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Abstract In search of specific label-free biomarkers for dif-
ferentiation of two oral lesions, namely oral leukoplakia
(OLK) and oral squamous-cell carcinoma (OSCC), Fourier-
transform infrared (FTIR) spectroscopy was performed on
paraffin-embedded tissue sections from 47 human subjects
(eight normal (NOM), 16 OLK, and 23 OSCC). Difference
between mean spectra (DBMS), Mann–Whitney’s U test, and
forward feature selection (FFS) techniques were used for
optimising spectral-marker selection. Classification of dis-
eases was performed with linear and quadratic support vector
machine (SVM) at 10-fold cross-validation, using different
combinations of spectral features. It was observed that six
features obtained through FFS enabled differentiation of
NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and
1161 cm−1) and were most significant, able to classify OLK
and OSCC with 81.3 % sensitivity, 95.7 % specificity, and

89.7 % overall accuracy. The 43 spectral markers extracted
through Mann–Whitney’s U Test were the least significant
when quadratic SVM was used. Considering the high sensitiv-
ity and specificity of the FFS technique, extracting only six
spectral biomarkers was thus most useful for diagnosis of
OLK and OSCC, and to overcome inter and intra-observer
variability experienced in diagnostic best-practice histopatho-
logical procedure. By considering the biochemical assignment
of these six spectral signatures, this work also revealed altered
glycogen and keratin content in histological sections which
could able to discriminate OLK and OSCC. The method was
validated through spectral selection by the DBMS technique.
Thus this method has potential for diagnostic cost minimisation
for oral lesions by label-free biomarker identification.
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Introduction

Oral carcinogenesis is a complex multistep phenomenon. Its
progression starts from benign hyperplasia and evolves
through dysplasia, carcinoma in situ, and finally to oral
squamous-cell carcinoma (OSCC) [1]. Oral pre-malignant
disorders (PMDs) are believed to be an intermediate step of
oral cancer development. Among many PMDs, oral leukopla-
kia (OLK) is the most prevalent, and histopathological evalu-
ation of biopsies is the diagnostic method of choice [2]. The
definition of OLK, as amended in the workshop of the WHO
Collaborating Centre for Oral Cancer and Pre-cancer in 2005
by the working group, is: “The term leukoplakia should be
used to recognise white plaques of questionable risk having
excluded (other) known diseases or disorders that carry no
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increased risk for cancer” [2]. Despite substantial develop-
ment in molecular pathology, there is a lack of specific mo-
lecular markers predicting malignant potential. OLK is often
associated with different grades of dysplastic changes, assess-
ment of which is too difficult because of inter or intra-observer
variability regarding the biopsy specimen. Often, clinically
indicated OLK is diagnosed as OSCC on histopathology. Cur-
rent research thus focuses on more selective and specific OLK
diagnostic-marker identification. Recent studies used Raman
spectroscopy for oral cancer and PMD diagnosis or to diag-
nose recurrence using oral ex-vivo tissues [3], but high data-
acquisition time and low efficiency of inelastic light scattering
are major limitations of the procedure regarding translation
into the clinic [4].

As well as histology, a few molecular markers can be stud-
ied by molecular pathology techniques, but definite expres-
sion study by this method has not been proved sufficient to
predict malignancy [5]. Hence, recent studies used
vibrational-spectroscopy tools to document label-free markers
to overcome limitations of molecular pathology, especially to
record many types of molecular and/or sub-molecular infor-
mation from the same tissue section. In this study, we analyzed
the efficacy of Fourier-transform-infrared-spectroscopy
(FTIR)-based optimum spectral-biomarker identification and
diagnostic segregation of OLK and OSCC for minimising
inter or intra-observer variability and increasing diagnostic
sensitivity and specificity.

Identifying distinct spectral features extracted from FTIR
spectra to indicate a characteristic disease is very difficult,
because human tissue is composed of widely different molec-
ular structures where overlapping of individual spectral peaks
leads to formation of broader ones [6]. Hence, dimensionality
reduction is an important challenge in these studies. With the
advance of computational techniques, many methods includ-
ing wrapper, filter, and embedded methods are also used for
feature or spectral-biomarker selection [7]. Other efficient
methods include peak-picking from second-derivative spectra,
curve-fitting methods, multivariate classifications, etc. In this
study, the efficiency of rather uncommon computational
methods, namely the feature forward selection (FFS) approach
and Mann–Whitney’s U test, was compared with difference
between mean spectra (DBMS), the most commonly used
technique for feature extraction. The selected spectral markers
were then subjected to support vector machine (SVM) and its
variants for OSCC and OLK classification to assess their clas-
sification performance. FFS, a greedy wrapper algorithm for
feature subset selection, uses a classifier to guide the addition
of new features. Starting with an empty feature set, the feature
that gives best classification is chosen. FFS next chooses the
feature that gives best classification together with the feature
already chosen, and the process continues for a specified num-
ber of times. A random 90 % of the data is used for training,
and testing is performed using the remaining 10 % of the

dataset [8]. SVM was used as the classifier for disease classi-
fication from the selected spectral markers because it obtained
excellent classification accuracy in previous disease-
classification studies [9]. Because a recent study of the poten-
tial of formalin-fixed paraffin-embedded (FFPE) tissue ob-
tained excellent IR spectra when optimised analytical proce-
dures to differentiate normal oral tissues with OSCC were
used [10], we tried to differentiate clinically more closely re-
lated oral lesions in this study. The major challenge associated
with FTIR in transmission mode is the scattering resulting
from tissue surface inhomogeneity, which was minimised
through spectral pre-processing [11].

Materials and method

Tissue collection

Transmission FTIR was performed on FFPE tissue sections
from 47 patients (eight normal (NOM), 16 OLK, and 23
OSCC). Tissues were collected from the repository of Guru
Nanak Institute of Dental Science and Research, Kolkata, In-
dia under ethical clearance of the institution ethical committee
(GNIDSR/IEC/15-1 dt. 05/01/2015) after histopathological
confirmation of the biopsy samples by oncopathologists using
haematoxylin and eosin (H&E) staining. Normal oral muco-
sae were collected from the distobuccal aspect of the third
molar teeth. The excess amount of mucoperiosteal buccal
flaps left after transalveolar surgery was excised and used as
normal. Therefore, collection of normal samples from subjects
devoid of any disease was limited for ethical reasons [12].

FTIR study

The study was performed using a Nicolet 6700 spectrometer,
Thermo Fisher, USA. For spectral data acquisition in trans-
mission mode, acetone-treated dried deparaffinised unstained
4 μm thick tissue sections were used. The FFPE tissue sec-
tions were first deparaffinised using 10 min xylene treatment,
and then dried using 5 min acetone treatment. Because after
drying the tissue became completely dried and brittle, it was
treated as powder during KBr pellet preparation, which was
used as substrate. All the FTIR spectra were obtained in the
range 400–4000 cm−1 at a resolution of 4 cm−1 with 32 scans.
An 8 mm aperture diameter and DTGS detector were used
during data acquisition.

Histological confirmation and histochemical staining

Staining of the samples was performed in 4 μm thick paraffin
sections placed on four albumin-coated glass slides. The slides
were then deparaffinised using xylene for 10 min. The section
was stained with Harris’ Hematoxylin and counter-stained
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with eosin (H&E). Stained tissue sections representative of
each disease condition are shown in Fig. 1a–c. Only Type II
OLK or OLK with moderate dysplasia and well-differentiated
OSCC were considered in this study, along with their normal
counterpart, to avoid subtype-associated variation, because
previous studies suggested that Type II OLK has the maxi-
mum chance of malignant transformation [13, 14]. The ob-
served difference in the mean spectra of the diseases in the
range 1200–1400 cm−1 was caused by glycogen and carbohy-
drate [13]. Therefore, the variation was validated by PAS (pe-
riodic acid–Schiff)-stained representative tissue sections.
Deparaffinised tissue sections were first oxidised with 0.5 %
periodic acid for 10 min, then stained with Schiff reagent for
5 min, and finally counter-stained with Harris’ Hematoxylin.
Stained tissue sections representative of each disease condi-
tion are shown in Fig. 1d–f.

Spectral-biomarker identification and disease
classification

The 900–1800 cm−1 spectral interval, being regarded as the
“fingerprint region”, was chosen to reveal the difference be-
tween mean spectra [14]. Clinically it was found that OLK
and OSCC are highly correlated diseases. To guard against
bias in favour of atypical features, heterogeneity between
groups of samples was validated through classification of the
full spectral interval 4000–400 cm−1, where no classification
was found when classified using Ward’s algorithm, point-by-
point Euclidian distances, vector normalisation, and no com-
pression or derivative spectra. The result is shown in the Elec-
tronic Supplementary Material (ESM) Fig. S1a. Again, when
three regions for the best fit, 3000–2800 cm−1, 1600–

1480 cm−1, and 1145–1081 cm−1, were considered for classi-
fication in the same manner, only one normal sample was out
of the main cluster (ESM Fig. S1b). This result suggested that
simple classification was not accurate enough to separate
healthy from pathological samples. This classification also
revealed that statistical differences exist at the global level,
and thus any further treatment, for example multivariate anal-
ysis, was supposed to reveal more subtle differences. There-
fore, rubberband-like baseline correction (RBBC) pre-
processing followed by maximum vector normalisation and
mean centring of spectra in the range 900–1800 cm−1 follow-
ed by principal component analysis (PCA) was performed;
when linear discriminant analysis (LDA) was performed,
LDA scores plotted with a confidence ellipse representing a
70 % confidence interval had significant overlapping in OLK
and OSCC cases, although NOM and OSCC were completely
non-overlapping (ESM Fig. S2). Therefore the optimum spec-
tral biomarker was sought with two other techniques, namely
forward feature selection (FFS) as a multivariate wrapper
method and Mann–Whitney’s U test as a univariate filter
method. During FFS-based feature extraction, the spectral in-
terval of 900–1800 cm−1 was first standardised. First a feature
histogram was generated through repeated FFS by randomly
splitting the dataset 100 times into 90 %:10 % training–test
sets, selecting five variables (spectral bands selected as
wavenumbers) each time. Finally, six variables were sug-
gested on the basis of the maximum number of hits of the
variables [8]. FFS was also performed for two-class problems
separately, (i) NOM vs. OLK, (ii) NOM vs. OSCC, and (iii)
OLK vs. OSCC, and six spectral biomarkers were selected for
each set. For Mann–Whitney’s U test, −log10(p-value) was
considered, rather than the p-value itself. This form is

Fig. 1 H&E-stained tissue sections representative of each study
condition (a) Keratinised normal tissue (NOM), (b) keratinised
dysplastic epithelial oral tissue clinically featuring OLK, (c) keratinised

dysplastic epithelial oral tissue clinically featuring OSCC, and PAS-
stained tissue section of (d) NOM, (e) keratinised OLK, and (f) OSCC
at 10× magnification
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convenient because it transforms the p-value into a signifi-
cance measure. The U-test, being non-parametric, is theoreti-
cally more appropriate than the t-test, because the probability
distributions of the data variables may be skewed and/or bi-
modal, and the t-test assumes normal distribution. Finally,
features selected by these two methods were classified using

linear support vector machine (SVM) and quadratic SVM at
10-fold cross validation, followed by comparison of the re-
sults. Feature selection by the DBMS technique was per-
formed using OMNIC9 software with 50 % sensitivity during
peak finding. Spectral biomarker extraction by Mann–
Whitney’s U test and FFS was performed using “irootlab”, a

Fig. 2 (a) Difference between
mean spectra (absorbance) in the
range 900–1800 cm−1 for NOM,
OLK, and OSCC tissues. (b)
Typical spectra of glycogen
(absorbance) in the range 400–
4000 cm−1
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MATLAB toolbox used for vibrational spectroscopy in
MATLAB R2012b (MathWorks, USA) [15]. Efficiency of
disease classification was obtained using the “Classification
Learner” app of MATLAB R2014b (MathWorks, USA). A
schematic diagram of the method is provided in ESM Fig. S3.

Result and discussion

H&E-stained tissue sections representative of each disease
condition, as shown in Fig. 1a–c, define the disease character-
istics. In the NOM condition (Fig. 1a) finger-like rete pegs
were present, whereas in the OLK condition (Fig. 1b) hyper-
plasia and moderate dysplasia were present. In the OSCC

condition (Fig. 2c), epithelium and sub-epithelium could not
be differentiated, and the presence of keratin pearl was evi-
dent. Selected spectral biomarkers, their corresponding
feature-extraction technique, and commonly assigned bio-
chemical components with their probable vibrational mode
are presented in Table 1, and results of disease classification
with sensitivity, specificity, and accuracy are presented in
Table 2.

The difference between mean spectra is presented in
Fig. 2a. The range 1000–1200 cm−1 is believed to be associ-
ated with polysaccharide and glycogen [13]. During feature
selection for disease discrimination, four spectra extracted by
DBMS and one extracted by FFS were found to be related to
polysaccharide and glycogen content, as shown in Table 1.

Table 1 Spectral biomarkers extracted and their commonly assigned biochemical components

Wavenumber (cm−1) Feature-extraction
technique

Commonly assigned biochemical
component

Vibrational mode Ref.

1043 DBMS Polysaccharides, glycogen and/or glucose,
nucleic acid in absence of glycogen

γ (PO2
-) in RNA, DNA [13, 16, 17]

1050* DBMS Polysaccharides, glycogen γs (C–O–O–C), γ (C–O) coupled
with δ (C–O), of C–OH of carbohydrates

[13, 17]

1088* FFS Protein phosphorylation, DNA, phospholipids,
phosphate I in B form DNA if not
polysaccharide, glycogen

γs (PO2
-) [17–19]

1160, 1161 DBMS Polysaccharides, RNA ribose γ (C–C), δ (C–OH), γ (CO) [13, 18, 19]

1161 FFS Protein phosphorylation γ (C–C), δ (C–OH), γ (CO) [19]

1319, 1320 DBMS Fatty acids and amino acids, collagen – [20, 21]

1385 FFS Protein phosphorylation, – [15]

1385 DBMS Phospholipid and fatty acyl chains triglyceride δs (CH3) [15, 19]

1409 FFS Protein phosphorylation – [15]

1438 DBMS Keratin – [20]

1458 DBMS Collagen δas (CH3) [17, 19]

1474 DBMS Keratin δas (CH2) [20]

1543 DBMS Amide II 60 % δ (N–H), 30 % γ (C–N),
10 % γ (C–C)

[13, 19]

1545 FFS Amide II δ (N–H), γ (C–N) [15]

1548 DBMS Amide II 60 % δ (N–H), 30 % γ (C–N),
10 % γ (C–C)

[13, 19]

1550 DBMS Amide II 60 % δ (N–H), 30 % γ (C–N),
10 % γ (C–C)

[13, 19]

1628 FFS Amide I 70–85 % γ (CO), 10–20 % (CN) [22]

1638–1680 Mann–Whitney’s
U test

Amide I 70–85 % γ (CO), 10–20 % (CN) [19, 22]

1648 DBMS Amide I γ (HOH), 70–85 % γ (CO),
10–20 % (CN)

[13, 19, 22]

1662 FFS Amide I 70–85 % γ (CO), 10–20 % (CN) [22]

1665 FFS Amide I 70–85 % γ (CO), 10–20 % (CN) [22]

1704 FFS Fatty acid esters, lipid – [17]

1713 FFS Fatty acid esters, lipid – [17]

1775 FFS Unassigned – –

1782 FFS Unassigned – –

γ = stretching, δ = bending, s = symmetric, as = asymmetric, *1080 and 1156 cm−1 found on glycogen pure spectrum in Fig. 2b; the shifts result from the
absorption from other saccharidic contents
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The changes resulting from alteration in carbohydrate and
glycogen content within the tissue sections were clearly visi-
ble in representative PAS sections (Fig. 1d–f). In NOM epi-
thelium there was glycogen expression in the suprabasal re-
gion, which was not present in OLK. In OSCC, glycogen
expression was visible in the focal region with a characteristic
magenta colour. A typical spectrum of glycogen, revealing
absorbance in the range 400–4000 cm−1, is provided in
Fig. 2b to validate the concept. The peak present at
1043 cm−1 in normal oral mucosa and OLK mean spectra
was shifted to 1050 cm−1, and again there was a peak at
1109 cm−1 which was found to reduce gradually in diseased
cases. This result was in agreement with a previous study [20],
and was validated by representative PAS-stained tissue sec-
tions (Fig. 2d–f). Previous studies proved that keratinisation is
always preceded by glycogen accumulation, but interestingly
glycogen content is increased in OLK when keratinisation is
reduced [23]. This was correlated with an increase of specific
absorptions of glycogen in spectra (bands centred at 1024,
1080, and 1156 cm−1 giving rise to global absorptions in the
1000–1200 cm−1 spectral interval of biological tissue spectra),
as presented in Fig. 2b. Another study suggested that dimin-
ished glycogen concentration in OLK compared with normal
buccal mucosa is suggestive of morphological changes [21].
This suggestion was validated histochemically in this study by
the PAS-stained images.

The effect of glycogen in keratinisation is quite interesting. In
one method glycogen was revealed to be the energy provider for
keratinisation, whereas another study suggested glycogen to be

the precursor of oleic acid, which is used for keratin synthesis
[24]. Another study revealed that alteration of glycogen metabo-
lism and phosphorylation of related proteins were probably the
underlying causes of keratinisation in oral mucosa [25]. It was
found that in non-keratinised mucosa there was a substantial
amount of intercellular glycogen expression, but in OLK
(Fig. 1e),with increase in the extent of keratinisation, intracellular
glycogen content was reduced compared with that of the NOM
(Fig. 1d), but the keratinised area remained positively stained.
This might be caused by the glycosylated keratin filaments pres-
ent in human keratinocyte [26]. Because the glycosylation is
associated with keratan sulfate, increased expression of sulfur
in PMDs can be associated substantially with keratinisation
[27]. Another study revealed the presence of glycoproteins in
keratin fibres [28], and the effect of glycogen and keratin was
found to be interesting in OLK-mediated oral carcinogenesis, as
illustrated by the spectral and histochemical results and by pre-
vious studies, because PAS positivity substantiates tissue glyco-
gen and glycoprotein expression [29]. Increased glycogen was
also found to be associated with increased cellular differentiation
in carcinoma and an important property for disease classification
[30]. The concept of such an association has been presented in
and validated through histochemical and spectrochemical signa-
tures towards label-free marker identification for glycogen.
Therefore it can be deduced that during spectral differentiation
of OLK and OSCC, the region of glycogen can be taken into
account with the amide I region, as evident from Fig. 2.

During analysis of DBMS spectra, the highest intensity
moved from 923 cm−1 to 925 cm−1, revealing that the most

Table 2 Results of OLK and OSCC classification by linear and quadratic SVM showing sensitivity, specificity, and accuracy

Feature-extraction
technique

Selected wave numbers Type of SVM used Sensitivity (%) Specificity (%) Accuracy (%)

DBMS 1043, 1050, 1050, 1061, 1319, 1320, 1385, 1438,
1474, 1543, 1548, 1550, and 1648 cm−1

Linear 75 82.6 79.5

Quadratic 81.3 91.3 87.2

FFS All 18 features selected through FFS Linear 68.8 82.6 76.9

Quadratic 68.8 91.3 82.1

FFS Features selected for NOM vs. OLK and OLK vs.
OSCC delineation

Linear 68.8 78.3 74.4

Quadratic 62.5 91.3 79.5

FFS Features selected for NOM vs. OLK and NOM vs.
OSCC delineation

Linear 75 78.3 76.9

Quadratic 75 91.3 84.6

FFS Features selected for OLK vs. OSCC and OLK vs.
OSCC delineation

Linear 75 87 82.1

Quadratic 68.8 91.3 82.1

FFS Features selected for NOM vs. OLK delineation
(1628, 1385, 1088, 1775, 1704, and 1662 cm−1)

Linear 68.8 82.6 76.9

Quadratic 68.8 91.3 82.1

FFS Features selected for OLK vs. OSCC delineation
(1032, 956, 1707, 1639, 1606, and 1565 cm−1)

Linear 68.8 78.3 74.4

Quadratic 68.8 91.3 82.1

FFS Features selected for NOM vs. OSCC delineation
(1782, 1713, 1665, 1545, 1409, and 1161 cm−1)

Linear 68.8 91.3 82.1

Quadratic 81.3 95.7 89.7

Mann–Whitney’s U test 1638–1680 cm−1 Linear 50 65.2 59

Quadratic 31.3 78.3 59

7940 S. Banerjee et al.



intense contributing peak had changed in the spectral range
in OLK and OSCC, possibly caused by transformation into
left-handed-helix DNA (Z form) through oxidative DNA
damage [17] caused by damage of sugar and base moieties
[31]. A previous study confirmed that conformation
change into Z-DNA leads to genetic instability in such
diseases as cancer [32]. In NOM, the peak at 995 cm−1

resulting from ring breathing [17] was found to be lost in
cases of disease.

In the normal condition there was a peak at 1385 cm−1,
which moved to 1405 cm−1 for OLK and 1406 cm−1 for
OSCC. Again in the normal condition, there was a peak at
1550 cm−1, which moved to 1548 cm−1 for OLK and to
1543 cm−1 for OSCC. The peak at 1238 cm−1 in OSCC is in
agreement with another study, which was also found to be
present in OLK [10]. Two peaks at 1438 cm−1 and
1474 cm−1 in OSCC may be caused by alteration in keratin,
as suggested by Fukuyama et al. [20]. Alteration in keratin
expression is evident in both Figs. 1a and 2d–f; both H&E
staining and PAS staining indicate keratin expression [29].
There was increased keratin deposition above the epithelium

in OLK, and in OSCC distinct keratin pearls are observed in
Fig. 2. Therefore, these spectra obtained through FFS can be
regarded as a label-free biomarker for differential OLK and
OSCC classification. When Mann–Whitney’s U test was per-
formed, 1638–1680 cm−1 was found to be significant with
−log10(p-value) less than 1. This region is representative of
the amide I band. Overlapping of broad underlying compo-
nent bands in this region leads to difficulty in specific band
assignment of proteins, other than distinctive absorbancemax-
ima [33]. During FFS, 18 spectral wave numbers were extract-
ed from the region 900–1800 cm−1, six each to differentiate
NOM vs. OLK (1628, 1385, 1088, 1775, 1704, and
1662 cm−1), NOM vs. OSCC (1782, 1713, 1665, 1545, 1409,
and 1161 cm−1), and OLK vs. OSCC (1032, 956, 1707, 1639,
1606, and 1565 cm−1). The chemistry behind the alteration of
spectral shift or presence of exclusive spectral bands is depicted
in Table 1. Five spectral markers were common in at least two
feature-selection techniques. Peaks at 1161 and 1385 cm−1 were
obtained with both DBMS and FFS, whereas peaks at 1648,
1662, and 1665 cm−1 were common in DBMS and Mann–
Whitney’s U test.

Fig. 3 Schematic diagram depicting connection between histochemical and spectrochemical signatures, with potential for label-free-marker
identification and diagnostic differentiation of OLK and OSCC
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The diseases were classified with linear and quadratic SVM
using different combinations of spectra, and it is evident from
Table 2 that quadratic SVM was more efficient than the linear
SVM model. Six features obtained through FFS to differentiate
NOM and OSCC were the most significant, with 81.3 % sensi-
tivity, 95.7 % specificity, and 89.7 % overall accuracy, whereas
43 features extracted through Mann–Whitney’s U Test were the
least significant (50 % sensitivity and 65.2 % specificity)
(Table 2). The extracted features obtained through DBMS were
also found to be highly significant, with 81.3 % sensitivity,
91.3 % specificity, and 87.2 % overall accuracy to differentiate
OLK and OSCC. Hence, features selected through FFS for
NOM and OSCC differentiation and through DBMS could be
regarded as important spectral biomarkers for classification of
highly correlated OLK and OSCC, and had translational value
and has been highlighted in Table 2. Because in the latter case the
number of features was higher and sensitivity was lower, it can
be concluded that the six spectral biomarkers 1782, 1713, 1665,
1545, 1409, and 1161 cm−1 can be used for objective diagnosis
of OLK and OSCC, and for removing ambiguity associated with
inter and intra-observer variability. Structural lipids remained un-
altered during tissue processing, and were also found to be im-
portant in disease differentiation, along with the other proteins.
Beyond 1750 cm−1 it is assumed that no more relevant absorp-
tion can be found, but, interestingly, a theoretical selection of
spectra at 1782 cm−1 augmented classification efficiency. It can
be observed from Fig. 3 that during DBMS spectra selection the
region of carbohydrate and glycogen is be useful, whereas the
FFS technique revealed the involvement of fatty acid esters, am-
ide I and II regions, and protein phosphorylation in OLK and
OSCC differentiation.

In the context of augmenting precise clinical decision
making to differentiate moderately dysplastic OLK and
OSCC conditions, this spectroscopic study aided with
computational analytics was found to be successful for
identification of discriminatory spectral markers for these
diseases. These markers, being associated with important
bio-molecular changes at qualitative and quantitative
levels, were also found to be effective for classification
of the diseases with high sensitivity and specificity. This
work also suggests FTIR spectroscopy as a reagent-free
and observer-independent method for glycogen and kera-
tin assessment in OLK and OSCC histology. Thus this
study not only supports FTIR-based label-free-marker
development endeavours in cancer research, but also
reveals clinical potential for disease classification and
assessing malignant potential of oral lesions.
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