample preparation traditionally involved in transmission IR
measurements. Because infrared penetration depth for neat ma-
terials is on the order of amicrometer, trace amounts of solids or
liquids (e.g., ng to μg) can be measured if they can be placed in
contact with the ATR prism. Stand-off methods retain this sen-
sitivity to trace residues while avoiding sampling.

Passive stand-off IR can use the thermal emission spectrum
for identification. Long-wave infrared (LWIR) at 8–14 μm
wavelength is emitted as thermal radiation from a sample that
is modulated by the spectrally dependent emissivity. This sig-
nal is typically detected by HgCdTe-based sensors or
microbolometer arrays through a Fourier-transform infrared
(FTIR) interferometer [59]. Coupled with an infrared-
sensitive focal-plane array detector, FTIR hyperspectral imag-
ing is capable of detecting and identifying trace amounts of
explosives on surfaces (at ~μg cm−2 levels) in 30 s [60–62].
LWIR can be used for thermal imaging without spectral reso-
lution as a simpler, but less selective, means of identifying
spatial anomalies in an environment that may be hazardous
[63]. LWIR systems are also often sensitive to mid-wave IR
(MWIR) light in the wavelength range down to 3 μm.

Active stand-off IR involves illumination with either a ther-
mal source or a laser. Although diffuse scattering of thermal
IR sources off the sample can aid in spectral acquisition [59,
60, 64], the collimation and power on-target for laser sources
is far greater. Femtosecond optical parametric oscillators [65]
and tunable carbon dioxide lasers [66] have been used as
spectroscopic IR sources, but most research is currently fo-
cused on illumination by tunable quantum cascade lasers
(QCLs). Active QCL illumination coupled with array detec-
tors enables hyperspectral imaging that can match the spec-
trum of residues with library spectra of explosives (Fig. 3)
[67–70]. The backscattering collected is a strong function of

the angle of incidence, but the contrast in spectral features has
been observed to remain with orders of magnitude less signal
than specular reflection [64, 71]. QCLs have the resolution
required to measure gases, as has been established for stand-
off diffuse reflection [72] and headspace-monitoring cavity
ringdown spectroscopies [73]. Multiple QCLs can be chained
together to increase the spectral coverage [74].

It should be noted that IR spectra measured in emission or
backscattering geometries often look different from those
measured by transmission or ATR. The particle size, shape,
and environment can cause peaks to look absorptive, disper-
sive, or intermediate between the two [75, 76]. This is a fun-
damental physical property that must be accommodated in
spectral-library-match algorithms.

Short-wave IR (SWIR) in the range 900–2500 nm offers
more penetration ability than visible light and less expensive,
more sensitive array detectors than are available at LWIR and
MWIR. Whereas molecular vibrations absorb in the MWIR
and LWIR, overtone (excitations of multiple vibrations) ab-
sorptions can be observed in SWIR. The spectroscopic deter-
mination of materials is less decisive, but the experimental
implementation is simpler, smaller, and less costly. These ad-
vantages have motivated numerous implementations of SWIR
hyperspectral imaging for explosives detection and identifica-
tion. Discrimination among similar explosives imaged in
handprint residues has been achieved [77, 78]. A dual SWIR
and Raman hyperspectral imager on an unmanned ground
vehicle was revealed to enhance explosive discrimination by
coupling both methods [79]. A supercontinuum extending
from 1300–4300 nm was used to measure diffuse reflectance
spectra of several HE over a range extending from SWIR to
MWIR [80].

Ultraviolet–visible

Detection and identification of explosives on the basis of re-
flectivity in the ultraviolet-to-visible ranges have not been as
thoroughly researched as other methods. Because the under-
lying physics relies on electronic absorptions that are typically
broad and indistinct, selectivity is not expected to be nearly as

Fig. 2 Raster-scanned THz images of RDX concealed in a paper
envelope with OPO tuned to 0.77, 0.83, and 0.90 THz. 0.83 THz is the
frequency at the RDX resonance peak of width (FWHM Gaussian fit)
0.13 THz. From Ref.49, used with permission
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high as for vibrational spectroscopy. Despite these difficulties,
differential hyperspectral imaging [81, 82] under active illu-
mination in the 200–500 nm range has been used to achieve a
limit of detection (LOD) of 100 ng for TNT with selective
ROCs [83].

Luminescence

Traditionally, chemiluminescence-based explosives detectors
consist of a polymeric fluorophore that has some binding se-
lectivity toward the explosive molecule [84]. Once bound, the
fluorescence is quenched. This method has been used com-
mercially in the Fido® detector (FLIR Systems, Inc.). Recent
research into chemiluminescence explosives detection has fo-
cused on novel fluorescent materials and other luminescence
schemes, including electrochemiluminescence and
upconversion luminescence.

Novel materials for chemiluminescence-based explosives
detectors include metal–organic frameworks (MOFs) and a
variety of polymer and photonic crystal films. Hu et al. pub-
lished an excellent review on the mechanisms of and research
into metal–organic frameworks for small-molecule detection
[85]. Xu et al. developed a nanoscale MOF to detect
nitroaromatics in ethanol [86], and Wu et al. used a MOF for
carbon disulfide and nitrobenzene detection [87]. Ma et al.
[88] developed a U-bent PMMA optical fiber coated with a
porous fluorescent polymer that experienced quenching with
TNT (LOD:10 ng mL−1) and DNT. Sun et al. exploited nano-
structure in a polystyrene–pyrene film, creating a fluorescent
polymer with self-assembled nanopores to detect DNT vapor
[89]. Ma et al. observed varied luminescence responses for
different nitroaromatic explosives in an organic–inorganic hy-
brid ultrathin film: quenching for nitrobenzene and dinitroben-
zene, an increase in fluorescence from DNT and TNT, and a
fluorescence red-shift from picric acid [90]. Li et al. exploited
the optical properties of an inverse-opal photonic crystal, a
repeating structure consisting of spherical voids. The photonic
crystal was coated with a fluorescent molecule, and was en-
hanced by the photonic crystal. The fluorescence was
quenched with TNT [91]. Li et al. developed a sensor array

to detect H2O2 as an indicator of TATP using CeO2 nanopar-
ticles. The nanoparticle membranes had a catalytic effect on
luminol–H2O2 chemiluminescence. The system had a LOD of
~30 μg mL−1 [92].

Much attention has been given to ruthenium compounds,
especially tris(bipyridine)ruthenium(II), Ru(bpy)3

2+, as chemi-
luminescent materials for use in electrochemiluminescence
(ECL)-based explosives detection. The reduction of TATP
[93–95], RDX [96], or TNT [97] forms species that
react with Ru(bpy)3

2+, which generates ECL (Fig. 4).
Ni et al. obtained a LOD of 0.7 mg mL−1 [97] TNT
with this method, and Parajuli et al. obtained a LOD of
~4 mg mL−1 TATP [95]. Additionally, Qi et al. used
ruthenium-doped silicon nanoparticles for TNT detec-
tion, through ECL quenching caused by resonant energy
transfer from excited nanoparticles to a TNT–amine
complex [98].

Another process for chemiluminescent-based explosives
detection is upconversion luminescence. Ma et al. used
nanocrystals of NaYF4:Yb

3+/Er3+ coatedwith amine function-
al groups to bind to TNT. Upon TNT binding, the fluores-
cence was quenched. The fluorescence quenching was found
to be selective for TNT (LOD: 9.7 ng mL−1) over DNT, nitro-
benzene, and 2,4,6-trinitrophenol [99]. Tu et al. investigated
SPR-enhanced upconversion luminescence for TNT; fluores-
cence increased upon addition of TNT [100].

Raman

Raman spectroscopy is one of the most heavily used and ac-
tively studied methods of explosives detection because of its
powerful identification capabilities and very high selectivity,
as described in recent reviews [101–103]. The molecular vi-
brational spectrum that Raman measures has very high infor-
mation content (large number of sharp spectral features) that is
distinct for different molecular structures. These variations in
spectra enable the definitive identification of explosives,
chemicals, and other nonmetallic materials. Raman scattering
is a very inefficient process, with ~10−7 of incoming photons
being inelastically scattered, leaving the molecule

Fig. 3 Active hyperspectral
imaging of an RDX residue using
QCL illumination and an
uncooled microbolometer
camera. (a)Brightfield image. (b)
Difference image showing bright
areas of RDX residue caused by
preferential absorption when
compared with an off-absorption
wavelength. Reprinted with
permission from Ref.69. ©2010
SPIE
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vibrationally excited while reducing the energy of the light.
Raman measurements require laser excitation, efficient collec-
tion of the scattered light, rejection of the excitation light,
spectral dispersion, and detection. Several manufacturers
now offer commercially available handheld Raman spectrom-
eters that are portable, easy to use, and come equipped with
extensive libraries that can identify unknown chemicals at
down toμg quantities on the basis of their spectrum. Themain
limitation of Raman identification is the interference from
fluorescence.

If the excitation light is resonantly absorbed to produce
electronic excitations, either of the sample or of impurities,
fluorescence emission with quantum yields often at the level
of >10−2 can swamp the Raman signal with broadband light
that cannot be used for identification. Different Nd:YAG har-
monics (266, 355, and 532 nm) have been compared for op-
timizing Raman versus fluorescence signals for explosives
detection [104]. Deep-ultraviolet (DUV) resonant excitation
increases the Raman cross section significantly, and can
be performed at such short wavelengths that the interfering
fluorescence occurs at wavelengths outside the range of the
Raman spectrum [105–109]. DUV excitation is strongly
absorbed and thus only probes the surface of materials, so
there is a tradeoff between the higher cross section of the
DUV excitation and the larger number of molecules excited
with visible excitation [101]. Because UV light is absorbed in
the eye before focusing on the retina, UV pulsed lasers have
been demonstrated as potential explosive-detection tech-
niques operating under eye-safe conditions, an important con-
sideration for stand-off measurements [110–112]. Other po-
tential solutions to the fluorescence competition are moving to
longer-wavelength excitation or using sub-nanosecond time
gates [113], because Raman is emitted only during the excita-
tion pulse and fluorescence typically occurs over several
nanoseconds. Alternatively, shifted excitation difference
methods (taking the difference of two Raman spectra
obtained with slightly shifted excitation wavelengths) can be

used to remove fluorescence interference [114]. The Raman
features shift with excitation wavelength, but the broad fluo-
rescence does not. In the deep UV, Yellampalle et al. have
adapted a similar scheme with the additional advantage that
resonance Raman features also depend on the wavelength,
resulting in substantial improvements to selectivity and reduc-
tion in false positives [115–117].

Raman at stand-off distances is typically performed with
nanosecond pulsed laser excitation, collection of signal
through a telescope, and gated detection with an intensified
charge-coupled-device camera. These are essentially the same
instrumental requirements as those of LIBS, and both are often
used together [118–121]. Very good signal-to-noise has been
obtained for bulk explosive materials (tens of gram quantities)
in single-shot [122] and multiple-pulse [123] spectra mea-
sured beyond 100 m in daylight conditions, and at 470 m for
multiple-pulse measurement (1–10 s) during heavy rainfall
[124, 125].

Raman imaging can be performed in several ways, often
combined with stand-off detection. A fiber array can trans-
form the image into a linear stripe along the spectrometer slit,
which enables hyperspectral image reconstruction in software
[79]. The spectrometer can be replaced with a scanning liquid
crystal filter [124, 126] or Fabry–Perot interferometer [112] to
enable two-dimensional imaging with spectra acquired over
many pulses. Alternatively, point detection can be simply
scanned to construct an image [127].

Raman spectra can be measured through opaque and col-
ored plastic containers. Spatially offset Raman spectroscopy
(SORS) excites one spot on a sample and looks for multiply
scattered photons collected from a spatially offset location.
Photons initially from deeper in the sample have a higher
probability of multiple scattering, and the ratio of signal from
deep within the sample to surface excitations increases with
spatial offset [128]. Time-resolved Raman spectroscopy
(TRRS) uses time gating to separate surface scattered photons
from those initiated deep within the sample (Fig. 5) [129].
Nitromethane inside an opaque high-density polyethylene
container was detected at 15 m with SORS and TRRS, reveal-
ing good separation of signal from the container and the con-
tents [128]. If the containers are at least partially transparent,
normal stand-off Raman can be performed without any alter-
ations [121].

Coherent Raman

Coherent Raman methods enable excitation of Raman signa-
tures at levels that can be 104 times stronger than spontaneous
Raman, at the expense of more complicated laser excitation
sources [130, 131]. Coherent anti-Stokes Raman spectroscopy
(CARS) using pulse shaping of a femtosecond supercontinuum
was used for spectral identification and scanned imaging of
DNT and other chemicals [132]. Femtosecond CARS with

Fig. 4 Sensitive detection of TATP using electrogenerated
chemiluminescence at a glassy-carbon electrode in water–acetonitrile
solvent mixture. Reprinted with permission from Ref.95. ©2010
American Chemical Society
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pulse shaping for selective excitation of desired features in
explosives has also been achieved [133–135]. Femtosecond
stimulated Raman scattering using a pulse shaper to achieve
spectral resolution (no spectrometer needed) enabled raster-
scanned vibrational imaging for explosive identification to
10 m [136]. Nanosecond CARS has also achieved explosive
detection and identification [131]. Coherent Raman emits sig-
nals only in the forward direction, but for solids the signal
collected is light scattered in the backwards direction. An inter-
esting possibility for detection of gases is optically pumping air
so that it lases back at the excitation source, although this has
not yet been developed into a practical sensing method [137].

SERS

Surface-enhanced Raman scattering (SERS) has been widely
investigated as a means to exploit Raman spectroscopy for de-
tection and identification of trace explosives [103, 138, 139] at
quantities down to the monolayer level. Details of the SERS
method, including plasmonic engineering for ultra-trace analy-
sis, were reviewed by Baker and Moore [140]. One of the at-
tractions of SERS is the ability to tune the enhancement proper-
ties by changing the size and shape of the metal nanostructure.
The selectivity of SERS can also be tuned by first adsorbing
molecules with different functional groups to the metal surfaces.
SERS-active substrates come in many forms. Frequently, they
are silver or gold nanoparticles on a dielectric substrate.
Additionally, laser ablation of copper [141], silver [142], or gold
[143] in solution forms a colloidal, SERS-active solution, and
has been used to detect ANTA, FOX-7, and TNT.

Recently, much research has focused on the practical aspects
of using SERS as an explosives detection method, including
using inexpensive COTS products. Several researchers have in-
vestigated the use of Klarite™ (Renishaw Diagnostics) as a
SERS substrate for explosives detection. Klarite™ consists of a

regular array of gold inverted pyramid wells and has been re-
vealed to be a suitable substrate to detect RDX [144, 145], PETN
[145, 146], and TNT [145–149]. Raza et al. [150] developed an
alternative inexpensive SERS test strip, consisting of silver nano-
particles grown on filter paper modified with agarose film. The
test strips successfully detected TNT.

As in conventional Raman spectroscopy, the molecular
SERS fingerprint can be obscured by contaminants, which is
a practical consideration for the use of SERS in an explosives
detection device. Researchers were able to detect 0.15 mg L−1

RDX in contaminated groundwater using gold nanoparticles
[151], and 2 pmol L−1 TNT in contaminated soil using a com-
plex hybrid microsphere composed of a poly(styrene- co-
acrylic acid) core and magnetite shell, covered in gold nano-
spheres and lignin to increase the selectivity for TNT. [152].
Other research on this subject has focused on the effect of ions
commonly found in groundwater and of pH on the efficacy of
SERS to detect TNT and NTO [153, 154].

The spectral signatures of mixtures of materials can be diffi-
cult to separate and successfully identify using SERS. One po-
tential solution is to use chromatography to separate components
and then perform SERS on the individual constituents, as report-
ed by Zachhuber et al. [155], who used microliquid chromatog-
raphy to separate two isomers of DNT: 2,4-DNT and 2,6-DNT.
Likewise, Talian et al. [156] developed silicon-based nanostruc-
tured surfaces coated with silver and gold, prepared in a
microfluidic channel. They successfully separated and character-
ized DNB and 2,4-DNT. Jamil et al. [143] used a colloidal solu-
tion of gold nanoparticles with cysteamine in solution to increase
selectivity. The cysteamine and TNT formed a Meisenheimer
complex,whichwas then spontaneously assembled onto the gold
nanoparticles and could be detected by SERS. Cysteamine was
found to form the complex preferentially with TNT over DNT
and picric acid.

SERS can be combined with other technologies to maxi-
mize the detection and selectivity for identification of explo-
sives. Buettner et al. [148] combined SERS with surface-
enhanced IR absorption (SEIRA) to differentiate TNT from
musk ketone and musk xylene, which have similar chemical
structures to TNT but are found in lotions and fragrances.
They developed a plasmonic substrate comprising gold-
coated silicon nanopillars that enhanced both Raman and IR.
Holtoff et al. [149] integrated MIPS (molecularly imprinted
polymers) with SERS, layering a TNT-imprinted xerogel over
gold nanoprisms; however, the material was only sensitive to
nitroaromatics.

Cavity ringdown spectroscopy

Cavity ringdown spectroscopy (CRDS) is a powerful, highly
sensitive absorption-spectroscopy technique for detecting
gas-phase molecules. In this technique a short laser pulse is
injected into a resonant cavity with highly reflective mirrors.

Fig. 5 Schematic of the time-resolved Raman-spectroscopy method
using time gating to separate the container-wall spectra from the spectra
of the material inside, enabling detection of concealed explosives inside
containers. Reprinted with permission from Ref.129. ©2011 American
Chemical Society
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As the laser pulse is reflected back and forth between the
mirrors the absorbance of the molecules of interest, within
the cavity, is determined by the exponential decay of the in-
tensity of the light over time. In many cases, this method uses
an optical path length many times the sample path length and
measurement of the material concentration is immune to laser
pulse intensity fluctuations. Spicer, Wojtas, and Caygill have
recently written reviews which cover CRDS [157–159].

Many conventional explosives have very low vapor pres-
sure, making atmospheric room temperature CRDS measure-
ments of explosives challenging. Fortunately, NO2 gas has a
strong absorption in the UV from 400–450 nm and NO and
N2O absorb in the IR (5.26 μm and 4.55 μm, respectively).
Gas concentrators [158] and catalytic reactions with platinum
(IV) oxide hydrate [160] have been used to detect NO2 down
to the parts-per-billion by volume (ppbv) level. Specifically,
catalytic thermal dissociation using platinum oxide hydrate on
TNT, 2,4-DNT, and 1,3-DNB to produce NO2 achieved de-
tection at the 0.5 ppbv level using UV-CRDS without
sample preconcentration after only 1 s data acquisition
[160]. Wojtas reported practical application of the
preconcentration technique, detecting NO2 at a LOD of 10–
100 ppbv from AN and NG in a Polish mine facility [161].

In 2010 Snels revealed that IR-CRDS (1.6–1.7 μm) did not
have the sensitivity to detect explosive vapors at room tem-
perature, but successfully detected 75 ng solid DNT and TNT
when flash heated within the optical cavity [162]. Such detec-
tion limits potentially enable detection of fingerprint amounts
of explosives (0.1 μg–1 mg in the first-generation print) with
CRDS [162]. A free-flowing liquid wire jet soap film contain-
ing picric acid placed within the ringdown cavity at the
Brewster’s angle enabled detection of <17 fmol picric acid
by use of a 355 nm UV-CRDS system [163].

Notable advancements have been recently made by Harb
et al. [73, 164]. In 2012 they used extended Kalman filter
methods or real-time data processing using a frequency-
domain-analysis technique, instead of the typical
Levenberg–Marquardt method, to obtain real-time detection
of the vapor from a small piece of solid TNT in a CRDS cell
[164]. The real-time absorption measurements were obtained
while rapidly (0.2–7 s) scanning the infrared quantum cascade
laser (QCL) from 1580–1700 cm−1. More recently, pulsed
quantum cascade systems operating in the range 1200–1320
and 1316–1613 cm−1 were used to measure headspace gases
at ppm levels of NM and NG in less than 4 s. During the 4 s,
>150,000 spectral data points were obtained and analyzed
using the frequency-domain-analysis approach while scan-
ning the QCL. This novel analysis technique enabled
atmospheric-pressure and temperature measurements of NM
at the ppbv level. Headspace measurements of acetone, a pos-
sible TATP impurity, were made with the sample up to a few
meters away from the CRD cell input port. Future work will
enable more than two lasers to be resonant in the cavity

simultaneously, enabling a very large spectral bandwidth to
be covered in a small amount of time [73].

Laser-induced breakdown spectroscopy

To date, most laser-induced breakdown spectroscopy (LIBS)
work has been performed on conventional explosives from
trace (fingerprints; μg to mg quantities) to bulk (gram) quan-
tities [165]. Intense short-duration (femtosecond (fs) to nano-
second (ns)) laser pulses at stand-off or near-field distances are
used to ablate a sample and sometimes substrate, to generate
an evolving plasma. Emission from a mixture of molecules,
atoms, and ions in a variety of rapidly evolving excited states
is collected, and chemometrics/analysis of the C, H, O, N, Cl,
and CN components is performed. Reviews within the past
five years cover the different techniques [101, 165–170].
Recent work has revealed the effects of substrate and
interferent dependence [171] on analyte classification and
how selective sampling can enable surface sensitivity
[172–176]. Effects caused by wind [177], thermal radiation
[166, 178, 179], and different atmospheres [179–181] were
also investigated.

Signal enhancement through dual-pulse LIBS increased
analyte signal by up to an order of magnitude, but was found
to be dependent on the substrate and element investigated
[165]. Using a CO2 laser as the second pulse efficiently
reheats the plasma plume through an inverse Bremsstrahlung
absorption process, without increasing the quantity of ablated
mass [166, 182]. More recently a geometry-dependent, single-
beam-splitting LIBS approach obtained signal enhancement
(~5×) resulting from the angle and energy of the second beam
and not the timing [183]. Remote filamentation-induced
breakdown spectroscopy (R-FIBS) uses ultrashort fs lasers
to induce a filament in the atmosphere over distances of up
to a kilometer, with no need for focusing optics [168]. In
general, the ultrashort timescale of fs-LIBS enables ablation
of the sample material before energy has time to transfer into
the substrate, enabling detection of smaller amounts of mate-
rial. Elemental emission is fluence dependent, so more energy
results in more signal [184] and the lower-temperature
plasmas observed in fs-LIBS result in less fragmentation of
the explosive molecules and subsequently larger molecular
fragment emissions [185]. Time-resolved fs-LIBS experi-
ments on RDX, TNT, and NTO under different atmospheres
reveal that CN emission is from a secondary reaction from the
surrounding nitrogen environment within 150 ns [181].

Some improvised explosives and their precursors have
been investigated using LIBS excited at 1064 nm [186]. An
important advance in observing molecular fragment emissions
in the mid-wave IR and long-wave IR from 4–12 μm was
achieved by Yang et al. [187]. High-energy (>10 mJ)
fs-LIBS (<750 fs) enabled preservation of the 420 nm NOx

signature from KNO2 and NaNO3 [185]. Weathering effects
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on chloratite (a mixture of NaClO3, KClO3, sulfur, and sugar)
fingerprints (Fig. 6) revealed that a good signal was obtainable
for only two weeks [173].

Much effort has beenmade in the chemometrics/analysis of
LIBS emission spectra to enhance classification models and
decrease the number of false positives [188, 189]. Linear anal-
ysis was found to be insufficient, necessitating multivariate
analysis [190]. Partial-least-squares discriminant analysis
[175, 178, 191] and machine-learning classifiers with super-
vised learning methods [172, 189, 192] are two of the more
common techniques. Combining LIBS with Raman spectros-
copy has increased the ability to identify unknownmaterials at
stand-off distances through sensor–data fusion (Fig. 7 shows
an example) [119, 193–196]. As high-energy lasers become
more portable, the suitability of LIBS for use in the field is
improving [168, 184, 197]. Handheld low-power (<1 mW)
1064 nm LIBS devices are currently commercially available
for metal analysis, indicating that applications to explosives
detection are not far behind [198, 199].

Photoacoustic spectroscopy

In typical laser photoacoustic spectroscopy (PAS), alternating
electromagnetic radiation (pulsed alternating with chopped) is
absorbed by a sample and converted into heat by a non-
radiative de-excitation process. Ambient air absorbs the heat,
and the rapid sample heating and cooling caused by the alter-
nating chopped and pulsed light causes a pressure fluctuation
or photoacoustic wave that can be monitored using a micro-
phone or laser vibrometer [200]. Use of a cavity cell contain-
ing a gas or solid material and enhanced microphones has
obtained better than ppbv detection sensitivity for trace gas
analysis of non-explosives [201]. To enhance the photoacous-
tic signal to a part per trillion (pptv) detection level, piezoelec-
tric transducers [202, 203], as simple as a quartz resonator in
the form of a tuning fork, can be used; this method is called
quartz-enhanced laser photoacoustic spectroscopy (QE-PAS)
[203]. PAS signal strength is proportional to laser pulse ener-
gy. In stand-off PAS, as the acoustic wave propagates, the
pressure amplitude signal strength decays with a 1/r depen-
dence [202].

Photoacoustic spectroscopy is selective (characteristic ro-
tational and vibrational absorption) and sensitive (~1 ng TNT

[204]), and can be used without sample preparation. It is also
advantageous because it is not sensitive to light scattering
caused by the substrate, but only to absorption of optical ra-
diation [204]. However, care must be taken to ensure there are
not interferences from other substances including atmospheric
gases [205], other explosives, and background noise [206].
Ideally the background and/or sample surface should be trans-
parent to the effects of the excitation laser, but in practical
application this is problematic. The sensitivity or selectivity of
PAS can be enhanced by combining it with other detection
techniques, for example resonant microcantilevers or UV spec-
troscopy. The works of Dongkyu and Van Neste are good ex-
amples of combined techniques [207, 208]. A portable off-the-
shelf PAS device uses UV light to vaporize and dissociate ma-
terials such as explosives, which then emit ultrasonic photo-
acoustic signals [209].

Recent advancements with quantum cascade lasers (QCL)
have led to enhanced photoacoustic techniques whereby the
sample surface is exposed to tunable laser radiation within the
material’s characteristic absorption band. As the laser wave-
length is scanned the photoacoustic response is measured
using a microphone or QE-PAS, and photoacoustic spectra
corresponding to the rotational–vibrational energy absorption
specific to the chemical species are obtained. In 2010,
QE-PAS was successfully used in a 20 m stand-off configu-
ration with a 100 mWQCL (9.25–9.80 μm) to detect RDX at
a surface concentration of ~100 ng cm−2 [210]. The work of
Sharma et al. revealed that stand-off distance was dependent
on the background substrate material. DNT and PETN on
diffused Al, scanned over 1160–1400 cm−1 and
880–915cm−1, had a 5 μg cm−2 sensitivity with 12 m range,
whereas a wood surface required 50 μg cm−2 to yield only a
6 m range [211]. Short stand-off detection (8 inches) of bulk
TNT (1 mg mm−2) was obtained using an ultrasensitive mi-
crophone, and increased to 2.5 m using a 0.6 m diameter
parabolic sound reflector [202, 206]. The C–O stretch, cen-
tered near 8.3 μm, of the homemade explosive TATP was
detected in the gas phase in the near field using
QE-PAS [205, 212]. Multivariate analysis has also been used
in combination with IR (9–11 μm, 30–500 mW) scanning
PAS in a cavity cell configuration to identify less than
100 μg DNT, TNT, Tetryl, RDX, HMX, PETN, and TATP
[213].

Fig. 6 Linear LIBS scanning of weathered chloratite fingerprints on Al surface at 31 m stand-off. Emission from Na line at 589.2 nm shown as a
function of increasing age after deposition. Reprinted with permission from Ref.173. ©2013 Elsevier
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Outlook

The expanding number, quality, and breadth of explosives
detection methods are encouraging the development of ever
more capable instruments, for both laboratory and field use.
Instrumentation for X-ray diffraction methods is being rapidly
advanced, so that the identification advantages of X-ray dif-
fraction over X-ray imaging can be realized in screening ap-
plications. Terahertz imaging with spectral resolution seems to
be on the brink of application for enhanced personnel screen-
ing applications with the ability to identify contraband mate-
rials, although challenges related to spectral feature modifica-
tion caused by texture or covering materials must still be re-
solved. Both active and passive infrared spectral imaging
methods are improving their detection limits and their identi-
fication abilities. However, methods must improve their abil-
ities in backscattering or emission geometries, which can
cause peaks to look absorptive, dispersive, or intermediate
between the two as a result of particle size, shape, and envi-
ronment. We look forward to important developments where
chemiluminescence technologies are embodied into swipe or
glove-type sampling methods to analyze suspect areas or inves-
tigate individuals or objects in close to real time. Although
Raman seems to be one of themost mature explosives detection
methods, substantial improvements are still possible, including
new hardware for Raman imaging, further reduction in fluores-
cence interference, as in SORS or TRRS, via novel laser
sources, wavelength modulation, or new detectors, and combi-
nations of Raman with other technology (beyond ATR-FTIR or
LIBS, which are currently actively pursued). Similarly, hybrid-
ization of methods, for example SERS with SEIRA or MIPS,
and advances in data-fusion computational tools will lead to
improved ROC curves and areas of application. Large-area
screening for trace gases indicative of contraband materials is
quickly being realized, especially using new cavity ringdown
spectroscopic methods and other long-path absorption tools.
Data-fusion methods are improving the probability of detection
and identification from ever-smaller samples and ever more

complicated explosive materials, including the increasingly
prevalent homemade explosives. Nevertheless, methods to fuse
data or information from more disparate and larger numbers of
methods to achieve greater certainty of detection or increased
discrimination between threat and non-threat are needed.
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